Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat – (IV)

În cele ce urmează voi continua analiza geometriei şcolare aşa cum se găseşte aceasta la o lectură atentă “printre rânduri” în lucrarea profesorului Eugen Rusu, De la Tales la Einstein (Lyceum, ed. Albatros,1971). Am citit această carte pentru prima dată cândva în a doua jumătate a anilor ’90, adică spre finalul primului meu deceniu de profesie. Cartea ne-a entuziasmat, pe mine şi pe soţia mea, am preluat câteva citate din ea, dar în mare nu am putut valorifica în profunzime toate cele citite: eram încă la începutul drumului în reformarea predării pe baze mai sănătoase a matematicii (startul conştient pentru mine a fost în 1994). Gândurile lecturate s-au afundat însă încet în uitare, dar nu într-o uitare neglijentă, ci într-o uitare sănătoasă, din care uneori îmi veneau brusc idei – pe care le credeam ale mele – dar care îmi erau sugerate inconştient de cele citite la Eugen Rusu.

La începutul acestui an, lucrând la un alt material, căutam un anumit citat, aşa că am redeschis cartea sus-amintită. N-am găsit citatul căutat, dar am găsit la începutul acestei cărţi o minunată conexiune cu sfatul de folosire a abordării intuitive în predarea primelor noţiuni de geometrie în clasele V-VI din noua programă de matematică pentru gimnaziu. În momentul acela toate gândurile înceţoşate din ultimii peste 20 de ani despre cum ar trebui predată geometria mi-au reapărut în conştienţă, de data aceasta clare ca într-o imagine de cea mai mare rezoluţie pe un monitor HD. Mă simţeam ca într-o casă caldă privind afară pe fereastra înrămată cu perdelele cele mai frumoase, într-o zi însorită de iarnă când toate detaliile firelor de zăpadă din omătul de afară se văd cu o claritate năucitoare. Rezultatul acelui moment s-a concretizat a doua zi în eseul (din 10 ian. 2018) numit Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat. Lecturând mai departe din cartea lui Eugen Rusu am înţeles că eseul se cere continuat, astfel apărând următoarele două părţi spre finalul lunii ianuarie.

Consideram că am epuizat subiectul, dar carte continuă, relevând faptul că subiectul ales iniţial cu titlul de mai sus, se transformă încet într-unul mult mai profund, ce ar putea fi numit Etapele predării geometriei şcolare şi argumentarea psihologică a metodicii predării. Am păstrat totuşi titlul iniţial pentru a arătă continuitatea gândurilor.

Aşadar, să mergem mai departe în lecturarea cărţii lui Eugen Rusu. În Capitolul IV, numit Matematica întreagă: meşteşug, ştiinţă, artă şi joc, mijloc de educaţie, Eugen Rusu ne vorbeşte despre ARHIMEDE (287 – 212). Iată, pentru o mai clară impresie, o parte din subtitlurile acestui capitol (care începe la pag. 70): Matematician universal; Viaţa; Ingeniozităţi practice; Arhimede îşi apără Patria; Opera scrisă; Precursorul fizicii matematice (parte ce conţine o descriere detaliată a problemei coroanei); Concepţia filozofică; Evrika; Precursor al calculului integral; Arhimede îi învaţă pe greci să numere; Joc-matematică; (…) Următoarele pasaje sunt alese din acest capitol prin prisma principiului evocat la începutul cărţii, anume că evoluţia matematică a unui individ este, cu prescurtări, asemănătoare cu evoluţia istorică a umanităţii (pag.4). Eu înţeleg acest principiu în felul următor: evoluţia preocupărilor şi a descoperirilor diferitelor elemente matematice de-a lungul vremurilor este un bun indiciu, de care trebuie ţinut cont pe cât posibil în organizarea materiei şi a nivelului de abordare al acesteia, pe parcursul claselor şcolare, fiind cel mai sănătos ca aceasta să evolueze pe căi şi în trepte similare cu cele din parcursul istoric.

Capitolul începe prin enumerarea a şapte argumente, motive pentru care Arhimede poate fi considerat primul matematician universal (Henri Poincaré, 1854-1912, ar fi ultimul matematician universal). Trei dintre acestea mi-au atras atenţia. Astfel, Arhimede:

– a făcut cercetări de matematică dezinteresată, axate pe plăcerea de a gîndi, nedispreţuind nici sectorul problemelor “distractive”, situate între joc şi matematica-artă; – a împletit cercetarea euristică cu fundamentarea logică riguroasă, arătând şi cum a gândit ca să descopere şi cum, după aceea, caută o demonstraţie matematică riguroasă; – a intrat în contact cu alţi matematicieni nu comunicîndu-le direct rezultatul, ci provocîndu-i să-l caute, dovedind astfel că a intuit cu deosebită fineţe adevărata pedagogie a matematicii; (…; pag.70-71)

Aceste argumente ar trebui citite “printre rânduri” ca un sfat din partea lui Eugen Rusu pentru introducerea lecţiilor prin procedeul de problematizare, mai degrabă decât prin simpla prezentare a conţinuturilor. Astfel, elevii trebuie provocaţi să gândească (şi să descopere plăcerea de a gândi) în strădania de a genera împreună lecţia la oră, în loc să le turuim conţinuturile şi să le cerem să le înveţe pe de rost. Iar în procesul de atragere a elevilor spre plăcerea de a gândi, matematica “distractivă” reprezintă unul dintre “magneţii” cei mai puternici. În subtitlul Joc-matematică (pag.91) E. Rusu reia ideea:

Jocul “stamahion” – practicat ca distracţie la curtea din Siracuza şi căruia Arhimede i-a consacrat o mică lucrare – constă în aşezarea a 14 plăci de fildeş în aşa fel ca să formeze un pătrat. Plăcile erau astfel tăiate încît să existe mai multe soluţii, precum şi unele false soluţii, adică aşezări care erau “aproape pătrate” şi numai prin raţionamente – după cum a arătat Arhimede – se putea dovedi că nu sînt soluţii exacte. Căutarea soluţiilor era un amuzament. Cînd însă căutarea soluţiilor nu se face pur empiric, prin aşezări întîmplătoare, ci prin aşezări ghidate şi de raţionament, acest amuzament devine de ordin superior; avem în acest caz un joc-matematic şi el trebuie incorporat matematicii propriu-zise. Astfel de jocuri apar în cărţi care se intitulează obişnuit matematică distractivă. Mi se pare că este un titlu prea larg: nu numai jocurile, multe probleme “serioase”, aproape întreaga matematică este sau ar trebui să fie dintr-un anumit punct de vedere şi distractivă. Nenumăratele demonstraţii prin arii ale teoremei lui Pitagora, din care am amintit cîteva, nu sînt în esenţă foarte asemănătoare cu jocul stamahion? Graniţa între joc de inteligenţă şi matematică este foarte neprecisă. (…) Astfel concluzionează Eugen Rusu acest subtitlu, iar eu îmi permit să completez în primul rănd că Da!, orele de matematică şcolară ar trebui pigmentate din când în când cu probleme mai mici sau mai mari de matematică distractivă. Apoi, în al doilea rând, trebuie precizat că multe elemente din lecţiile serioase, obligatorii prin programă, pot fi – şi ar fi bine să fie – predate asemănător problemelor de matematică distractivă. Efectul surprinzător la o astfel de politică de predare este că, în felul acesta chiar şi elementele mai seci ale orei de matematică sunt preluate de către elevi cu drag, ei fiind conştienţi că profu’/profa’ se străduieşte ori-de-câte-ori este posibil să le prezinte lecţii cât mai frumoase şi atractive.

După descrierea detaliată a problemei coroanei, în subtitlul Evrika Eugen Rusu analizează momentul înţelegerii unui fenomen. Gîndirea lui Arhimede nu este stînjenită de prejudecăţi “filozofice”, este un om viu, interesat de felurite probleme de viaţă, de ştiinţă. Simţirea lui este de asemenea spontană, naturală, nefalsificată de “concepţii” – şi deci foarte interesantă ca fenomen psihic.

Există la unii oameni părerea că activitatea matematică este pur intelectuală, uscată şi rece, lipsită de pulsaţia şi palpitaţiile fenomenelor vii. Este părerea acelora care nu au o experienţă proprie, autentică asupra ei, care o privesc prin prisma deformantă a matematicii şcolare de un anumit tip, a unei şcoli greşit înţelese, care în loc să deschidă poarta spre matematica vie, au transformat-o într-o obligaţie penibilă. (pag.83) Cât de multă dreptate are aici profesorul Rusu, sugerând măcar în parte că abordarea predării matematicii poate fi privită ca una din sursele apariţiei persoanelor avariate matematic! (fenomen despre care am vorbit în câteva rânduri cu alte ocazii) Şi, din păcate, cât de mulţi profesori de matematică, al căror rol ar trebui să fie de a deschide poarta spre matematica vie şi spre plăcerea de a gîndi, cât de mulţi dintre aceştia transformă matematica într-o obligaţie penibilă, într-o materie repulsivă!

Există însă şi mulţi oameni care, încă de copii, intuiesc esenţa umană a activităţii matematice; căci, pentru aceasta, nu nivelul creaţiei este important, ci actul în sine. O problemă elementară, dacă este trăită, provoacă o gamă de sentimente şi o satisfacţie, asemenea, dar la scară mai mică, cu cele date de un act de creaţie propriu-zis. Priviţi copilul cum se munceşte necăjit cu o problemă; îi vine să o lase dar atunci îi apare sentimentul unei umilinţe, uneori şi al unei ambiţii, al unei competiţii tacite: Petrescu va reuşi s-o facă, eu nu? Priviţi-l cum schimbă încercările cînd cu deznădejde, cînd cu înfrigurări de speranţă. Priviţi, mai ales, momentul cînd faţa i se luminează, începe să lucreze înfrigurat dar sigur, pentru ca la sfîrşit, confruntînd eventual şi cu răspunsul din carte, să exclame cu o satisfacţie specifică: mi-a ieşit! Comparaţi acum cu peripeţiile de ordin sufletesc ale lui Arhimede în căutarea soluţiei la problema lui Hieron (cea cu dilema dacă aurarul a înlocuit o parte din aurul pentru coroană cu argint). Nu, activitatea matematică nu e de loc rece; o gamă de sentimente şi emoţii puternice trebuie să o anime pentru ca ea să fie fructoasă.

Mi-a ieşit, exclamă copilul, satisfăcut. Legenda spune că atunci cînd Arhimede făcînd baie, a intuit brusc legea plutirii corpurilor şi, prin ea, şi soluţia la problema cu coroana, entuziasmat a ieşit din baie, gol cum era, strigînd: Evrika, Evrika! (am găsit, am descoperit!). Evrika! Este rădăcina etimologică a cuvîntului euristic. Este simbolul scurt şi evocator al întregii matematici euristice, ca şi al oricărei invenţii, al triumfului inteligenţei în lupta ei necurmată cu necunoscutul. Din tot ce a făcut şi a trăit Arhimede, inclusiv ceea ce îi atribuie legendele, dacă nu ar rămîne decît acest unic cuvînt evrika, chiar şi golit de conţinutul concret, fără să mai ştim la ce anume invenţie s-a referit, el şi-ar păstra o deosebită valoare de simbol, simbolul celei mai vii şi autentice atitudini umane. Tocmai de aceea, ecoul lui prelungit peste veacuri ne înfioară şi astăzi.

Ca să apară, izbucnind, acest evrika triumfător e necesar un preambul, uneori destul de prelung, de sforţări, de luptă nedecisă, de îndoieli chinuitoare împletite cu înfiripări de speranţă; este necesar, în plus, ca acest efort să fie personal, tensiunea întreagă a propriei fiinţe. Evrika e un fel de împlîntare a steagului victoriei pe o redută îndelung asaltată.

Urmăriţi timbrul emoţional al unei exclamaţii pe linia cunoaşterii: aha! Este exclamaţia care traduce pe “am înţeles”, “m-am dumerit”, cînd unui om i se explică, din afară, ceva. O exclamaţie şi ea umană, numeric mai frecventă decît evrika, dar emoţional mai ştearsă. Traduce o satisfacţie – aceea de a fi aflat un lucru nou – dar ea e oarecum umbrită de regretul de a nu fi reuşit singur, prin mijloace proprii.

Oamenii care rămîn afectiv incolori în faţa procesului de cunoaştere sînt de compătimit, ei nu au ajuns în miezul viu al lucrurilor. Autentici sînt oamenii care exclamă. Prin natura lucrurilor, cum spuneam, cea mai frecventă exclamaţie este “aha”! Dar fiecare om, cu adevărat om, trebuie să aibă şi acţiuni, momente în care exclamă cu plenitudine şi cu ascuţită satisfacţie: evrika!

*

Realitatea psihică închisă în cuvîntul evrika, bucuria de a afla, o găsim şi la Tales şi la Pitagora, tradusă material printr-un alt simbol: jertfa adusă zeilor drept mulţumire pentru descoperirea unei teoreme. Dar pe un fond comun – emoţia, entuziasmul pentru un plus de cunoaştere – două nuanţe distincte: evrika înseamnă am descoperit eu, sînt mulţumit pentru că procesul de gîndire petrecut în mintea mea a fost încununat de succes. Jertfa arată concepţia că descoperirea s-ar datora şi sprijinului unei puteri supranaturale din afară. Nu ştiu dacă e adevărat că Arhimede  a ieşit din baie dezbrăcat la propriu; dar dezbrăcat de concepţii mistice, om pur şi simplu, aşa cum l-a făcut natura, era.

Nu însă un om simplu, ci, dimpotrivă, foarte rafinat. El ştia să preţuiască nu numai actul viu, dinamic, al descoperirii, ci şi frumuseţea interioară a unor adevăruri, armonia de genul aceleia atît de preţuită de către predecesorul său, Pitagora.

Propoziţia care i-a plăcut mai mult din acest punct de vedere a fost faptul – simetric şi simplu – că cilindrul circumscris sferei are aria o dată şi jumătate cît a sferei, iar raportul volumelor este acelaşi.

Sfera şi cilindrul circumscris este tocmai figura care i-a fost săpată, ca omagiu, pe mormînt – tot astfel cum pe mormîntul unui poet se sapă două versuri din opera sa. Figuri, versuri care uneori amintesc mai mult de liniştea majestuoasă a morţii decît de efervescenţa vieţii acelui care odihneşte sub piatra pe care ele au fost săpate … (pag.83-85)

Da, aşa a descris Profesorul Eugen Rusu emoţiile trăite pe parcursul unei rezolvări de către cel ce se străduieşte cu adevărat, comparându-le – chiar dacă la o scară redusă – cu legendarul evrika al lui Arhimede. Dar, oare unde putem cuprinde noi cel mai eficient aceste “sfaturi” date printre rânduri de Eugen Rusu? Cum putem noi aranja materia de studiat, cum putem alege teoremele şi problemele de demonstrat, astfel încât să aducem elevii în punctul de a trăi şi ei, măcar parţial, bucuria “redescoperirii” marilor realizări ale lui Arhimede, ca unele dintre cele mai mari ale antichităţii înfloritoare elene. Pentru că actualmente, în matematica de gimnaziu acesta nici măcar nu este amintit! Într-adevăr, noi, profesori, nici măcar nu-l amintim la orele de geometrie pe Arhimede, îmblînzitorul cercului şi al sferei, primul om care l-a stăpânit cu adevărat pe acel număr magistral, numit de către urmaşii săi π (pi). De pildă, câţi dintre noi prezentăm elevilor că Arhimede este primul om care l-a stabilit pe 3,14 sub forma fracţiei ordinare 22/7?

Permiteţi-mi să vă prezint cum mi-am ales eu elementele legate de lungimea cercului şi aria discului în clasa a VII-a, respectiv aria sferei şi volumul bilei în clasa a VIII-a (exprimarea preţioasă, hipercorectă, respectă faptul că cercul şi sfera sunt singura figură, respectiv singurul corp care au denumiri diferite pentru interior: cercul este linia, pe când discul reprezintă cercul plus interiorul său, măsura cercului reprezentând perimetrul, pe când măsura discului aria; în mod similar, sfera este goală, măsura sa fiind o arie, pe când bila reprezintă sfera împreună cu interiorul său, măsura acesteia fiind un volum; nici o altă figură, respectiv nici un alt corp nu au în mod similar două denumiri; povestea asta le-o spun elevilor la clasă, rareori în a VII-a, dar sigur în a VIII-a).

Pentru ca elevii să poată aprecia magnitudinea acestor descoperiri, dificultatea găsirii şi demonstrării lor, trebuie să aibă cu ce să le compare. Cu alte cuvinte, înaintea găsirii ariei discului, elevii trebuie să fi fost conduşi pe calea descoperirii la clasă a formulelor de arie pentru celelalte figuri de bază (găsirea prin problematizare a formulelor de arie pentru triunghiurile şi patrulaterele studiate; am precizat prin problematizare, accentuând importanţa trezirii şi activării gândirii elevilor, atragerea acestora în procesul de descoperire însoţită de către profesor a noilor cunoştinţe). La fel, pentru a putea aprecia spectaculozitatea găsirii formulelor pentru aria şi volumul sferei, implicit şi genialitatea lui Arhimede, trezind astfel admiraţia pentru gândirea omenească în forma ei cea mai strălucită, elevii trebuie să fii dedus în clasă prin problematizare aria şi volumul tuturor celelalte corpuri (prismele, piramidele, trunchiurile şi corpurile rotunde plan-desfăşurabile). În acest sens iată pe scurt enumerarea lecţiilor.

În clasa a VII-a, după lămurirea ariilor patrulaterelor şi a triunghiurilor studiate, eu studiez în ordine: 1) aria hexagonului regulat şi a octogonului regulat înscrise în cerc (pentru “încălzirea” minţii), urmate de fabuloasa situaţie a dodecagonului regulat (poligonul cu 12 vârfuri) a cărui arie este egală cu 3r2 (demonstraţie de 1-2 rânduri prin calcularea ariei unei “felii”, adică a unui triunghi isoscel, nu prin apotemă, ci calculând una din înălţimile congruente folosind cateta opusă unghiului de 30o); 2) determinarea ariei unui disc cu raza de 5cm pe caietul cu pătrăţele, contabilizând toţi cm2 întregi cât şi toate fracţiunile de cm2, aproximând cât mai bine discul în interiorul sau în exteriorul cercului (este o lucrare practică de tip Laborator de matematică), cu stabilirea în final a faptului că pătratul razei, adică 52 = 25 întră în aria stabilită aproximativ de 3,12 ori (descrierea acestei lecţii o găsiţi în finalul postării Matematica naivă, exemple (2) din 1 august 2016); 3) în finalul acestei lecţii, sau ora următoare, le prezint elevilor numărul π (pi), aici putând efectua şi câteva măsurători pe castroane rotunde şi alte oale, folosind metrul de croitorie pentru a observa apariţia acestui număr şi la lungimea cercului, adică la perimetrul său. Tot aici le povestesc şi despre goana după cât mai multe zecimale de calculat acestui număr, arătându-le elevilor o pagină cu peste 2500 de zecimale ale numărului pi (pag.64 din Simon Singh, Marea teoremă a lui Fermat, Ed. Humanitas, ed. A II-a, 2000) şi le spun că de peste zece ani am descărcat de pe net numărul pi cu un milion de zecimale. 4) Uneori, într-o oră ulterioră, ca o curiozitate, le pot arăta elevilor şi metoda egipteană de calcul a ariei discului.

În clasa a VIII-a elevii sunt pregătiţi să deducă majoritatea formulelor de arie ale corpurior studiate. Pentru formulele de volum trebuie abordată a tactică de îndrumare care să folosească gândirea intuitivă a elevilor. În această etapă obişnuiţi fiind să gândească, elevii dictează mare parte din formulele corpurilor. Doar în diferite momente trebuie să mai intervin cu precizări sau explicaţii. Astfel pregătiţi fiind, când în final ajungem la sferă, elevii vor putea trăi din plin şi cu totală admiraţie demonstraţia condusă de către mine la tablă, în timp ce îl evoc pe Arhimede. Demonstraţia pentru volumul sferei este la un cu totul alt nivel decât cele precedente (cilindru, con, trunchi de con), trezind o stare de uimire profundă faţă de gândirea care a generat-o. Povestea cu Cicero care, două secole după moartea lui Arhimede îi găseşte mormântul lângă Siracuza pentru că avea gravate pe el o sferă într-un cilindru, această poveste “pune capac” admiraţiei elevilor. Dacă doriţi şi alte amănunte, găsiţi prezentarea în detaliu şi pozele acestei lecţii în postarea din aprilie 2016 la adresa Finalul Geometriei în clasa a VIII-a (4) .

CTG, 3-4 martie 2018 (cadou de ziua lui Pi)

Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat – (III)

În partea a treia a eseului de faţă continuu seria de gânduri despre predarea intuitivă a lecţiilor de geometrie din clasele a VI-a şi a VII-a, pornind de la o recomandare din noua programă de geometrie (de aplicat la clasa a VI-a începând din anul şcolar 2018-2019): La tema Triunghiul caracteristicile şi proprietăţile configuraţilor geometrice se vor evidenţia prin observare directă, în sensul unei abordări căt mai naturale şi intuitive. Voi încerca în această a treia parte să aduc câteva aspecte suplimentare care să ofere profesorului doritor o primă “schelă” de susţinere în procesul de construire a unei noi abordări a predării geometriei la clasele gimnaziale, abordare sugerată în noua programă de matematică gimnazială. Voi face aceasta bazându-mă pe propria experienţă de predare din ultimii 20 de ani (experienţa personală în cadrul Liceului Waldorf şi experienţa reconfirmată de soţia mea în cadrul Liceului Eugen Pora din Cluj-Napoca), dar şi pe baza unor noi citate din lucrarea profesorului Eugen Rusu, De la Tales la Einstein (Lyceum, ed. Albatros,1971).

În finalul primei părţi a acestui eseu am propus o listă cu 9 teoreme ce merită supuse atenţiei elevilor spre demonstrare, acestea fiind destul de surprinzătoare încăt să nu poată fi clasificate ca uşor observabile prin inuiţia naturală a elevului. În partea a doua a eseului am observat că acestea sunt în cea mai mare parte teoreme din capitolul despre triunghiuri. Chiar şi suma unghiurilor în patrulatere reprezintă o aplicaţie a triunghiurilor, astfel că în “meciul” dintre cele două capitole, prima teoremă de la patrulatere este de fapt un “autogol” al triunghiurilor.

La momentul respectiv nu am explicat foarte clar cum am alcătuit această listă: este vorba de strădania mea de a empatiza cu elevii de-a lungul anilor, de a le înţelege bucuriile şi fricile în legătură cu matematica. Totuşi, dacă ne gândim bine putem “inventa” o scară cu trepte de evidenţă a diferitelor proprietăţi ale figurilor geometrice, scară folosibilă ca un fel de instrument atât la selectarea teoremelor (care să fie bazate pe simpla observare intuitivă, respectiv care merită a fi supuse verificării printr-o demonstraţie), cât şi la selectarea problemelor din clasă sau ca temă.

Această scară cu trepte ale evidenţei ar porni de jos de la treapta cu nivelul de evidenţă cel mai slab (nivelul 1) şi ar urca până în vârf la treapta cu cel mai ridicat nivel de evidenţă (nivelul 10). În acest sens, la primul contact cu geometria, adică în clasa a VI-a, se vor alege doar demonstraţiile teoremelor situate pe treptele inferioare de evidenţă. Dimpotrivă, cele din jumătatea de sus a scării evidenţei, cele caracterizate printr-un  grad mare de evidenţă susţinută de intuiţia naturală a elevilor merită doar observate oral (“se vede” că …) şi contabilizate ca atare în caiet. Cele mai multe nici măcar nu trebuie spuse de către profesor, ci pot fi obţinute de la elevi prin întrebări de tipul “ce observaţi aici în legătură cu …?”. Să luăm câteva exemple de teoreme şi să studiem unde se situează acestea pe scara evidenţei.

Nivelul 10 de evidenţă: faptul că dreptunghiul are unghiurile drepte; unghiurile opuse la vârf sunt congruente; triunghiul isoscel are două unghiuri congruente;

Nivelul 9 de evidenţă: faptul că triunghiul echilateral are toate unghiurile congruente; faptul că dreptunghiul are diagonalele congruente;

Nivelul 8 de evidenţă: faptul că triunghiul echilateral are unghiurile de 60o; faptul că diagonalele pătratului sunt perpendiculare;

Nivelul 7 de evidenţă: faptul că un patrulater cu două laturi opuse paralele şi congruente este paralelogram; un triunghi isoscel cu un unghi de 60o este echilateral;

Nu mi-am propus să fac o clasificare exhaustivă a teoremelor pe treptele acestei scări, dar este evident că toate acele teoreme despre liniile importante în triunghiul isoscel sunt clasificabile undeva între nivelele 8-9, cel mai jos la nivelul 7 de evidenţă, şi asta indiferent de nivelul de dificultate al demonstraţiei. Tot pe la nivelul 8 cred că se situează pentru intuiţia copiilor şi concurenţa liniilor importante în triunghi, cele trei de un anumit fel. Dimpotrivă, suma unghiurilor în triunghi este o proprietate de nivelul 1, cel mult 2 de evidenţă. Dar totul depinde mult şi de context. De pildă, după ce a învăţat şi a aplicat destul suma unghiurilor în triunghi, acomodându-se cu aceasta, suma unghiurilor în patrulater urcă undeva la nivelul 4 de evidenţă, singurul aspect ce creează dificultăţi legat de aceasta fiind forma de redactare. Mai mult chiar, odată pricepută ideea existenţei unei legităţi de tipul “toate triunghiurile au aceeaşi sumă a unghiurilor”, elevilor le este uşor să răspundă la întrebarea profesorului despre suma unghiurilor în patrulater: “Aha, şi aici există deci o astfel de legitate (altfel, de unde această întrebare?), oare cât o fi? Păi, dacă ne uităm la dreptunghi (e evident un patrulater, deşi încă n-am învăţat despre el) sau la pătrat vedem că este de 4 ori 90o, adică 360o”. Un astfel de raţionament ridică această teoremă în partea de sus a scării evidenţei din punct de vedere al elevului, dar totuşi merită să o demonstrăm chiar şi numai din motivul de a exemplifica forţa demonstraţiei ce se debarasează de intuiţie şi ne poate da certitudini, adică 100% că la orice patrulater suma unghiurilor este de 360o. Aceleaşi comentarii se potrivesc şi la suma unghiurilor în pentagon şi hexagon, lucrurile căpătând note de bucurie pentru decagon sau dodecagon.

Nici nu are o relevanţă decisivă unde se situează exact fiecare dintre toeremele geometriei pe această scară. Cum am arătat deja, poziţionarea lor este oricum încărcată de un subiectivism specific psihologiei: depinde de foarte mulţi factori şi trebuie văzută doar ca un îndrumător orientativ la îndemâna profesorului în procesul de selectare a teoremelor de demonstrat.

Mai există însă un aspect de discutat legat de această scară. Este vorba de faptul că o astfel de scară a evidenţei există la orice teorie, indiferent de vârsta la care este adusă această teorie. Cei care au făcut adevărată cercetare (deci nu cercetare în sensul compilării noi a unor fapte deja cunoscute), aceştia ştiu cât de importantă este intuiţia în prima fază şi cum gândirea trece în viteză peste toate aspectele evidente, căutând doar aspectele neevidente cu scopul de a le lămuri cât mai repede. De multe ori ordonarea şi demonstrarea riguroasă a întregii teorii o face chiar altcineva, nu autorul descoperirii iniţiale a elementelor respective. La fel se întâmplă şi în cazul elevilor, după cum a precizat în câteva rânduri şi Eugen Rusu, care vorbea despre geometria în prima etapă de studiu, adică în gimnaziu, şi geometria în etapa a doua de studiu, adică în reluarea acesteia în liceu (aşa cum era cuprinsă în programa de clasele IX-X valabilă până la reforma din 1997). Geometria în prima etapă de studiu era pe vremuri o geometrie destul de intuitivă, pe când geometria din a doua etapă de studiu avea un mult mai profund caracter riguros axiomatic, cu demonstrarea tuturor aspectelor nevralgice ale acestei ştiinţe. A doua fază de parcurgere a geometriei prin reluarea acesteia la un nivel superior (predarea în spirală) a fost abandonată la reforma din 1997 pentru că profesorii coborîseră în gimnaziu marea parte a elementelor specifice unei a doua faze de parcurgere a geometriei. Datorită olimpiadelor a fost coborât în gimnaziu de-a lungul anilor tot ceea ce se făcea în anii ’70 în liceu, aşa că s-a considerat că nu mai avea sens repetarea materiei în clasele de liceu.

Aici este de remarcat şi o altă atitudine dăunătoare observabilă atât la profesori de rând, cât şi la cei din vârf, la autorii de programe şi manuale. Mulţi din itemii parcurşi în matematică pot fi abordaţi pe diverse căi, unele aflate pe scara evidenţei mai sus, altele mai jos. Este dureros când vezi că au fost alese prin programă şi manuale căi cu o evidenţă cât mai scăzută pentru elevi. Cu alte cuvinte, deseori se încearcă prezentarea lecţiilor într-o formă cât mai de neînţeles pentru elevi. Un exemplu în acest sens este prezentarea însumării vectorilor prin regula triunghiului şi omiterea totală a regulii paralelogramului. Ştiu că matematicienii se simt înjosiţi când trebuie să recunoască faptul că teoria lor a fost inspirată de o altă ştiinţă şi că “el, profesorul” nu este un mic Dumnezeu care creează tot capitolul respectiv din nimic, numai pe baza unor definiţii şi reguli date de el. Mai ştiu şi că regula triunghiului generează regula poligoanelor pentru însumarea mai multor vectori. Dar nici un argument nu poate convinge că la început nu e bine să pornim de la forma intuitivă a însumării a două forţe reprezentând cei doi vectori. Pentru orgoliul personal, de obicei al celor care au stabilit ordinea lecţiilor din programă sau a autorilor de manuale care visează să se ridice la nivelul de rigurozitate şi abstractizare al cursurilor universitare, sau chiar sunt universitari şi nu se pot coborî la nivelul celor cărora se adresează manualul respectiv, pentru orgoliul acestora este sacrificată înţelegerea temelor de studiu pentru mii de elevi care sunt puşi în situaţia de a învăţa ceva fără a înţelege despre ce este vorba. Pentru orice persoană capabilă de a empatiza cu elevii săi este evident că teoria stabilirii demonstraţiilor în funcţie de poziţionarea pe scara evidenţei ar trebui respectată de către cei care stabilesc ordinea şi linia lecţiilor şi a conţinutului acestora în programa şcolară.

Pe finalul acestui eseu mi-am propus să analizez din acest punct de vedere situaţia celei mai importante teoreme din matematica şcolară, teorema lui Pitagora. Legat de aceasta şi de prezentarea ei avem următoarele “date ale problemei” (facts pe engleză):

1) Teorema lui Pitagora se demonstrează în România  prin teorema catetei, aceasta la rândul ei fiind demonstrată prin asemănarea triunghiurilor. Aceasta se poate face undeva în semestrul al II-lea din clasa a VII-a, după studiul proporţionalităţii în geometrie. Se merge pe această cale “de când lumea şi pământul” şi cei mai mulţi profesori nici nu prea cunosc alte căi, deşi există sute de demonstraţii mai mult sau mai puţin diferite ale teoremei lui Pitagora.

2) Majoritatea demonstraţiilor teoremei sunt pe bază de arii, unele doar cu arii, altele pe bază de arii în combinaţie cu formulele de calcul prescurtat (şi acestea, cele de gradul II, cu interpretare de arii), iarăşi altele pe bază de arii şi transformări echivalente, multe pe bază de arii cu tapetări. Pe lângă acestea mai există şi altele, mai ciudate, de pildă cu trigonometrie, sau cu puterea punctului faţă de cerc (o interesantă camuflare a asemănării triunghiurilor); există chiar şi una cu vectori.

3) Există o presiune mare din partea colegilor de fizică de a parcurge teorema lui Pitagora mai repede, pentru că ei au nevoie de această teoremă la aplicaţii deja în semestrul I al clasei a VII-a în procesul de pregătire a olimpiadelor.

4) În programa nouă s-a introdus la sfârşitul clasei a VI-a teorema lui Pitagora (fără demonstraţie, verificări de triplete de numere pitagoreice, determinarea de lungimi folosind pătrate perfecte), (vezi pag. 16) chiar din acest motiv.

Să analizăm însă puţin cum stau lucrurile din punct de vedere al echilibrului de care am vorbit în partea a doua a eseului, triunghiul ROP cu cele trei componente ale predării matematicii şcolare. Acolo mă plângeam de dezechilibrarea situaţiei prin neglijarea aspectelor psihologice. Tot în partea a doua a eseului mi-am exprimat părerea că nu ar fi sănătos să încălcăm principiile elementare de ordonare a lecţiilor de geometrie demonstrând suma unghiurilor în triunghi prin folosirea unghiurilor dreptunghiului, figură încă neparcursă în această primă etapă cât de cât riguros ordonată. În acelaşi mod ne putem însă exprima nedumerirea şi indignarea legate de introducerea teoremei lui Pitagora în clasa a VI-a fără nici un fundament justificativ, la un nivel de matematică babilonian, şi asta doar pentru a face pe plac colegilor de la fizică. Nu există nici o legătură, intuitivă sau nu, între unghiul drept al unui triunghi şi egalitatea adusă de tripletele pitagoreice.

În echilibrul din triunghiul ROP al celor trei componente ale predării matematicii şcolare, neglijarea oricărei părţi este la fel de dăunătoare: învăţământul din vest neglijează masiv performanţa rezolvitorilor şi vedem cum suferă matematica lor în acest sens; în România au fost neglijate aproape 40 de ani aspectele de natură psihologică şi vedem la ce nivel de refuz al matematicii s-a ajuns la copii; acum urmează să mai experimentăm neglijarea aspectelor ce ţin de o cât de cât elementară rigoare a matematicii? Eu sigur nu-mi doresc aşa ceva!

Ce rezolvare există pentru această situaţie în care s-a ajuns? Nu am pretenţia că deţin un răspuns perfect la această întrebare, dar pot prezenta forma în care predau eu teorema lui Pitagora cu convingerea că oferă o soluţie de compromis, ce împacă “şi capra şi varza”. Soluţia de care vorbesc pleacă de la un nou aspect ce se adaugă celor patru “date ale problemei” (facts) prezentate mai sus:

5) Demonstraţiile cu arie la teorema lui Pitagora sunt situate pe scara evidenţei mai sus decât demonstraţia pe bază de teoorema catetei + asemănarea triunghiurilor (a nu se considera demonstraţia doar drumul de la teorema catetei până la teorema lui Pitagora; până în acest moment oricum cea mai mare parte a elevilor au fost “pierduţi pe drum”, victime ale capitolului întortocheat cu proporţionalitate şi asemănare a triunghiurilor, drum care în sine este trasat cât mai anti-intuitiv). Această afirmaţie este urmare a unei observaţii foarte evidente: noţiunea de arie este o noţiune clar mai vizibilă decât noţiunea de raport implicată în studiul proporţionalităţilor. Altfel spus, noţiunea de arie este mult mai uşor de cuprins prin gândirea intuitivă a elevilor decât noţiunile de raport şi proporţie. Chiar dacă proporţionalitatea a fost deja învăţată în clasa a VI-a, în a VII-a la geometrie puţini sunt cei care o pot cuprinde şi pătrunde cu adevărat, ieşind îmbogăţiţi din drumul în sine până la teorema lui Pitagora, aşa încât cei mai mulţi ajung speriaţi la cea mai importantă teoremă din matematica şcolară. Dimpotrivă, figura cu pătratele construite în exterior pe laturile unui triunghi dreptunghic este extrem de intuitivă, având un grad foarte mare de evidenţă: “Aha, dacă triunghiul este dreptunghic, atunci cele două pătrate mici construite pe catete fac exact cât pătratul cel mare construit pe ipotenuză”. Chiar şi această observaţie pe exemplul demonstraţiei teoremei lui Pitagora susţine din plin afirmaţia de mai sus în care am criticat înclinaţia unor profesori decidenţi de a alege căile pentru parcurgerea unor itemi sau a unor demonstraţii cât mai departe de evidenţa naturală.

În acest moment îmi permit să-l chem din nou în ajutor pe Eugen Rusu: Fiind dat un triunghi cu un unghi drept, aria pătratului construit pe ipotenuză este egală cu suma ariilor celor două pătrate construite pe catete. Pe scurt, noi spunem azi din A = 90o rezultă a2 = b2 + c2 şi reciproc. Întrucât grecii nu erau familiarizaţi cu calculul algebric, ei vedeau în a2 nu atât un număr-măsură ridicat la pătrat, ci o arie. De altfel, şi demonstraţia dată tot cu ajutorul ariilor, ne trimite la enunţul în prima formă. (pag. 38) Se bănuieşte că demonstraţia dată de şcoala lui Pitagora este cea din (…, pag. 40). Aici Eugen Rusu dă demonstraţia dorită, apoi încă două, amintind însă că sunt peste 500.

Revenind în lumea noastră, noi avem în semestrul I din clasa a VII-a un set de lecţii despre arii. Este evident că teorema lui Pitagora poate fi lesne integrată în cadrul acestui studiu despre arii, alegând una din multele demonstraţii cu arii ce le avem la dispoziţie (una mai uşoară, dacă nu-i cu supărare!!!). Ca urmare, nimic nu ne împiedică să parcurgem teorema lui Pitagora la jumătatea semestrului I.

Se poate face aşa ceva? De ce nu? Noi predăm din 1998 în această formă şi singurele impedimente întâlnite sunt comentariile mirate ale celor din jur şi nepotrivirea cu manualele şi cu culegerile avizate şi realizate conform programei. La o mare inspecţie (“brigadă”) de la începutul anilor 2000, în momentul când inspectorul de matematică a întrebat cum de face aşa ceva şi nu respectă programa, soţia mea i-a răspuns că nu-i normal ca cea mai importantă teoremă din şcoală să i-o facă înainte profesorul de fizică, mai ales că o face de mântuială, că ea nu-i de acord cu aşa ceva, iar asta este soluţia de remediere găsită ca aplicabilă.

CTG 30.01.2018 Straja, Lupeni, Hd

Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat – (II)

În eseul de faţă continuu seria de gânduri despre predarea intuitivă a lecţiilor de geometrie din clasa a VI-a, cu privire spre a VII-a, pornind de la o recomandare din noua programă de geometrie (de aplicat la clasa a VI-a începând din anul şcolar 2018-2019): La tema Triunghiul, caracteristicile şi proprietăţile configuraţilor geometrice se vor evidenţia prin observare directă, în sensul unei abordări căt mai naturale şi intuitive.

Voi continua acest demers pe baza experienţei personale din ultimii 20 de ani de predare în sensul acestei recomandări, apelând însă cât mai des la ajutorul profesorului Eugen Rusu, într-o încercare de colaborare peste ani, pe baza unor citate din lucrarea sa De la Tales la Einstein (Lyceum, ed. Albatros,1971). Astfel, eseul de faţă a devenit totodată şi o ocazie de “prezentare de carte” a acestei lucrări care, conform titlului pare o carte lejeră de istoria matematicii. Totuşi, în realitate – mai mult printre rânduri – cartea este un profund curs de metodică a predării matematicii, dar şi o camuflată critică la adresa viitoarelor schimbări ce se plănuiau deja de la sfârşitul anilor ’60, schimbări ce au fost impuse în matematica şcolară gimnazială odată cu manualele de la începutul anilor ’80. De precizat că Eugen Rusu este autorul manualelor de aritmetică după care a învăţat generaţia mea în clasele V-VI (sfârşitul anilor ’70).

Privită în linii mari, predarea matematicii şcolare este supusă unor trei mari obiective: 1) cerinţele de rigurozitate specifice ştiinţei (R, de la rigurozitate); 2) înclinaţia spre performanţă a rezolvitorilor (să zicem O, de la olimpici); 3) aspectele psihologice, adică posibilităţile şi nevoile fiecărei vârste şcolare (să le notăm cu P, de la psihologie). Matematica şcolară ar trebui să se situeze într-un echilibru natural undeva în zona centrală în interiorul “triunghiului” determinat de cele trei mari obiective.

Cercetând programele, manualele şi nivelul exerciţiilor şi al problemelor practicat în anii ’60-’70, inclusiv a problemelor din Gazeta Matematică, se poate observa acest echilibru plăcut şi natural. Ca urmare, privind în sensul geometriei şcolare, toţi cei de peste 50 de ani, cei care au învăţat matematica gimnazială înaintea reformei din 1980, vorbesc în sens pozitiv despre geometrie: “cu geometria din şcoală totul era bine, ne plăcea, nu era nici o problemă”.

Din păcate, suntem spre finalul celui de-al patrulea deceniu de orientare a matematicii şcolare în majoritatea situaţiilor spre “latura [RO]” a acestui “triunghi”, cu neglijarea totală a aspectelor reprezentate de “vârful P”. Este uşor de înţeles că această orientare stă la baza faptului că la persoanele mai tinere de 50 de ani găseşti uşor indivizi care “n-au prea înţeles geometria”. Probabil că schimbarea respectivă (reforma “uitată”din 1980) se discuta de mult în cercurile influente, aşa încât Eugen Rusu a lăsat în lucrările sale multe avertismente că noua linie nu este bună, nu este sănătoasă, arătând principiile pedagogice pentru care linia de orientare a predării nu trebuia schimbată. În cartea sus-amintită, începând chiar din primul capitol, profesorul Rusu “impune” astfel un criteriu esenţial (tot textul scris în continuare italic, adică înclinat, este compus din citate din această lucrare).

Sînt şi astăzi elevi – în clasele mici – interesaţi şi absorbiţi exclusiv de cum se face, fără o curiozitate activă pentru de ce se face aşa. Cînd învaţă de pildă regula de calcul a rădăcinii pătrate (coborîm grupa următoare, dublăm rezultatul, vedem de cîte ori etc.), sînt foarte satisfăcuţi aplicînd-o şi satisfacţia se vede în special cînd face proba şi exclamă: “mi-a ieşit!” La problema de a justifica raţional acest procedeu, mai puţini elevi – repetăm, dintre cei mici – manifestă curiozitate; de vreme ce ştiu cum se face, nu-i destul? – aceasta pare a fi întrebarea ce o citeşti pe figura lor, puţin mirată, puţin decepţionată. Să nu surprindă această apropiere între un fenomen pedagogic şi unul istoric; şi în matematică există un fel de “ontogenia repetă filogenia”, în înţelesul: evoluţia matematică a unui individ este, cu prescurtări, asemănătoare cu evoluţia istorică a umanităţii. (pag. 4)

Dacă în acest moment lucrurile încă nu sunt clare, în sensul că nu înţelegem “unde bate” Eugen Rusu, mai încolo în carte, dânsul începe să spună lucrurilor “pe nume”, atunci când abordează subiectul despre Suma unghiurilor în triunghi, astfel:

Ghicesc reacţia cititorului în faţa acestui titlu: Iar? Cine nu ştie? 180 de grade. Ce s-ar mai putea discuta despre acest subiect? Subiectul rămîne deschis în două direcţii: din punct de vedere matematic şi psihologic.(…) Aici privim chestiunea din punct de vedere psihologic şi anume nu în etapa de aprofundare a ei, ci în etapa de descoperire.

În primul rînd, să facem efortul de a ne da seama că enunţul însuşi nu este banal. Cînd am predat o dată în clasa a şasea această teoremă, am început cu enunţul: în orice triunghi suma unghiurilor este 180o. Un puşti vioi, care era obişnuit să privească lucrurile critic şi să-şi mărturiseasă sincer îndoielile, s-a arătat pe dată foarte nedumerit. – Iertaţi-mă, nu-mi vine a crede. Într-un triunghi echilateral, parcă da. Dar dacă e aşa? – şi el desenă un triunghi obtuzunghic; dar la ăsta? – şi desenă un alt triunghi, unul scalen, privind figurile lung şi neîncrezător.

Cum a ajuns cineva să se întrebe cît este suma unghiurilor unui triunghi – întrebare care presupune bănuiala că ea este aceeaşi în toate triunghiurile? Să privim în jurul nostru sau mai bine în “jurul” vechilor greci. În natură (copaci, stînci, ţărmul mării etc.) nu întîlnim forme geometrice; întîlnim astfel de forme printre obiectele construite de om. Cea mai răspîndită, cea mai familiară deci, este desigur dreptunghiul. Nimeni nu s-a îndoit înainte de apariţia geometriei că dreptunghiul are 4 unghiuri drepte (noţiunea de unghi drept fiind naturală: o dreaptă care nu e înclinată nici într-o parte nici în cealaltă faţă de o alta).

Triunghiul este o formă mult mai puţin răspîndită. Tales va fi văzut această formă pe feţele piramidelor din Egipt, pe unele pietre de pavaj ale templelor – va fi văzut mai ales triunghiuri echilaterale sau isoscele. Triunghiul dreptunghic va fi apărut ca o jumătate dintr-un dreptunghi (formată prin ducerea unei diagonale). Egalitatea celor două triunghiuri astfel formate îi va fi apărut ca de la sine înţeleasă; de vreme ce suma unghiurilor unui dreptunghi este de 4 unghiuri drepte, la unul din triunghiurile dreptunghice formate va fi de 2 unghiuri drepte. (…)

Din faptul că suma unghiurilor la un triunghi dreptunghic este de 2 unghiuri drepte, se poate deduce propoziţia pentru un triunghi oarecare; îi ducem o înălţime (de pildă triunghiul ABC cu înălţimea interioară AD), prin care se formează două triunghiuri dreptunghice şi din suma unghiurilor lor (4 u. dr.), trebuie să scădem cele două unghiuri din D (2 u. dr.). (pag. 13-15)

Din anii ’90, de când am citit această carte, mă tot gândesc la pasajul de mai sus. Este logic, este chiar foarte logic, dar să foloseşti unghiurile dreptunghiului la demonstrarea sumei unghiurilor într-un triunghi oarecare, asta-i prea de tot. Cred că nici prof. Univ. Eugen Rusu nu se gândea să ne sugereze aşa ceva. Dar atunci ce a vrut cu acest pasaj? Părerea mea este că trebuie să privim împreună ultimele două pasaje citate, cel cu evoluţia matematică a unui individ este, pe scurt, asemănătoare cu evoluţia istorică a matematicii, şi respectiv cel cu Suma unghiurilor în triunghi folosind unghiurile drepte ale dreptunghiului. Aceste două pasaje constituie împreună un imbold de a privi cu respect şi empatie, din punct de vedere psihologic, elevul din clasele mici, învăţăcel începător aflat la primii paşi în descifrarea tainelor geometriei.

Să demonstrăm suma unghiurilor în triunghi folosind dreptunghiul ar însemna să ne batem joc de convingerile noastre de profesori, dar şi să ne propunem să demonstrăm la lecţia despre dreptunghi toate proprietăţile sale evidente, doar pentru că le spune teoreme, şi aceasta este o agresiune la adresa gândirii de începător în ale demonstraţiei geometrice la elevi. Chiar Eugen Rusu revine (pag. 19): În etapa de dezvoltare a geometriei, spiritul şi atenţia cercetătorilor este îndreptată într-o altă direcţie, nu către una critică ci către una constructivă: descoperirea proprietăţilor geometrice. Prin analogie, în prima etapă de cunoaştere a geometriei, atenţia elevilor trebuie îndreptată spre descoperirea proprietăţilor geometrice deosebite, nu spre demonstrarea tuturor proprietăţilor evidente, observabile intuitiv de către orice copil. Peste două pagini Eugen Rusu completează: Spiritul euristic este o trăsătură specifică omului. (pag. 21) Da, iar acest spirit euristic trebuie trezit cu respect şi dezvoltat cu blândeţe în mintea elevului aflat la început de drum. Nu forţarea demonstrării unor cerinţe evidente, cărora elevii nu le văd sensul, dar importante din punct de vedere al ordinii euclidiene a geometriei, trebuie să fie obiectivul profesorului de gimnaziu, ci atragerea elevilor în demonstrarea unor afirmaţii cât mai surprinzătoare, de necrezut pentru mintea superficială, începătoare, novice în ale geometriei. Cu cât proprietatea de demonstrat este mai interesantă, mai surprinzătoare, mai emoţionantă, cu atât surprinderea ei şi demonstraţia sunt mai pasionante. (pag. 39)

Citind din cartea lui Eugen Rusu am fost inspirat spre următoarele gânduri (notate pe marginea paginii, la fel ca pe vremuri Fermat): abordând geometria de început în format riguros euclidian (axiome, demonstrarea teoremelor cu concluzii evidente etc.), profesorii de matematică îi alungă pe elevii de mijloc, cei indecişi între ştiinţele reale şi cele umane, îi împing în braţele umaniştilor. În loc să-i atragă, să se lupte pentru câştigarea lor de partea matematicii, îi alungă cât de departe, “cât văd cu ochii”. Mare păcat!

Pe de altă parte – ca să revenim la gânduri mai pozitive – pe aceeaşi pagină am mai notat un gând: Eugen Rusu vorbeşte în capitolul II al acestei cărţi despre Tales, dar nu despre Tales cel din “teorema lui Tales”, ci despre Tales, primul om care a făcut demonstraţii în matematică (capitolul II se numeşte Matematica – Artă; Geometria preeuclidiană 600-300 î.e.n.). Gândul de a explica un fenomen pe baza unor cauze ce nu implică zeii, gând necesar în demonstraţia matematică, acest gând a apărut prima dată la oameni chiar în cetatea Milet şi din acest motiv este bine să-l denumim Tales din Milet. Două gânduri recurg de aici. În primul rând, faptul că este absolut corectă strategia lui Eugen Rusu de a-l prezenta pe Tales ca prototip de gândire pentru elevul începător, elev ce ajunge să facă primii paşi în demonstraţii. În al doilea rând, este evident că demonstraţia matematică a apărut mai întâi sub forma demonstraţiei în geometrie, fiind doar mai târziu urmată de demonstraţiile din domeniul numeric (vezi Elementele lui Euclid). Rămâne ca ecou al acestei remarci o întrebare: la ce ne poate ajuta această observaţie secundară într-o structurare cât mai sănătoasă a materiei şcolare de gimnaziu?

În altă ordine de idei, printre rândurile de până aici ale acestui eseu se poate citi o observaţie dureroasă la adresa programei gimnaziale de matematică, atât cea veche dar încă valabilă, cât şi cea nouă ce va intra din toamna lui 2018 în clasa a VI-a. Conform tuturor celor scrise în acest eseu (atât partea I, cât şi partea a II-a), locul capitolului cuprinzând primul studiu al patrulaterelor este în clasa a VI-a, în continuarea capitolului despre triunghiuri, adică în zona de studiu predominant intuitiv al geometriei.

Conform aspectelor aduse în faţa noastră în acest eseu, abordând o analiză intuitivă a proprietăţilor cu grad mare de evidenţă din capitolul despre patrulatere, observăm că majoritatea nu au nevoie de demonstraţii în percepţia elevului începător în ale geometriei. În afară de suma unghiurilor în patrulater, nu se prea găsesc proprietăţi neevidente de demonstrat. Mai peste tot avem situaţii de simetrii axiale sau de simetrii centrale sau eventual alte situaţii lămurite anterior prin figuri evident vizualizabile (de pildă situaţia cazului unghiurilor alăturate unei laturi oblice în trapez, ce sunt evident suplementare pe baza repetării pe jumătate de trapez a figurii tip cu două unghiuri interne de aceeaşi parte a secantei între două drepte paralele). În acest stadiu iniţial de cunoaştere a patrulaterelor este arhi-suficientă o contabilizare rapidă a proprietăţilor observate intuitiv, urmată de câteva puneri de probleme cu tâlc. De pildă: un patrulater cu două laturi opuse paralele şi congruente este paralelogram; un patrulater cu două laturi opuse paralele iar celelalte două laturi opuse congruente este şi acesta neapărat paralelogram?

O astfel de aranjare a capitolelor, ca a fost valabilă până prin 1998, ar avea în contextul actual câteva avantaje substanţiale (din câte mai ţin minte, cam atunci au fost mutate patrulaterele din clasa a VI-a în a VII-a, rămânând însă până acum în manualele alternative care nu s-au mai rearanjat). Să analizăm două dintre aceste avantaje. În primul rând ar lăsa loc la începutul clasei a VII-a pentru o serioasă şi generală preocupare asupra demonstraţiei geometrice aplicată în probleme. În această parte elevii – mai evoluaţi cu câteva luni spre gândirea analitic-cauzală – ar avea ocazia să fixeze şi să aprofundeze demonstraţiile cu unghiuri, cele cu segmente şi cele cu cazurile de congruenţă a triunghiurilor, aplicate după nivele de complexitate, atât în triunghiuri, cât şi în patrulatere. Cei care s-au preocupat ştiu că există foarte multe probleme din patrulatere având rezolvări similare cu unele din triunghiuri. Or, exact aici ar fi avantajul mare: când elevul studiază şi înţelege o problemă cu o anumită succesiune de paşi, ar putea să primească în continuare măcar una, două cu demonstraţii similare, dar în contexte diferite, iar schimbarea contextului de la triunghi la patrulater şi înapoi lărgeşte şi stabilizează foarte mult orizontul de gândire. În al doilea rând, o astfel de mutare ar umple cu o materie “mai cu sens” clasa a VI-a. Actualmente parcurgerea a foarte multe probleme doar cu metoda congruenţei triunghiurilor fixează în mentalul elevilor absolvenţi de a VI-a ideea că această metodă reprezintă unica formă de demonstraţie geometrică.

Cele discutate în ultima parte pot fi sintetizate după cum urmează: dintre cele două capitole de bază despre figuri geometrice, triunghiurile respectiv patrulaterele, cele mai potrivite unei cunoaşteri intuitive sunt patrulaterele. Dimpotrivă, cunoştiinţele cele mai provocatoare la adresa gândirii începătoare a elevului sunt aglomerate în capitolul despre triunghiuri (vezi şi lista orientativă din prima parte a acestui eseu: 7 la 2 în confruntarea dintre cele două capitole). Astfel, păstrarea accentului preocupării clasei a VI-a doar pe triunghiuri, cu “exilarea” în continuare a figurilor cele mai intuitive, a patrulaterelor în clasa a VII-a contravine flagrant cu principiul impus în noua programă, ca la clasele mici (adică V-VI) să se practice o abordare intuitivă, în care caracteristicile şi proprietăţile configuraţilor geometrice se vor evidenţia prin observare directă, în sensul unei abordări căt mai naturale şi intuitive.

CTG 29.01.2018 Straja, Lupeni, HD.

Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat – (I)

În eseul de faţă am adunat o serie de gânduri despre predarea intuitivă a lecţiilor de geometrie din clasa a VI-a, prin prisma propriei experienţe, pe baza unor citate ale profesorului Eugen Rusu şi pornind de la o recomandare din noua programă de geometrie (de aplicat la clasa a VI-a începând din anul şcolar 2018-2019): La tema Triunghiul caracteristicile şi proprietăţile configuraţilor geometrice se vor evidenţia prin observare directă, în sensul unei abordări căt mai naturale şi intuitive.

Acest “citat” este compilat din noua programă de matematică pentru clasele gimnaziale, unde la sugestiile metodologice (pag. 32) găsim următoarele sfaturi: …Caracteristicile şi proprietăţile configuraţiilor geometrice vor fi evidenţiate prin observare directă, experiment, măsurare, în sensul unei abordări căt mai naturale şi intuitive. … La tema Triunghiul caracteristicile şi proprietăţile configuraţiilor geometrice se vor evidenţia prin observare directă, experiment, măsurare, urmând ca după formarea deprinderilor de bază să se utilizeze raţionamente simple şi instrumente geometrice pentru realizarea desenelor specifice. …

Iată, în continuare, care este experienţa mea în acest sens. În vara anului 1996 (adică în urmă cu peste 21 de ani), încercând să înţeleg ce facem greşit în predarea geometriei, am avut o discuţie remarcabilă cu un profesor de la o şcoală de lângă Bremen, Germania. Îl rugasem pentru o “audienţă”, iar dânsul m-a poftit în sală de lectură a bibliotecii. Am luat loc la o masă iar eu am scos hârtie şi creion şi m-am apucat să-i arăt plin de zel un exemlu de demonstraţie geometrică de la noi din România. Ce mi-a trecut prin minte în acel moment? Să-i arăt cum demonstrăm noi că cele două diagonale într-un dreptunghi sunt congruente. Nu ştiu de ce, dar asta m-am gândit atunci. Zis şi făcut: m-am apucat frumos de demonstrat, întrerupându-mă după fiecare pas făcut şi întrebându-l dacă înţelege ce scriu. De fiecare dată el îmi răspundea că da, pricepe ce scriu (tot dialogul era desigur în germană). În final l-am întrebat ce părere are despre ce i-am scris acolo, iar el mi-a răspuns cu o contra-întrebare: de ce trebuie să demonstrezi că diagonalele în dreptunghi sunt congruente?

Am rămas “mască”. Imi simţeam rotiţele învârtindu-se nebuneşte în cap, în timp ce încercam să “traduc” cât de cât coerent răspunsul său. Ce vroia să zică? Veneam dintr-o lume total diferită de a lui. În discuţia respectivă nu am reuşit să obţin lămuriri suplimentare. Eu eram bulversat de răspunsul lui şi total nepregătit cum să cer lămuriri la un astfel de răspuns. De partea cealaltă, el nu pricepea ce vreau eu, desigur necunoscând preocuparea profesorilor români pentru rigurozitate, preocupare aflată la cote de-a dreptul obsesive în acele vremuri.

În anii următori m-am tot gândit la discuţia respectivă şi cu timpul am început să-mi traduc tot mai clar răspunsul acelui profesor. Concluzia la care am ajuns cu timpul este următoarea: trebuie să demonstrăm doar lucrurile neevidente pentru ochiul elevului. Toate afirmaţiile care se văd ca evidente nu trebuie să ajungă subiectul unei cerinţe de demonstrat (teoremă sau problemă, de pildă, situaţiile de simetrie, cum ar fi faptul că medianele duse pe laturile congruente ale unui triunghi sunt congruente).

Activând acest criteriu de selecţie, se elimină însă multe probleme, printre ele şi o mare parte din aplicaţiile metodei triunghiurilor congruente (marile perdante sunt cazurile ULU şi LLL). Un caz interesant de problemă ce rămâne totuşi, deşi deseori uitată, este cerinţa de a demonstra că într-o piramidă patrulateră regulată VABCD cu toate muchiile congruente, două muchii laterale opuse sunt întotdeauna perpendiculare. Demonstraţia la care mă refer se bazează pe congruenţa triunghiurilor VBD şi ABD în virtutea cazului de congruenţă LLL. Cel de-al doilea triunghi fiind dreptunghic în A, rezultă că şi primul este dreptunghic în V. În figura ce se face pentru această problemă cele două triunghiuri nu arată la fel, cerinţa fiind ca atare total neevidentă.

De curând am răsfoit din nou într-una din cărţile unui fost mare profesor metodist al anilor ’60-’70 şi am regăsit câteva citate deosebit de interesante în acest sens. În lucrarea sa  De la Tales la Einstein (Lyceum, ed. Albatros,1971), Eugen Rusu şi-a pus problema despre … mobilul psihologic care l-a împins pe Euclid spre rigurozitate. Dânsul dă imediat şi principalul răspuns: Această tendinţă spre riguros se naşte şi se accentuează din însăşi activitatea geometrică.

Important este să se pună problema de a căuta să descoperi lucruri noi, prin raţionament deductiv. Aceasta este destul ca, în cadrul acestei activităţi, să se pună de la sine, în mod din ce în ce mai acut, şi chestiunea rigurozităţii. Este interesant să ne oprim atenţia asupra acestui fenomen psihologic.

Cînd, pentru prima oară, ne simţim îndemnaţi să aflăm un adevăr nou, altfel decât prin experienţă directă, deci prin deducţie logică, aceasta nu se poate întîmpla pentru ceva care este “evident” prin intuiţie; aceasta se întîmplă cu o chestiune despre care simţurile nu ne dau informaţii precise şi sigure.

Teorema lui Pitagora, de exemplu, este departe de a fi o experienţă senzorială. Atunci cu adevărat ne vom simţi îndemnaţi să o “deducem” din lucruri cunoscute. Ar trebui completat aici Eugen Rusu cu următoarea observaţie: faţă de obişnuita demonstraţie bazată pe proporţionalităţi din asemănare (prin teorema catetei), demonstraţiile prin arii transformă, apropie, dă perceperii teoremei lui Pitagora o clară notă de experienţă senzorială. Acest fapt susţine o primă abordare şi demonstrare a acestei teoreme prin arii.

Declanşarea înclinaţiei spre raţionament deductiv nu poate începe cu chestiuni despre care nu ne îndoim, cum ar fi, de exemplu, că laturile unui dreptunghi sînt egale, fapt pe care însuşi Tales îl considera ca dat. Abia după ce mintea a fost stimulată şi antrenată la raţionament deductiv pentru descoperirea adevărurilor “neevidente”, din ce în ce mai multe enunţuri – considerate la început evidente – sînt puse sub semnul dubiului şi trecute sub proba deducţiilor. Astfel se naşte în interiorul activităţii geometrice înclinaţia spre demonstraţii din ce în ce mai riguroase şi, totodată, posibilitatea de a le aborda.

Din punct de vedere logic, este clar că trebuie început prin stabilirea teoremelor de bază şi apoi clădit, treptat, pe ele. Din punct de vedere psihologic însă, trebuie început “de la mijloc”, de acolo de unde lucrurile nu sînt evidente, ci îndoielnice, efectiv dubioase. Abia după ce s-a trăit experienţa vie a deducţiei şi s-au prins unele obişnuinţe, se va putea face o critică rodnică asupra lucrurilor pe care le-am considerat “evidente”; numai prin prisma acestei experienţe, evidenţele necontrolate pot fi zduncinate şi transformate în probleme propriu-zise. (pag. 65-66)

Un exemplu în acest sens îl dă Eugen Rusu la începutul cărtii, când vorbeşte despre spiritul euristic, luând cazul teoremei care susţine că orice punct de pe un semicerc formează cu capetele diametrului un triunghi dreptunghic. Să vedem cum explică autorul demonstrarea acestei teoreme pe o figură cu B şi C capetele diametrului şi A un punct oarecare pe semicercul centrat în O (în citatul următor am înlocuit desemnarea unghiului cu “acoperiş” cu desemnarea unghiului prin semnul actual obişnuit pentru unghi, din motive tehnice; acolo unde nu este semn pentru unghi înseamnă că nu era nici în textul original).

Să examinăm propoziţia respectivă. Astăzi o demonstrăm imediat cu ajutorul măsurii unghiurilor (Eugen Rusu se referă desigur la teorema ce ne dă măsura unghiurilor înscrise în cerc); cum va fi gîndit Tales, care nu cunoştea această teoremă pregătitoare? Deoarece OA = OB = OC, se formează două triunghiuri isoscele. Ele au unghiurile de la bază egale; deci A1 = B; A2 = C. Suma unghiurilor triunghiului ABC este deci 2A1 + 2A2 = 2BAC; rezultă că BAC este drept. Proprietatea în sine este destul de ascunsă; din definiţia cercului, deci din faptul că OA = OB = OC, se deduce că unghiul BAC este drept.

Descoperirea unei proprietăţi ascunse produce o anumită bucurie specific umană. Se spune că Tales a fost atît de entuziasmat de această descoperire – considerată cea mai frumoasă dintre descoperirile sale – încît, drept mulţumită, a sacrificat pe altarul zeilor un bou. Am menţionat printre teoremele lui Tales şi pe aceea care afirmă că unghiurile de la baza triunghiului isoscel sînt egale (în lucrare la pag.12). Aceasta – sînt sigur – nu l-a entuziasmat, pentru că nu era o proprietate ascunsă, era aproape evidentă. A enunţat-o numai pentru că i-a trebuit, a folosit-o în demonstraţia teoremei principale; probabil, pentru ea, nu a sacrificat zeilor nici măcar o gîscă. (pag. 19-20)

Merită să întrerupem aici şirul citatelor şi să analizăm un pic ce vrea să ne spună Eugen Rusu (şi în citatul de la pag. 66, dar şi în ultimul aliniat), anume faptul că la o primă cunoaştere a materiei, la o primă trecere prin geometrie, cum este cazul materiei gimnaziale, există în principiu două tipuri de proprietăţi:

1) teoremele reprezentând proprietăţi ascunse, neevidente, surprinzătoare (cum spun americanii, cu acel efect de UAU!); aceste teoreme trebuie dovedite pentru a fi crezute, ele meritând cu adevărat demonstrate împreună cu elevii.

2) teoremele reprezentând proprietăţi evidente, conţinând afirmaţii despre care nu ne îndoim, (vulgar spus: “la mintea cocoşului”); aceste proprietăţi sunt de enunţat doar pentru că ne trebuie ulterior la demonstrarea celor din prima categorie; demonstrarea lor este dăunătoare, plictisindu-i pe elevii de gimnaziu, abuzarea în acest sens provocându-le elevilor chiar o repulsie faţă de geometrie.

Trecând la Elementele lui Euclid ca manual didactic, Eugen Rusu continuă, punând “punctul pe i”. Imboldul scrierii Elementelor a fost de ordin pedagogic: a pune în mîna studenţilor un material sistematizat. Din nou, intenţia nu a coincis cu rezultatul. Euclid a devenit un mare creator de ştiinţă, creatorul primului sistem logico-deductiv, dar a rămas un lamentabil pedagog. Prima parte a acestui enunţ este unanim aceptată şi chiar Eugen Rusu se ocupă de această parte pe larg în lucrarea sa. Să vedem însă ce are de spus legat de a doua parte.

Principala critică ce se aduce Elementelor ca manual didactic se referă tocmai la forma de expunere. Deşi fiecare demonstraţie este absolut corectă din punct de vedere logic şi în general este cea mai simplă care se poate da, deşi ordinea în care se aşează propoziţiile este de asemenea cea mai naturală, totuşi, prin faptul că se folosesc demonstraţii sintetice, cititorul nu primeşte nici o indicaţie asupra felului cum s-a descoperit demonstraţia respectivă, el nu e pus în situaţia de a-şi forma o metodă, de a-şi educa gândirea creatoare. Pe de altă parte, un începător în studiul geometriei nu are încă educat simţul rigorii, nu simte încă nevoia unor demonstraţii pentru lucruri care i se par evidente.

Euclid prezintă matematica-rezultat. Pentru un om viu (adică pentru un elev, mai ales de gimnaziu), interesantă este însă matematica-proces. Nu să înveţe geometrie, ci să facă geometrie. Comentaiul de mai sus este cât se poate de natural: abordarea pe criterii riguros-euclidiene impusă în gimnaziu prin programa din 1981 (pe a cărei linie au mers şi programele din ultimul sfert de secol), această abordare este una total nepotrivită elevilor plini de viaţă din ciclul gimnazial forţându-i pe aceştia în cunoaşterea unei geometrii moarte. Felul în care mare parte dintre elevi refuză această disciplină, criticând orele de geometrie, este o consecinţă absolut naturală a prezentării materiei la clasă în acest fel.

Efortul de a învăţa geometrie, după un manual scris în stil euclidic, este penibil. Şi fiindcă 2000 de ani Euclid a servit ca manual, a chinuit şi îndepărtat de geometrie multe generaţii de elevi. Un autor tîrziu care încercase să facă o expunere mai atrăgătoare i-a pus titlul: Euclid, fără lacrimi – titlu semnificativ care arată că Euclidul original era cu lacrimi. (pag. 67-69)

Această idee, faptul că Elementele lui Euclid nu ar trebui să reprezinte un model pentru organizarea manualelor şcolare, implicit şi a programei şcolare, mai ales pentru clasele gimnaziale când elevii trebuie să înveţe primii paşi în gândirea logico-deductivă, această idee este reluată de Eugen Rusu şi în lucrarea Problematizare şi probleme în matematica şcolară (Ed. didactică şi pedagogică, 1978):

Şi aici, Euclid – excelent logician, dar lamentabil pedagog – a greşit spunând: nu există un drum scurt, pentru regi. Nu putem şti toate amănuntele în toate domeniile, trebuie să existe un drum mai scurt dacă ţintim ideile esenţiale. (pag. 25) La ce “amănunte” se poate renunţa însă? Eugen Rusu ne oferă în prima lucrare amintită câteva criterii: este recomandabil să renunţăm la demonstrarea faptelor evidente din punct de vedere a intuiţiei, materia trebuind organizată mai degrabă artistic, ca o poveste, ca o piesă de teatru, centrată pe scoaterea în evidenţă a momentelor de suspans. Cele mai multe din cunoştinţe trebuie enumerate, contabilizate, ele fiind însă tratate mai superficial, doar ca simple unelte, singurul lor scop fiind de a fi pregătite la dispoziţia şi în folosul marilor momente ce urmează, totul fiind organizat şi regizat într-un proces cu veleităţi artistice ce trezeşte sentimente de uimire, în al cărui ductus şi pe ale cărui “valuri” se formează încetul cu încetul gândirea logico-matematică a elevilor. Dar, oare care sunt momentele de uimire ce trebuie susţinute printr-o demonstraţie? Din materia de introducere a principalelor figuri geometrice, pot fi alese ca surprinzătoare următoarele teoreme:

  • suma unghiurilor în triunghi este exact de 180o;
  • unghiul exterior unui triunghi este egal cu suma unghiurilor interioare neadiacente;
  • suma unghiurilor exterioare unui triunghi este de 360o;
  • un triunghi isoscel cu un unghi de 60o este automat echilateral;
  • un triunghi cu vârful pe semicercul cu baza ca diametru este triunghi dreptunghic;
  • mediana pe ipotenuză este jumătate din aceasta;
  • cateta opusă unghiului de 30o este jumătate din ipotenuză;
  • suma unghiurilor în orice patrulater (convex sau concav) este de 360o;
  • suma unghiurilor exterioare unui patrulater convex este tot de 360o.

Între acestea se poate face desigur o posibilă ierarhizare, anume care sunt cu adevărat surprinzătoare şi la care deducerea este totuşi destul de “transparentă”. Pe lângă acestea mai există desigur şi alte momente de uimire ce nu pot fi susţinute de o demonstraţie în prima fază. De pildă, concurenţa liniilor importante de un anumit fel în triunghi nu poate fi demonstrată în prima fază, fiind mult prea dificilă pentru elevii aflaţi în stadiul incipient de formare a artei demonstraţiilor. În aceste situaţii elevii vor accepta fără probleme lipsa unei demonstraţii, văzând cu ochiul liber că, dacă desenul este bine făcut, liniile respective sunt concurente (oricum, obiectivul din clasa aVI-a al lecţiei despre liniile importante în triunghi este cunoaşterea acestora şi nu epuizarea tuturor aspectelor legate de ele).

Observăm că cele mai multe teoreme din lista de mai sus sunt legate de unghiuri. Toate restul proprietăţilor studiate (mai exact, contabilizate), toate acestea nu au rost a fi demonstrate într-o primă fază de cunoaştere a geometriei, scopurile lor fiind doar de a folosi în demonstrarea unor afirmaţii neevidente. Desigur că toate aceste aspecte sunt valabile şi în ceea ce priveşte problemele alese. Vor fi evitate probleme a căror cerinţă este evidentă şi se vede “cu ochiul liber” în figură, căutându-se constant probleme cu cerinţă neevidentă, surprinzătoare. La metoda triunghiurilor congruente, de pildă, se vor evita problemele a căror figură are simetrie axială sau simetrie centrală (acestea merită făcute doar de dragul evidenţierii unor elemente congruente de un anumit tip).

Printre comentariile la citatele lui Eugen Rusu din acest eseu, am folosit uneori expresia “la o primă trecere prin materie”, cu variante alternative de tipul “la o primă cunoaştere” etc., referindu-mă la primul contact al elevilor cu geometria, contact care are loc în clasele 6-8 gimnaziale. În lucrarea despre Problematizare, dânsul scrie (la pag. 23) despre Matematica privită ca obiect de cultură generală, anume că este un sistem logic deductiv, dând ca exemplu geometria în etapa a doua de studiu. Este vorba aici de geometria ce se făcea pe vremuri în clasele 9-10 într-o reluare de sistematizare, ce îi ajuta foarte mult pe elevi să-şi stabilizeze noţiunile şi procesele de gândire deductivă matematică. Din păcate, această materie a fost eliminată din programă la finele anilor ’90, dar acesta este un alt subiect de discuţie. C.Titus Grigorovici 10.01.2018

Divizorii unui număr – prezentarea unei ore deschise

În data de 12 octombrie 2017 am susţinut la o oră deschisă la clasa a V-a. M-am oferit personal pentru această acţiune din motive evidente: cerinţele metodologice ale noii programe de matematică pentru toate şcolile din România, de aplicat începând din acest an şcolar la clasele a V-a, sunt asemănătoare cu cerinţele de predare din şcolile Waldorf, cerinţe pe care încerc să le înţeleg şi cu care mă străduiesc să mă acomodez de peste 20 de ani. În toţi aceşti ani am conştientizat în acest sens că, de fapt, trebuie să revitalizez în felul meu de predare modul în cere se preda matematica în România înainte de 1980. Astfel, conştient fiind de faptul că am un oarecare avans în faţa celorlalţi profesori, în strădaniile de a mă schimba conform acestor cerinţe, am considerat că este de datoria mea să le ofer o mostră despre cum am înţeles eu că ar trebui predate lecţiile de matematică.

În acest demers, am ales o lecţie cât mai simplă, pentru a exemplifica felul în care matematica poate şi trebuie a fi predată pornind cât mai de jos, astfel încât lecţiile să fie accesibile cât mai multor elevi din clasă. Desigur că ulterior, în cadrul lecţiei şi a lecţiilor ulterioare se poate şi e bine să se urce cât mai mult (cât pot “duce” cei mai buni elevi ai clasei). Datorită predării în module şi a faptului că eu sunt dirigintele acestei clase, deci am avut deja un astfel de modul cu foarte multe ore de matematică pe săptămână (12 ore/ săptămână în septembrie), am avansat rapid cu materia. Astfel am putut oferi colegilor o lecţie pe care dânşi urmează să o facă mult mai târziu. Ca urmare, colegii vor avea timp să se gândească la ce au văzut şi, poate, să aplice anumite aspecte la momentul respectivei lecţii. Desigur că aceste aspecte vor putea fi aplicate şi la alte ore, deoarece acţiunea a avut loc foarte repede, la exact o lună de la începutul cursurilor.

Concret, prin această lecţie m-am străduit să ating mai multe aspecte ce apar ca cerinţe în cadrul noii programe de matematică pentru clasele gimnaziale. Mai ales pentru clasele a V-a şi a VI-a, cerinţa este de a oferii o introducere cât mai intuitivă a materiei, a noţiunilor nou predate. Astfel, provocarea cea mai mare a acestei lecţii venea chiar la început: cum să introducem cuvântul divizor fără a da o definiţie sterilă, ci dimpotrivă, într-un mod care să conecteze natural cu cunoştinţele anterioare ale elevilor. Atenţionez în acest sens că, negestionat cum trebuie, momentul poate duce chiar de la început la neînţelegerea lecţiei de către mulţi elevi. Din păcate acest fenomen se întâmplă de multe ori la toate clasele. În cazul de faţă, eu am încercat să conectez lecţia cu împărţierea exactă, divizorul unui număr însemnând un împărţitor exact al acestui număr. Nu am lungit-o mult, ci am dat imediat oral primul exemplu pe divizorii lui 6, pe care i-au spus chiar elevii (concret, momentul a fost sub forma unei întrebări din partea mea: hadeţi să vedem care ar fi împărţitorii exacţi ai numărului 6, moment în care elevii au începu să răspundă, primul mai timid, puţin ezitant, neştiind dacă a înţeles cum trebuie, apoi următorii cu curaj; nu mai ţin minte exact, dar divizorii nu au venit în mod ordonat de la elevi). Din acest moment “gheaţa s-a spart” şi lecţia a început să curgă natural, într-un dialog (predare prin problematizare), în care profesorul întreabă şi elevii răspund. Astfel, profesorul îi îndrumă pe elevi prin întrebări bine regizate, dar de fapt aproape toată lecţia a fost dictată de către elevi (eu doar am scris totul pe tablă, elevii completându-şi notiţele ordonat, după modelul de pe tablă). Un fapt comic a fost următorul: o vreme au mai ridicat mâna “civilizat” (clasa era plină cu încă 17 profesori străini), dar după cca. 10 minute “gheaţa s-a spart de tot”, elevii uitând să mai ridice mâna şi răspunzând direct şi spontan într-un dialog plin de bucurie în procesul de descoperire a noilor aspecte. Totul căpătase un profund caracter ludic; aveam un joc serios, dar totuşi un joc plin de bucurie.

Revenind la începutul lecţie, după scurta introducere orală, cu prezentarea noţiunii de divizor prin sinonimul împărţitor exact, urmată de exemplul divizorilor lui 6, după acestea am început să scriu pe tablă titlul şi cele două aspecte deja menţionate. Apoi le-am propus clasei să procedăm la o abordare ordonată şi să vedem cum stau lucrurile în general, studiind fiecare caz până la 10. La acestea eu am scris pe tablă, dar elevii dictau. După ce am completat coloana respectivă i-am rugat pe elevi să notăm alături la fiecare număr câţi divizori are. Apoi elevii au trebuit să completeze singuri următoarea decadă de numere, până la 20 (muncă independentă pe care o pot face toţi!). După câteva minute de lucru în linişte i-am rugat să îmi dicteze rezultatele, eu scriind ordonat pe tablă. Iată în continuare poza tablei de la această oră:

Înainte de a prezenta continuarea lecţiei, doresc să atrag atenţia asupra modului de scriere a divizorilor fără a folosi mulţimile. Aceasta reprezintă o nouă cerinţă din partea prezentei programe, o cerinţă care îi bulversează puternic pe profesori. Vreau să precizez că elevii nu au avut nici o problemă în folosirea semnului cu două puncte în sens literar, nu în sensul operaţiei de împărţire. Din păcate, la discuţiile de după oră am uitat să scot din geantă o carte din 1966 despre numere prime scrisă de un academician polonez, redactată în întregime fără folosirea scrierii cu mulţimi (Sierpinski W. – Ce ştim şi ce nu ştim despre NUMERELE PRIME, Ed. Ştiinţifică, 1966, traducere după originalul din 1964). Da, dragi colegi, se poate scrie în matematică şi fără limbajul mulţimilor. Cei care au apucat clasele gimnaziale înainte de 1981 au scris totul fără mulţimi. Sarcastic spus, putem zice că a existat matematică şi înaintea mulţimilor. Lăsând gluma de o parte, prezentarea unei posibilităţi de a enumera nişte elemente fără a folosi mulţimile a fost pentru mine unul din obiectivele acestei lecţii deschise. Nu cred că aceasta reprezintă singura cale de scriere, dar eu aşa am considerat să o fac.

Un alt aspect legat de această lecţie îl reprezintă enumerarea concretă a divizorilor, astfel încât copiii să vadă despre ce este vorba. Trebuie să vadă noua situaţie pe cât mai multe exemple, înainte de a fi capabili să înţeleagă despre ce este vorba doar vorbind despre ele. Elevii de clasa a VI-a ştiu foarte bine despre ce este vorba când vorbim de divizorii unui număr, pentru că în clasa a V-a i-am enumerat de foarte multe ori, şi în cazuri simple şi în cazuri complicate. Am conectat aici la indicaţia din Sugestiile metodologice din finalul noii programe de matematică (vezi la pagina 31, despre clasa a V-a): … Noţiunile de “cel mai mare divizor comun” şi “cel mai mic multiplu comun” vor fi introduse prin enumerarea divizorilor, respectiv a multiplilor, … . În acest sens, la temă elevii au primit să enumere în continuare divizorii numerelor vână la 30, continuînd astfel lista de la clasă din prima parte a orei.

Odată înţeles despre ce este vorba, elevii familiarizându-se cu noţiunea de divizor, am putut trece la aprofundarea temei. Am făcut aceasta prin observaţii făcute asupra numărului de divizori ai numerelor deja studiate pănă la 20 (din nou, sub forma unei întrebări: Ce observăm?, urmată de răspunsuri din partea elevilor; aceste răspunsuri, eventual rearanjate, au ajuns apoi pe tablă). Am putut face aceasta deoarece ne-am pregătit terenul, notând în dreptul fiecăruia câţi divizori avea. Astfel, am observat că avem în primul rând ciudatul număr 1, singurul număr cu doar un divizor. La acest punct vom reveni desigur în clasa a VI-a, când vom observa că acest fapt este valabil doar în “familia” numerelor naturale, în cazul numerelor întregi chiar şi numărul 1 având doi divizori. Pentru a sublinia că numărul 1 este aparte, l-am şi separat de restul printr-o subliniere. Apoi am trecut la restul numerelor, unde am văzut că numărul divizorilor variază de la un caz la altul, ba mai mulţi, ba mai puţini. În mod neaşteptat, la unele numere constatăm că au doar doi divizori. Ce fel de numere sunt acestea? Aici, elevii le-au recunoscut cu mare bucurie pe vechile lor cunoştinţe, numerele prime. Pentru a înţelege ce vreau să spun, rog onoratul cititor să studieze şi postările din ianuarie 2017 despre numerele prime ( vezi postările http://pentagonia.ro/numerele-prime-2-introducerea-acestora/ şi http://pentagonia.ro/numerele-prime-3-aspecte-metodico-didactice-ale-predarii/ ). Aceasta a reprezentat a treia mare abordare a naturii numerelor prime; după ideea de numere nedecompozabile de la început, şi după ideea de numere care rămân în Ciurul lui Eratostene în urma eliminării tuturor multiplilor în sens de plural, acum vedeam numerele prime ca acele numere care au exact doi divizori, pe 1 şi pe el însuşi. Aceşti divizori “automaţi” i-am numit divizori improprii, doar după ce am precizat că oamenii pe vremuri i-au privit pe aceştia ca nişte ciudăţenii, că multă vreme doar ceilalţi divizori au contat (aceştia erau divizorii “propriu-zişi”, adică divizorii proprii). Restul numerelor au mai mulţi divizori, adică cel puţin trei. Este vorba aici de numerele care se pot descompune în factori mai mici.

În acest moment am adus o întrebare ce urmărea observarea unui aspect pe care elevii nu au cum să-i vadă la nivelul acesta de dezvoltare a lecţiei, respectiv a gândirii (nici profesorii nu cred că-l prea văd; eu l-am observat singur în urmă cu trei ani şi, de atunci îi atenţionez şi pe elevi asupra repectivului detaliu). Majoritatea numerelor au un număr par de divizori. Ce fel de numere au un număr impar de divizori? De obicei este vreun elev care observă răspunsul corect (la momentul acestei întrebări elevii trebuie să se fi jucat destul cu numerele pătrate, să le recunoască uşor pe renumitele pătrate perfecte); de data aceasta răspunsul a venit mai greu, dar până la urmă a venit cumva, aşa că l-am notat şi pe acesta ca o ultimă observaţie.

După seria de observaţii, urmare a analizei făcute pe munca de nivelul elementar de la începutul orei, am putut trece la un nou nivel de lucru, anume la găsirea divizorilor unor numere mai mari. În cazul acestora apar deja dificultăţi reale la găsirea intuitivă a divizorilor mai mari. De pildă, la numărul 48 se vede încă uşor divizorul 12, dar nu se mai vede natural divizorul 16; la numărul 72 se văd foarte greu  divizorii 18, 24 şi 36. Pentru aceştia le-am arătat elevilor, le-am atras de fapt atenţia asupra unei proprietăţi interesante a divizorilor care, aranjaţi în ordine crescătoare, aşa cum ne-am obişnuit, formează de fapt perechi al căror produs dă întotdeauna numărul iniţial. Am numit această observaţie proba divizorilor. Acest procedeu ne permite, după găsirea intuitivă a primilor divizori, depistarea divizorilor mai mari, a celor neintuitivi, odată ce am reuşit să trecem “de mijloc”, adică de doi divizori consecutivi al căror produs este numărul iniţial (de pildă de 8 şi 9 în cazul lui 72; atenţie, nu numere consecutive, ci doar divizori consecutivi; la 48 aceşti divizori consecutivi sunt 6 ∙ 8 = 48). Aş mai fi zăbovit cu două trei exemple aici, dar timpul nu-mi mai permitea şi ştiam că mai doresc să le povestesc elevilor despre un exemplu special “cu tâlc”. Astfel, am uitat în cadrul orei (şi nimeni nu a observat la discuţiile de analiză de după ora deschisă) să dau măcar un exemplu de găsire a divizorilor în cazul unui pătrat perfect. Era potrivită aici de pildă enumerarea divizorilor lui 64. Ce se întâmplă în acest caz la mijloc? Păi simplu: divizorul 8 face pereche cu sine, iar asta noi o vom însemna printr-o buclă de la 8 chiar la el. Este clar că am recuperat acest aspect ca observaţie la discutarea temei de la începutul orei următoare (şi aşa este în regulă). La temă au apărut două pătrate perfecte iar elevii au venit cu diferite idei şi contra-idei (un elev propunea să-l punem pe divizorul 8 de două ori). Deci, până la urmă am lămurit aspectul respectiv ora următoare.

Spuneam că spre finalul lecţiei m-am grăbit pentru că mai aveam “în buzunar” o scurtă “poveste cu tâlc” (nu apare pe poza tablei). Este vorba de numerele perfecte. Ce sunt acestea? Primul număr perfect este 6; dacă la numărul 6 facem suma tuturor divizorilor săi, în afară de numărul însuşi, obţinem SD6 = 1 + 2 + 3 = 6, adică exact 6. Ce se întâmplă la alte numere din acest punct de vedere? De pildă la 10 obţinem SD10 = 1 + 2 + 5 = 8, mai puţin decât numărul însuşi; dimpotrivă, la 12 obţinem SD12 = 1 + 2 + 3 + 4 + 6 = 16, adică mai mult decât numărul însuşi. Exact ca la oameni avem şi la numere: la multe numere dacă facem suma divizorilor lor obţinem mai puţin decât “se laudă ele că pot”; dimpotrivă, la unele numere, dacă facem suma divizorilor lor vedem că obţinem mai mult decât “arată numărul”; există însă şi numere la care suma este exact “cât ne spune numărul că valorează”. Şi da, la oameni avem exact la fel: cei mai mulţi pot mai puţin decât se laudă că sunt în stare (cunoscuţii lăudăroşi); dimpotrivă, există oameni care, odată puşi în faţa unor situaţii dificile, constaţi că sunt foarte capabili şi pot mai mult decât arătau iniţial (pe aceştia îi numim de obicei modeşti). Da, şi mai există, cei drept foarte rar, cei care îţi arată exact cât pot (pe aceşti oameni de încredere îi putem numi perfecţi). În sensul acestei poveşti, elevii au primit acasă sarcina de a căuta şi următorul număr perfect (care este 28). Ora următoare, la discutarea temei, câţiva elevi au anunţat că l-au găsit, iar eu le-am spus despre Pitagora, anume că de la acest mare învăţat al Greciei antice cunoaştem aceste două numere perfecte şi că de la el vine şi această poveste. Apoi, tot ora următoare, în conectare cu analiza temei, după găsirea lui 28 le-am prezentat elevilor şi următoarele numere perfecte, 496 şi 8128, găsite de Nicomac din Alexandria în sec 1 d.Chr., dar şi următoarele care sunt deja uriaşe (urmează numărul 33.550.336, etc.).

Iată şi tema dată elevilor la sfârşitul orei deschise: 1) Scrieţi toţi divizorii numerelor de la 21 la 30, notaţi la fiecare câţi divizori are şi calculaţi în dreptul fiecăruia şi suma divizorilor săi (fără numărul însuşi), aşa cum am făcut în clasă. Fiţi atenţi dacă mai găsiţi un număr perfect printre acestea. 2) Scrieţi lista completă a divizorilor la fiecare din următoarele numere, folosind de fiecare dată proba divizorilor: 36; 42; 75; 96; 144; 150; 220; 280; 284; 300.

Tot de la Pitagora vine şi o altă poveste “cu tâlc”, prezentată elevilor în ora următoare: se spune că Pitagora a fost întrebat o dată despre cum ar caracteriza el doi prieteni cu adevărat buni. Iar Pitagora a răspuns că două persoane pot fi caracterizate drept prieteni buni dacă se vor comporta la bine şi la greu aidoma numerelor 220 şi 284. Într-adevăr, dacă veţi face suma divizorilor fiecăruie din cele două numere, veţi vedea că la fiecare se obţine celălalt ca rezultat. Acestea două se numesc numere prietene, şi erau folosite în lumea învăţaţilor arabi din jurul anului 1000 la confecţionarea de amulete pereche pentru “cimentarea” unei prietenii dorite (fiecare din cei doi prieteni păstra o amuletă cu unul dintre cele două numere prietene gravat pe aceasta).

Până în acest moment al studiului despre divizorii unui număr am parcurs următoarele nivele de gândire: la început am căutat toţi divizorii unui număr în mod intuitiv; apoi, odată cu creşterea numerelor studiate, găseam primii divizori intuitiv, până treceam de jumătatea listei, iar apoi restul divizorilor printr-un procedeu pe care l-am numit “proba divizorilor”. Această a doua metodă poate fi descrisă ca parţial intuitivă, parţial algoritmică. Dar şi această metodă mai performantă îşi găseşte în curând limitele, odată cu creşterea numerelor la care dorim să găsim divizorii. A fost deja cazul la numerele mai mari date ca temă la sfârşitul orei deschise, inclusiv la numărul 284. Aşa că trebuia să ne gândim la o metodă şi mai puternică, una care să elimine subiectivismul intuitivităţii. În ora următoare (după cea deschisă) le-am arătat cum am putea depista în mod ordonat toţi divizorii, procedând în prealabil la descompunerea numărului în factori primi.

Găsirea unei noi metode poate reprezenta aici o mare provocare pentru elevi dar, totodată reprezintă o provocare şi mai mare pentru profesorul care-şi doreşte să regizeze lecţia prin întrebări cât mai naturale prin care să-i împingă pe elevi spre a descoperi ei înşişi noua metodă. Ideea de a descompune numărul iniţial în factori primi şi a găsi divizorii săi prin compunerea factorilor în toate produsele posibile, această idee este însă una prea precoce pentru elevii de clasa a V-a. Nu cred că ei o pot găsi, dar o pot foarte bine înţelege după câteve exemplificări (dimpotrivă, un elev de clasa a VIII-a ar putea-o depista, dacă se dovedeşte mai treaz la minte). Deoarece ora respectivă (ora următoare după lecţia deschisă) se îndrepta către sfârşit, nu am apucat să fac decât două exemple (divizorii lui 100 şi cei ai lui 220, cu temă directă divizorii lui 2000). Eu am numit reprezentarea divizorilor în acel tabel drept metoda frunză, încercând astfel să le atrag atenţia asupra simetriei numărului de divizori de la nivelele egal depărtate de extremităţile tabelului. Tot la tema acestei a doua ore, le-am propus elevilor să găsească toţi divizorii numărului 496 şi să verifice apoi dacă într-adevăr acesta este număr perfect (temă opţională; scuze pentru tabla foarte urât ştearsă).

Am reluat discuţia peste încă două zile (în a treia oră prezentată aici), când am analizat situaţia divizorilor numărului 12, iar apoi, prin analogie, situaţia numărului 284, care are o structură de aceeaşi formă, dar cu factorul prim 71 în loc de 3. Apoi, la cererea câtorva elevi am făcut la tablă şi descompunerea şi găsirea divizorilor în cazul numerelor de la temă, 496, respectiv 2000, ce fuseseră ca temă, dar care le-a dat multă durere de cap (foarte puţini le-au reuşit).

Las aici onoratul cititor să studieze metoda în formă de frunză pentru găsirea tuturor divizorilor unui număr pe alte exemple. Diferite aspecte cunoscute din problemele de combinatorică se regăsesc aici într-un mod deosebit de natural. De pildă, la numărul 2000 care are în produs 7 factori primi, la găsirea tuturor variantelor de divizori compuşi din 5 factori, putem căuta ce posibilităţi există de a exclude doi factori din numărul 2000, aceasta susţinând observaţia de simetrie sus-jos a tabelului respectiv (în formă de frunză). Precizez că această “metodă” am generat-o la clasă în urmă cu trei ani, am stabilizat-o la clasa care sunt acum în a VII-a şi am introdus-o înclusiv în lucrarea de control (cu succes) anul trecut.

În a patra oră dedicată acestei teme, de care cu greu ne puteam despărţi, au apărut condiţiile ideale pentru ultimul pas, anume pentru stabilirea numărului divizorilor unui număr mare, fără a-i găsi neapărat pe toţi divizorii respectivi. Ce înţeleg prin condiţii ideale? Păi, simplu: la discutarea temei, care fusese găsirea tuturor divizorilor lui 3000, un elev ridică mâna şi spuse: D-le profesor, aţi avut dreptate când aţi spus că la 3000 nu o să avem 30 de divizori aşa cum am prevăzut eu (băieţelul respectiv concluzionase ora trecută că, dacă la 2000 aveam 20 de divizori, atunci la 3000 vom avea 30 de divizori, la care eu m-am arătat doar sceptic); mi-au dat 27 de divizori. În acest moment au sărit alţi copii: unul găsise 28, altul găsise chiar 30 şamd (eu am tăcut în acel moment, când el susţinea un număr impar de divizori la un număr care nu este pătrat perfect). Aşa că am scris chiar pe tablă întrebarea ce ne frământa. După care le-am arătat “marea bombă”, anume cum se află câţi divizori are numărul 18.000 (comentariul celui care a pornit totul: păi dacă-l facem pe ăsta, atunci la 3000 o să fie superuşor).

Astfel, pentru a epuiza subiectul divizorilor unui număr, mai trebuia să facem pasul către formula care ne spune – înainte de a-i găsi concret – câţi divizori are un anumit număr. De pildă, formula respectivă ne spune că numărul 18.000 = 24∙32∙53 are un număr de (4 + 1)∙(2 + 1)∙(3 + 1) = 5 ∙ 3 ∙ 4 = 60 divizori (vedeţi pe următoarea poză folosirea culorii pentru a îndrepta atenţia elevilor asupra exponenţilor).

Este foarte uşor să le dai elevilor de la clasele de excelenţă această formulă, iar ei o vor aplica imediat prin analogie. Dar, pentru mintea în formare a elevului talentat la matematică, această formulă cu efect de cutie neagră este situată undeva între nefolositoare şi otravă pentru gândire, în sensul că îl obişnuieşte pe elev să înveţe ceva pe de rost fără să înţeleagă cum funcţionează, aşa că elevilor buni trebuie neapărat să le oferim şi o explicaţie, de ce se întâmplă astfel. Băieţelul respectiv, care a fost în vervă mare la această oră, după ce a văzut calculul afişat de mine pe tablă, a strigat indignat: da’, de ce facem aşa? Am şi scris pe tablă întrebarea sa, după care am pornit explicaţiile. Iată în continuare poza tablei cu exemplele prin care am încercat să-i conduc pe elevii buni spre înţelegerea principiului acestei formule. În acest sens nu cred că trebuie o demonstraţie în caz general, fiind suficientă parcurgerea a două-trei exemple edificatoare. Vedeţi în continuare şi poza tablei din cea de a patra oră pe această temă.

Pentru noi profesorii, dar şi în caz că am discuta aceste aspecte la elevi mai mari, se impune aici o observaţie deosebită. În cazul numerelor scrise ca o simplă putere de un factor prim (an), formula respectivă este o formulă de lungime pentru că toţi divizorii se aranjează ordonat în linie. Dacă avem un număr ce s-a descompus într-un produs de două puteri de factori primi (an ∙ bm), formula respectivă devine o formulă de arie, pentru că toţi divizorii se aranjează în mod ordonat într-un tabel dreptunghic. Continuând raţionamentul, în mod evident că la un număr ce se descompune într-un produs de trei puteri de factori primi (an ∙ bm ∙ cp) avem o formulă de volum (L ∙ l ∙ h), pentru că toţi divizorii s-ar aranja ordonat într-un “tabel tridimensional” în formă de paralelipiped dreptunghic. La un număr cu patru factori primi diferiţi avem “volumul” unoi cuboid patru-dimensional (conţinutul în 4D), etc.

După lămurirea acestei metode am stabilit (muncă individuală, dictată apoi la tablă) câţi divizori avea buclucaşul număr 3000 de la temă, anume că are 32 de divizori. Normal că au primit să studieze din plin noua şmecherie (temă de găsit câţi divizori au fiecare din numerele 6000; 12000; 2400; 980; 10500).

În final doresc să atenţionez asupra unui aspect metodic suplimentar, de fineţe. Analizând cele prezentate mai sus, se observă strădania de a înţelege cât mai complet, din cât mai multe puncte de vedere, comportamentul numerelor participante la fenomenul studiat. Divizorii au apărut la început intuitiv, fiind imediat şi aranjaţi în ordine crescătoare. Apoi am constatat pe această primă formă o legătură interesantă ce am numit-o proba divizorilor. În ora următoare a apărut o structură nouă, bidimensională, sub forma unui tabel cu divizorii aranjaţi pe rânduri, în funcţie de numărul factorilor primi conţinuţi. În final a apărut o a treia formă de ordonare a divizorilor, destul de algebrică. Observăm astfel cum am studiat cu elevii diferitele forme în care se pot cuprinde/ ordona divizorii unui număr, în funcţie de punctul de vedere urmărit. Este bine să încercăm cât mai des să ne uităm la un fenomen studiat din cât mai multe puncte de vedere, aceasta ajutându-i pe elevi să înţeleagă mai bine lucrurile, dar şi să-şi clarifice în general felul în care “gândeşte matematica”. Da, şi încă o mică observaţie de ordin lingvistic: la mai mulţi factori folosim pluralul; la un singur factor folosim singularul; aţi văzut că la zero factori folosim din nou pluralul? Adică, zero obiecte de un fel sunt mai multe?

Mă opresc aici cu această prezentare (textul are 6 pagini A4 scrise cu 12). Urmează desigur lecţia despre divizorii comuni ai două numere, dar despre aceasta cu altă ocazie. Pe lângă bucuria acestei lecţii, rămân în urmă gândurile despre oportunitatea urcării la nivele atât de înalte de raţionament şi de cunoştinţe, cu elevi de clasa a V-a. Cu “olimpicii” merge, dar câţi elevi dintr-o clasă pot duce toate cele prezentate? În urmă cu 20-30 de ani astfel de teme de studiu erau incluse într-un capitol de aritmetică de la începutul clasei a IX-a. În 1997 acel capitol a fost desfiinţat, considerându-se că toate aspectele se lămuresc în clasa a V-a. Şi totuşi, câţi elevi de această vârstă ….

Titus Grigorovici, 14-23 oct. 2017

Folosirea intuiţiei în noua programă de gimnaziu

Odată cu începutul anului şcolar 2017-2018 profesorii de matematică vor trebui să-şi reseteze predarea, cel puţin la clasele a V-a, conform noilor cerinţe din programa aprobată în primăvară. Între toate aceste cerinţe, folosirea intuiţiei în predare la clasele V-VI se remarcă cu o insistenţă ieşită din comun. Astfel, cuvântul intuiţie, în diferitele sale forme, apare în această programă de peste 20 de ori!

În acest sens am hotărât să postez şi aici cele două părţi ale noii programe care se ocupă în format compact despre aspectele metodice: nota de prezentare (2 pagini A4) şi partea de sugestii metodologice (4 pagini A4). Pe lângă pasajele unde apare cuvântul intuiţie, mi-am permis să boldesc în conţinutul acestora diferitele aspecte importante ce vor trebui urmărite de către profesori începând din acest an şcolar, ţinând cont de faptul că în predarea multor profesori respectivele aspecte lipsesc uneori cu desăvârşire. Dau un singur exemplu (la întâmplare): mulţi profesori neglijează constant folosirea instrumentelor geometrice la tablă, susţinând că figura exactă nu contează, important fiind doar raţionamentul. Mai ales compasul suferă în acest sens, pentru că majoritatea nu ştiu nici măcar să-l folosească la tablă. Iată în continuare cele două părţi ale programei. CTG

*

Notă de prezentare

Evolutia umanităţii a fost strâns legata de dezvoltarea matematicii. Obiectele specifice matematicii sunt în concordanţă cu nevoile şi interesele omului pentru rezolvarea unor situaţii teoretice, metodologice şi practice, dar şi estetice. Matematica nu se rezumă doar la studiul numerelor şi al relaţiilor dintre acestea, ci este un domeniu de creaţie, bazat pe gândire logică şi inovatoare.

Matematica este o disciplină de mare profunzime, având un caracter deschis, datorat şi existenţei unei serii de probleme nerezolvate (conjecturi). În timp, rezolvarea acestora a condus la crearea unor domenii noi de cercetare şi a contribuit la rezolvarea unor probleme conexe altor arii de cunoaştere. Totodată, Matematica contribuie la înţelegerea realităţii subiective a propriei persoane şi a realităţii obiective a mediului înconjurător.

Programa şcolară de matematică reprezintă o componentă esenţială a curriculumului naţional, în acord cu Planul-cadru de învăţământ pentru învăţământul gimnazial, aprobat prin OMENCS nr. 3590/05.04.2016, urmărind respectarea caracteristicilor ciclurilor de dezvoltare cognitivă a elevului şi utilizarea eficientă a resurselor didactice disponibile. Disciplina este inclusă în aria curriculară Matematică şi ştiinte ale naturii din trunchiul comun şi este prevazută în planul-cadru de învăţământ cu un buget de timp de 4 ore/săptămână.

În procesul de proiectare curriculară s-au avut în vedere: profilul de formare al elevului de gimnaziu, programa şcolară pentru ciclul primar la disciplina Matematică, competenţele-cheie pentru învăţarea pe tot parcursul vieţii din cadrul european de referinţă, rezultatele înregistrate la evaluările naţionale şi internaţionale pentru învăţamântul gimnazial şi principiile de construcţie curriculară.

Procesul de proiectare curriculară a programei şcolare de matematică pentru învăţământul gimnazial s-a realizat ţinând cont de:

  • adecvarea curriculumului la realităţile interne ale societăţii şi ale sistemului de învăţământ, având ca obiectiv pregătirea elevului pentru viaţă, în general, şi pentru integrarea socio-profesională, în special;
  • echilibrarea ponderii domeniilor disciplinei şi integrarea acestora într-un sistem coerent la nivel de interdependenţe funcţional structurale şi din punct de vedere temporal;
  • flexibilitatea curriculumului prin parcurgerea şi aplicarea acestuia la clasa, în contextul respectării diferenţelor la elevii de aceeaşi vârsta (ritm de învăţare, nivel de achiziţii anterioare, motivaţie internă, specific cultural şi comunitar);
  • continuitatea curriculumului prin asigurarea unei tranziţii optime de la un ciclu de învăţământ la altul şi de la un an de studiu la altul, cu introducerea unor secvenţe de iniţiere a procesului de instruire la nivelul achiziţiilor de bază în termeni de conţinuturi-ancoră;
  • diversificarea criteriilor de structurare a conţinuturilor programei şcolare la nivelul achiziţiilor de bază, cu deschideri semnificative în planul practicii didactice;
  • corelarea activităţilor propuse prin curriculum cu dimensiunea axiologică a idealului educaţiei, referitor la formarea personalităţii autonome creative;
  • utilitatea curriculumului în raport cu cerinţele partenerilor educaţionali: profesori, elevi, familie, comunitate, reflectate în componentele specifice programei: competenţe generale, competenţe specifice, exemple de activităţi de învăţare, conţinuturi şi sugestii metodologice, inclusiv precizări privind evaluarea competenţelor formate/dezvoltate.

Prin specificul său, disciplina Matematică este esenţială în formarea şi dezvoltarea competenţelor necesare pentru învăţarea pe tot parcursul vieţii, şi constituie un fundament solid pentru argumentare, dezvoltare de raţionament logic, spirit şi gândire critică, analizare, interpretare şi rezolvare de probleme.

Atitudinile promovate de programa şcolară de matematică sunt cele prevăzute în documentele europene pentru educaţia matematică: respectul pentru adevăr şi perseverenţa pentru găsirea celor mai eficiente soluţii, dezvoltarea de argumente şi evaluarea validităţii acestora. Abordarea în spirit matematic a situaţiilor cotidiene solicită un tip de gândire deschisă şi creativă, precum şi un spirit de observaţie dezvoltat, matematica fiind modelul perfect pentru exersarea şi implementarea gândirii critice la elevi. Prezenta programă şcolară îşi propune să formeze la elevi iniţiativa şi capacitatea decizională, independenţa în gândire şi în acţiune pentru a avea disponibilitate de a aborda situaţii variate, precum şi capacitatea de a aprecia rigoarea, ordinea şi eleganţa în arhitectura modelării unei situaţii date, a rezolvării unei probleme sau a construirii unei teorii. Programa şcolară de matematică promovează exersarea obişnuinţei de a recurge la modele matematice în abordarea unor situaţii cotidiene sau pentru rezolvarea unor probleme practice.

Demersul de predare-învăţare-evaluare poate fi organizat individual, frontal sau pe grupe, cultivând astfel spiritul de echipă, încrederea în sine şi respectul pentru ceilalţi, toleranţa, curajul de a prezenta o opinie personală şi spiritul de iniţiativă al elevilor. Încrederea în sine şi autonomia personală sunt susţinute la nivel metodologic prin utilizarea erorii ca sursa de învăţare, prin încurajarea unor abordări din perspective multiple şi prin aplicarea matematicii în viaţa de zi cu zi. Astfel se dezvoltă motivaţia elevilor pentru a reuşi în învăţare şi, implicit, pentru continuarea studiului disciplinei. Programa şcolară de matematică pentru gimnaziu se concentrează pe formarea şi pe dezvoltarea gradată şi continuă a competenţelor matematice, care permit elevilor să răspundă la situaţii diverse făcând atât corelaţii intradisciplinare, cât şi interdisciplinare.

Structura programei şcolare include, pe lânga Nota de prezentare, următoarele elemente:

Competenţe generale

Competenţe specifice şi exemple de activităţi de învăţare

Elemente de conţinut

Sugestii metodologice

Competenţele generale vizate la nivelul disciplinei, încadrează achiziţiile de cunoaştere şi de  comportament ale elevului, fiind comune întregului ciclu de învăţământ gimnazial şi redând, într-un mod particularizat pentru aceasta disciplină, orientarea generală a procesului educaţional.

Competenţele specifice sunt competenţe derivate din competenţele generale şi reprezintă etape măsurabile în formarea şi dezvoltarea acestora. Pentru formarea şi dezvoltarea competenţelor specifice, în programă sunt propuse exemple de activităţi de învăţare care valorifică experienţa concretă a elevului şi care definesc contexte de învăţare variate. Programa şcolară de matematică pentru gimnaziu propune o oferta flexibilă de activităţi de învăţare. Profesorul poate să modifice, să completeze sau să înlocuiască aceste activităţi cu altele adecvate clasei. Devine astfel posibil să se realizeze un demers didactic personalizat, care să asigure formarea/dezvoltarea competenţelor prevăzute de programă, în contextul specific al fiecărei clase.

Conţinuturile reprezintă decupaje didactice relevante pentru matematică, structurate şi abordate astfel încât să fie accesibile elevilor de gimnaziu. Ele sunt mijloace informaţionale prin care se formează şi se dezvoltă competenţele specifice. Conţinuturile au fost selectate pe baza principiului continuităţii şi al coerenţei şi sunt puternic interconectate, astfel încât, după parcurgerea lor integrală, elevul să fie capabil să realizeze conexiuni între idei, texte cu conţinut matematic, reprezentări grafice şi formule, în scopul rezolvării unor probleme diverse, de natură teoretică sau practic-aplicativă.

Sugestiile metodologice reprezintă o componentă a programei care propune modalităţi şi mijloace pentru realizarea demersului didactic.

Note definitorii ale acestei programe

Programa şcolară de matematică delimitează, pentru fiecare clasă a învăţământului gimnazial, un nivel de pregătire matematică necesar elevilor pentru continuarea studiilor disciplinare şi, pe baza acestuia, trasarea posibilităţilor de avansare în învăţare.

Programa şcolară de matematică a fost gândită astfel încât să poată fi parcursă în 75% din timpul alocat orelor de matematică, restul orelor (25%) fiind la dispoziţia profesorului pentru activităţi remediale, de fixare sau de progres.

O caracteristică a acestei programe şcolare este că, în clasele a V-a si a VI-a, noţiunile sunt prezentate intuitiv, evitându-se abuzul de notaţii sau de abstractizare. Spre finalul clasei a VI-a, aşteptările sunt ca elevul să poata deja dezvolta raţionamente deductive simple, utilizând, dacă este cazul, contraexemple. Elevul devine capabil să folosească diferite mijloace de învăţare, inclusiv softuri matematice. De asemenea, poate folosi în mod adecvat regulile de calcul pentru a investiga idei matematice şi pentru a rezolva diverse situaţii problematice.

Paşii către dezvoltarea unei gândiri structurate, teoretizările sau raţionamentele mai ample, orientate spre formarea unor competenţe de transfer al matematicii în practică şi al cotidianului în modele matematice, precum şi familiarizarea cu o abordare pluridisciplinară a domeniilor cunoaşterii, se realizează treptat, mai accentuat în ultimii doi ani din gimnaziu.

Extinderea spaţiului numeric la acest nivel de şcolaritate impune înţelegerea şi dezvoltarea unor competenţe de operare cu numere reale. De asemenea, aprofundarea unor noţiuni de geometrie şi de măsurare devine o premisă în înţelegerea unor noţiuni specifice altor discipline prevăzute în planul-cadru.

*

Sugestii metodologice

Formarea şi dezvoltarea competenţelor matematice reprezintă mai mult decât a învăţa concepte matematice şi presupun procese cognitive şi metacognitive valorificate printr-o buna alegere şi construcţie a experienţelor de învăţare din cadrul procesului de predare-învăţare-evaluare. Acest proces creează oportunităţi pentru ca elevii să fie conduşi spre conexiuni între diferite teme, între abstract şi practic, iar mijloacele TIC reprezintă un avantaj important în explorarea de concepte şi relăţii matematice.

În proiectarea şi desfăşurarea activităţilor de învăţare vor fi valorificate şi dezvoltate experienţa matematică acumulată de către elevi în anii anteriori, precum şi gândirea elevilor aflată la un nivel de maturitate specific acestei etape. Sarcinile de învăţare vor fi eşalonate după gradul lor de dificultate, iar nivelul de aprofundare şi complexitatea conţinuturilor vor fi corelate cu nivelul de dezvoltare cognitivă a elevilor.

Introducerea conceptelor din cadrul domeniilor de conţinut se va realiza intuitiv, pornind de la exemple din realitatea înconjurătoare, de la experienţa anterioară a elevilor şi de la conexiunile intradisciplinare şi interdisciplinare, realizând astfel un demers didactic care echilibrează nivelul intuitiv/descriptiv cu rigoarea specifică matematicii.

Abordarea intuitivă reprezintă o formă de cunoaştere imediată a adevărului, fără raţionamente logice complexe preliminare. Este o modalitate de a organiza, ierarhiza, gestiona informaţiile nestructurate, cu scopul de a forma reprezentări matematice, de a propune metode de rezolvare a unor situaţii date sau de a anticipa situaţii, această abordare fiind o etapă necesară în generalizări sau formalizări ulterioare. În matematică, intuiţia este privită ca o primă etapă a înţelegerii anumitor informaţii, metode sau rezultate, fiind o formă de interpretare a realităţii, bazată pe experienţă şi pe raţionamente anterioare, aplicate unor situaţii similare.

Pornind de la premisa că există o strânsă legatură între întelegerea unor noţiuni şi reprezentarea mentală a acestora, se va acorda o importanţă deosebită competenţelor specifice asociate conţinuturilor din algebră şi geometrie, care sunt noi pentru elevii din gimnaziu. Modul în care elevii îşi reprezintă ideile, structurile, informaţiile îi ajută în rezolvarea problemelor şi, în general, în gestionarea informaţiilor. Deoarece reprezentările matematice se bazează unele pe altele, profesorii vor evidenţia conexiunile posibile dintre noţiuni.

În cazul calcului numeric, de exemplu, intuiţia presupune estimarea rezultatului unui calcul, fără a efectua operaţiile. Introducerea geometriei se va realiza tot într-o maniera intuitivă, prin exemple sau accesând experienţele anterioare ale elevilor, utilizând desene sau modele spaţiale, astfel devenind posibilă încadrarea corespunzătoare într-o sfera conceptuală (de exemplu, pătratul poate fi înţeles în conexiune cu alte figuri: pătratul este un romb cu un unghi drept; pătratul este un dreptunghi cu două laturi alăturate egale). Cu ajutorul exemplelor intuitive se pot elimina erorile tipice şi se pot forma şi accesa reprezentări matematice corecte. Într-o etapă ulterioară intuiţia se verifică prin diverse metode: măsurare sau exemplificare şi se validează prin raţionament matematic bazat pe argumente logice. Exersându-şi intuiţia, elevul ajunge să interpreteze matematic realitatea înconjurătoare, ca expresie a competenţelor matematice, cultivându-şi astfel încrederea în sine.

Prin construcţia programei, elevii sunt provocaţi să înţeleagă matematica prin raportare la experienţa cotidiană. Într-o prima etapă, aplicaţiile se vor limita la formarea deprinderilor de bază, fără calcule ample/sofisticate. Şi în cazul geometriei, în partea sa de început, introducerea oricărei noţiuni se face tot prin raportare la imagine, model, obiect, mediul înconjurător. Caracteristicile şi proprietăţile configuraţiilor geometrice vor fi evidenţiate întâi prin observare directă şi verificate prin măsurare, în sensul unei abordări cât mai naturale şi intuitive, raţionamentul fiind introdus către finalul clasei a VI-a (începând cu metoda triunghiurilor congruente).

Competenţele generale şi competenţele specifice derivate din acestea respectă etapele de structurare specifice operaţiilor mentale dezvoltate la nivelul acestei discipline, astfel se pot identifica următoarele corespondenţe:

identificarea unor elemente noi în diferite contexte, care duc la o reorganizare a sferei conceptuale, pe baza observaţiei (C.G.1: Identificarea unor date, mărimi şi relaţii matematice în contextul în care acestea apar);

prelucrarea datelor, ca nivel elementar al aplicaţiilor, folosind o regulă sau o formulă dată, ori recurgând la reprezentări (C.G.2: Prelucrarea unor date matematice de tip cantitativ, calitativ, structural cuprinse în diverse surse informaţionale);

utilizarea algoritmilor, metodelor sau a unor reguli matematice în situaţii diverse (C.G.3: Utilizarea conceptelor şi a algoritmilor specifici în diverse contexte matematice);

exprimarea în limbaj matematic pentru descrierea unei situaţii matematice, prezentarea unei probleme, a unui demers de rezolvare sau a rezultatului obţinut (C.G.4: Exprimarea în limbajul specific matematicii a informaţiilor, concluziilor şi demersurilor de rezolvare pentru o situaţie dată);

interpretarea unor situaţii problematice, ca etapă superioară de aplicare a matematicii, în context intradisciplinar şi interdisciplinar (C.G.5: Analizarea caracteristicilor matematice ale unei situaţii date);

modelarea matematică prin utilizarea cunoaşterii dobândite, integrând achiziţii din diverse domenii (C.G.6: Modelarea matematică a unei situatii date, prin integrarea achiziţiilor din diferite domenii).

Modalităţile de organizare a activităţilor de învăţare (frontale, individuale sau pe grupe) se vor adapta particularităţilor clasei de elevi, resurselor disponibile şi finalităţilor vizate. Se recomandă utilizarea metodelor şi mijloacelor didactice care să favorizeze implicarea elevului în propriul proces de învăţare, inclusiv a mijloacelor TIC.

În cadrul procesului de predare-învăţare-evaluare, componenta evaluare are un rol fundamental. Deoarece este necesară asigurarea unui feedback permanent şi corespunzător, atât pentru actorii procesului educaţional, cât şi pentru factorii de decizie, se va urmări accentuarea dimensiunii formative a evaluării. Astfel, se va monitoriza nivelul de formare şi dezvoltare a competentelor specifice asociate fiecărui domeniu de conţinut şi, implicit, se va orienta demersul didactic spre trecerea la domeniul de conţinut următor, spre aprofundarea unor aspecte sau spre revenirea asupra aspectelor deficitare, prin alocarea unui timp suplimentar de studiu, având mereu în vedere zona proximei dezvoltări.

Evaluarea se realizează în principal în vederea învăţării, prin forme, metode şi instrumente cât mai diversificate, orientate pe formarea şi dezvoltarea competenţelor matematice:

forme de evaluare: evaluare frontală, evaluare scrisă, evaluare asistată de calculator;

metode de evaluare: conversaţia, explicaţia, observarea sistematică a activităţii şi comportamentului elevului, rezolvarea de probleme, autoevaluarea, jocul didactic, portofoliul, investigaţia, studiul de caz, proiectul etc.;

instrumente de evaluare: fişe de lucru sau fişe de lucru individualizate, seturi de întrebări structurate, chestionare, teste de evaluare etc.

Programele şcolare de matematică pentru clasele a V-a si a VI-a se axează pe introducerea intuitivă a conceptelor matematice, fără utilizarea excesivă a formalismului specific matematicii (notaţii, teorie prezentată în extenso, demonstraţii exhaustive) şi cu accent pe formarea şi dezvoltarea competenţelor matematice prin exersarea cu scop, cu o mai bună legătură cu realitatea şi favorizând abordări intradisciplinare şi interdisciplinare. Programele şcolare de matematică pentru clasele a VII-a şi a VIII-a realizează trecerea de la metodele predominant intuitive, abordate în clasele anterioare, la definirea unor noi concepte, demonstrarea unor proprietăţi şi la aplicarea unor algoritmi de calcul.

CLASA a V-a

Programa şcolară de matematică pentru clasa a V-a realizează o continuitate între ciclul primar şi cel gimnazial, urmărind o construcţie curriculară logică şi coerentă, care îmbină nivelul intuitiv cu rigoarea specifică matematicii, construcţie adaptată caracteristicilor elevilor în această etapă de dezvoltare.

Abordarea problemelor prin metode aritmetice (atât la Numere naturale, cât şi la Fracţii ordinare. Fractii zecimale) are în vedere dezvoltarea capacităţii de analizare şi sintetizare a informaţiilor dintr-o situaţie-problemă, a raţionamentului logico-matematic. Se vor evita abordările algebrice (de altfel noţiunea de ecuaţie nu se regăseşte în programa de clasa a V-a, fiind introdusă în clasa a VI-a).

Noţiunile „cel mai mare divizor comun” şi „cel mai mic multiplu comun” vor fi introduse prin enumerarea divizorilor, respectiv multiplilor, iar identificarea „celui mai mare divizor comun”, respectiv a „celui mai mic multiplu comun” se realizeaza strict cu scopul utilizării acestor noţiuni în efectuarea operaţiilor cu fracţii. Prin urmare, se recomandă folosirea fracţiilor care au la numitor numere formate din cel mult două cifre, urmărindu-se cu prioritate fixarea regulilor de calcul şi crearea unui „simţ al numerelor” şi nu efectuarea unor calcule voluminoase.

Noţiunea de număr raţional se va prezenta doar la nivel intuitiv, ca exprimare prin forme echivalente de scriere a aceluiaşi obiect matematic; de exemplu: o doime, trei şesimi, 0,5 sau 50% reprezintă forme de reprezentare a aceluiaşi număr raţional, care semnifică o jumătate dintr-un întreg.

Abordarea elementelor de geometrie urmăreşte, cu precădere, dezvoltarea deprinderilor de utilizare a instrumentelor geometrice şi formarea deprinderilor de identificare, investigare şi construcţie a figurilor şi corpurilor geometrice. De asemenea, se face trecerea de la perceperea intuitivă a noţiunilor geometrice de bază la reprezentarea şi notarea lor. Tema Figuri congruente se va prezenta în mod intuitiv, denumind „figurile congruente”, de exemplu, „figuri care pot fi suprapuse exact”. Pentru poligoane, acest lucru revine la faptul că „doua poligoane congruente au aceeaşi formă şi mărime, iar elementele corespondente (unghiuri, laturi) sunt congruente”.

La tema Probleme de utilizare a datelor, temă abordată şi în programa şcolara de matematică de la ciclul primar, introducerea noţiunilor de frecvenţă şi medie ca elemente care pot fi extrase dintr-o reprezentare statistică de date, urmăreşte familiarizarea elevilor cu unele metode de prelucrare, reprezentare şi interpretare primară a datelor statistice.

În toate activităţile de învăţare, accentul se va pune pe evidenţierea dimensiunii aplicative a cunoştinţelor matematice, în situaţii concrete cât mai variate, avându-se în vedere intradisciplinaritatea şi interdisciplinaritatea, dar şi utilizarea mijloacelor TIC. Astfel, se au în vedere stimularea şi menţinerea interesului elevilor pentru studiul matematicii.

CLASA a VI-a

Programa şcolară de matematică pentru clasa a VI-a continuă demersul început în clasa a V-a din punct de vedere al prezentării intuitive/descriptive a noţiunilor, urmărind ca în final să se treacă la definirea riguroasă a unor concepte matematice şi la demonstrarea unor proprietăţi.

Pentru formarea şi dezvoltarea competenţelor specifice, la tema Mulţimi. Mulţimea numerelor naturale prezentarea noţiunilor se va realiza fără exces de limbaj formal sau de notaţii, utilizând multimi date doar prin diagrame sau prin enumerări de elemente, inclusiv în cazul operaţiilor cu mulţimi, cu legături intradisciplinare (elemente de bază ale geometriei de tip mulţimi de puncte, drepte etc.), urmărind şi dezvoltarea gândirii combinatorice.

La tema Rapoarte. Proporţii, conceptele vor fi introduse pe baza cât mai multor exemple din realitate, din cadrul altor discipline, din corelaţii intradisciplinare, nivelul de dificultate al aplicaţiilor raportându-se în principal la intuiţie şi observare directă, fără a se baza pe raţionamente ample. Aplicaţiile în zona proporţiilor derivate au rol de a anticipa utilizarea acestora în capitolul de asemănare, exersarea având scopul formării unor deprinderi de bază. Elevului i se vor crea situaţii de învăţare în care trebuie să colecteze date reale pentru stabilirea unor proporţionalităţi sau alte caracteristici ale unor serii de date, inclusiv prin învăţarea prin colaborare, fiind încurajat să emita ipoteze pe baza datelor colectate sau informaţiilor accesate din diverse surse (media, internet). Se vor utiliza jocuri practice prin care elevul să fie pus să experimenteze şi să identifice evenimente asociate experimentului (aruncarea zarului, alegerea unei bile dintr-o cutie etc.).

La temele Mulţimea numerelor întregi şi Mulţimea numerelor raţionale accentul trebuie pus pe introducerea numerelor din considerente şi necesităţi practice, reprezentarea pe axa numerelor fiind realizată cu scopul formării unor deprinderi de localizare. La utilizarea modulului, nu se va folosi calculul literal, acordându-se o pondere mare exemplelor numerice care utilizează distanţe măsurate pe axa numerelor. Pentru sprijinirea deprinderilor de calcul mintal, se vor utiliza jocuri didactice şi se va limita calcul numeric la zona de exersare relevantă.

Tema Noţiuni geometrice fundamentale continuă introducerea realizată în clasa a V-a (noţiunile de punct, dreaptă, segment, unghi) în aceeaşi manieră, prin raportare la imagine, model, obiect, mediul înconjurător. Caracteristicile şi proprietăţile configuraţiilor geometrice vor fi evidenţiate prin observare directă, experiment, măsurare, în sensul unei abordări cât mai naturale şi intuitive. Accentul va fi pus pe consolidarea deprinderilor de utilizare a instrumentelor geometrice pentru realizarea desenelor specifice, pe utilizarea de softuri educaţionale în vederea facilitării înţelegerii/identificării mai bune/mai uşoare a unor caracteristici ale configuraţiilor geometrice.

La tema Triunghiul caracteristicile şi proprietăţile configuraţiilor geometrice se vor evidenţia prin observare directă, experiment, măsurare, urmând ca după formarea deprinderilor de bază să se utilizeze raţionamente simple şi instrumente geometrice pentru realizarea desenelor specifice. Activitaţile de învăţare de la calculul cu unităţi de măsură vor urmări formarea deprinderilor de bază, reflectând cât mai mult din realitatea înconjurătoare. Rolul introducerii teoremei lui Pitagora, fără demonstraţie, este de a sprijini întelegerea unor fenomene studiate la diverse discipline, iar exersarea trebuie să fie bine dimensionată, pentru a încuraja elevul în studiul geometriei şi sporirea gradului de atractivitate a matematicii.

CLASA a VII-a

În clasa a VII-a se realizează trecerea de la metodele predominant intuitive, abordate în clasele anterioare, la definirea unor noi concepte, demonstrarea unor proprietăţi şi la aplicarea unor algoritmi de calcul.

Programa pentru algebră vizează continuarea studiului mulţimilor de numere prin introducerea mulţimii numerelor reale, pentru a fi folosite în rezolvarea de ecuaţii şi sisteme de ecuaţii liniare, pentru organizarea datelor şi pentru calcule din cadrul geometriei.

Studiul geometriei se caracterizează prin trecerea de la studiul intuitiv al caracteristicilor matematice ale figurilor geometrice, la studiul calitativ al acestora, bazat pe demonstraţie. Una dintre finalităţile aşteptate ale studiului geometriei prin proprietăţi este modelarea configuraţiilor geometrice pentru a calcula lungimi de segmente, măsuri de unghiuri, perimetre şi arii.

La tema Ecuaţii şi sisteme de ecuaţii se are în vedere formarea unor deprinderi de rezolvare a ecuaţiilor şi sistemelor de ecuaţii liniare, utilizând diverse metode de rezolvare. Comparativ cu clasele anterioare, unde abordarea problemelor practice se realizează prin metode aritmetice, problemele întâlnite în viaţa cotidiană vor fi rezolvate modelând cu ajutorul simbolurilor informaţiile deduse din enunţ, asociind în acest mod problemei o ecuaţie sau un sistem de ecuaţii.

La tema Patrulatere se vor demonstra: proprietatea liniei mijlocii în triunghi şi în trapez, proprietatea centrului de greutate al unui triunghi, utilizând proprietăţi ale patrulaterelor particulare. Pornind de la aria dreptunghiului se vor deduce ariile pentru paralelogram, romb, triunghi şi trapez. Astfel, la final se va putea determina aria unui poligon prin descompunerea acestuia în figuri geometrice studiate. În continuarea studiului din clasa a VI-a al congruenţei triunghiurilor, la Asemănarea triunghiurilor se vor introduce teorema paralelelor echidistante şi teorema lui Thales, ambele fără demonstraţie. Cazurile de asemanare a triunghiurilor se vor prezenta prin analogie cu cazurile de congruenţă a triunghiurilor.

La Relaţii metrice în triunghiul dreptunghic se va pune accent pe determinarea elementelor unui triunghi dreptunghic identificat în configuraţii geometrice sau practice date. Utilizând noţiunile prezentate la Cerc se vor calcula elemente ale poligoanelor regulate studiate. Aceste elemente vor fi utile pentru corpurile geometrice studiate în clasa a VIII-a.

CLASA a VIII-a

În clasa a VIII-a se consolidează competenţele formate şi dezvoltate anterior pentru calculul numeric. Unele dintre formulele de calcul pot fi deduse, pe baza definiţiei (de exemplu, pentru aria laterală şi aria totală a unei prisme, piramide, cilindru etc.), altele, mai complexe, vor fi puse la dispoziţia elevilor. Înţelegerea şi aplicarea formulelor cu o anumită ritmicitate, în situaţii concrete cât mai diverse, facilitează interiorizarea acestora.

Tema Funcţii dezvoltă şi competenţele de interpretare a reprezentărilor grafice, realizându-se astfel o conexiune cu teme specifice domeniului de conţinut Organizarea datelor şi cu teme specifice de la Rapoarte. Proporţii din clasa a VI-a, pentru anumite situaţii particulare de funcţii.

În cazul geometriei în spaţiu, se va acorda o atenţie specială raţionamentului matematic şi argumentărilor personale. Pentru realizarea unor figuri utile în anumite raţionamente, este indicat să se insiste la început pe realizarea aceleiaşi configuraţii din diverse perspective. Aceasta conduce la o mai bună reprezentare mentală a conceptului respectiv, ca bază necesară interpretării diferitelor situaţii şi modelării corespunzătoare a situaţiilor concrete. Ca şi în clasele anterioare, utilizarea instrumentelor geometrice sau a softurilor este necesară pentru acurateţea reprezentărilor grafice ale configuraţiilor spaţiale, cu respectarea convenţiilor de desen.

Intuiţia – alte aspecte

“Prostul nu cunoaşte om mai deştept ca el”- Montesquieu

Cine nu caută într-un dicţionar, fie el şi virtual, definiţia unui cuvânt mai important pe care este nevoit să-l folosească din plin este demn de citatul de mai sus (găsit pe prima pagină a ziarului prezentat în continuare); totodată, cine citeşte definiţia cuvântului şi consideră apoi că ştie foarte bine, fără să mai caute, acesta se dovedeşte la fel de ignorant ca şi primul. Acesta este şi cazul intuiţiei, despre care trebuie să ne ocupăm mai amănunţit pentru că, de la toamnă va trebui să o folosim în predare, iar valenţele acestui cuvânt sunt atât de vaste încât, oricât ne-am preocupa cu studiul intuiţiei, putem avea surprize oricând, întâlnind aspecte noi.

Când mi-am propus ca în această vară să mă ocup ceva mai mult de subiectul intuiţie nu bănuiam că voi primi ajutor şi din alte părţi. Iată însă că în Nr. 29 al săptămânalului Magazin, din 20 iulie 2017 pe prima pagină am găsit articolul Creierul şi intuiţia. Să ne aplecăm un pic asupra acestui articol (din păcate nesemnat), în care apar câteva idei mai neobişnuite, de sorginte psihanalitică, despre subiectul nostru.

“Visul, intuiţia şi creativitatea sunt mesaje ale inconştientului”, scria C.G. Jung, cu aproape o sută de ani în urmă. Culmea este că nici astăzi despre creativitate, una dintre cele mai fascinante dintre capacităţile mentale ale creierului uman, nu se ştie mare lucru.

Creativitatea, pe care Jung o numea şi “mica intuiţie”, această capacitate misterioasă şi puternică, specifică dintre toate mamiferele doar omului, este înainte de toate mecanismul extraordinar şi fundamental al autotransformării. Cum se naşte, cum ajungem să folosim această maşinărie inefabilă cu sediul în creierul nostru, cum găsim căile, uşile, cheile potrivite? Cum folosim acest dar, pe care îl primim de la naştere, dar fără un manual de utilizare? (…)

Această fantastică capacitate, intuiţia, pe care o avem toţi, aceea de a anticipa, de a resimţi, de a ghici lucruri, de a vedea evenimente înainte ca ele să se producă, nu o folosim decât o dată din zece cazuri. Ea fiind, atenţie, cel mai bun aliat al nostru în momente dificile! Oare, putem să citim aceste rânduri prin prisma persoanei confruntată cu sarcina rezolvării unei probleme de matematică ne-mai-întâlnite, care nu seamănă cu nimic ce-a învăţat până acum şi pentru care nu are nici o reţetă clară de rezolvare? Dar, să revenim la citat: Cum reuşesc unii oameni să-şi utilizeze la maximum capacităţile intuitive în comparaţie cu alţii? Iată câteva explicaţii prezentate în Healthy Living.

Intuiţia este, ca şi gravitaţia, ceva foarte greu de explicat, în ciuda rolului pe care îl joacă în viaţa de fiecare zi. Steve Jobs numea intuiţia ceva “mai puternic decât intelectul”. Oricum am spune-o în cuvinte, ştim toţi, intuitiv, ce este. Toţi am experimentat acest sentiment, senzaţie, avânt inconştient, care ne împinge să facem ceva fără să ne spună de ce sau cum. “Eu definesc intuiţia ca o cunoaştere subtilă fără a avea idee de ce ai nevoie să cunoşti”, scria Sophy Burnham în cartea sa, Arta intuiţiei, şi adăuga: “E diferită de gândire, diferită de logică şi analiză … este o cunoaştere fără cunoaştere”. (…) “Nu trebuie să respingem logica ştiinţifică pentru a beneficia de instinct”, spunea Francis Cholle, autorul cărţii The Intuitive Compass (Busola Intuitivă), “trebuie să ne folosim de ambele unelte, pentru a găsi echilibrul”.

În continuare autorul articolului se lansează în căutarea unor căi de a putea întării forţa intuiţiei, plecând de la observarea vieţii actuale, care dimpotrivă, împiedică formarea capacităţilor intuitive ale individului: Rătăciţi în labirintul vieţii trepidante, dominate de grijile zilnice, hrană, muncă, distracţie, computer, telefon, televizor, de nebunie generatoare de stres etc., trebuie să ne oferim scurte răgazuri de singurătate, de linişte exterioară pentru a ne putea asculta vocea interioară. Singurătatea ne poate ajuta să dăm frâu liber gândirii creatoare, (…) Liniştea exterioară, fără a fi “bombardaţi” tot timpul cu impresii din afară, acestea pot fi modalităţi excelente de a ne descătuşa intuiţia.

Am putea înţelege de aici doar preocuparea pentru intuiţia adulţilor, crezând că copiii sunt feriţi de stresul vieţii cotidiene. Nimic mai greşit. Recitiţi doar încă o dată lista de mai sus şi veţi vedea cu câte sunt confruntaţi copiii la ora actuală; haideţi să luăm cazul fericit în care totul e bine şi apar doar acestea trei: distracţie, computer, telefon, ce-i drept strâns întrepătrunse, de obicei întrepătrunse “la purtător” prin renumitul smartphone, care este însă prezent 24-7, adică zi şi noapte în viaţa lor. Ei nu mai au ocazia să se plictisească, să-şi caute o preocupare creatoare. Primul lucru pe care trebuie să-l faci este de a observa atent lucrurile, dar pentru asta actualii elevi nu mai au timp, smartphone-ul şi al său WhatsApp fiind tot timpul “la datorie”, rupându-i constant din orice concentrare. Concluzia ce se impune este năucitoare: dacă dorim ca actualii elevi să mai aibă scurte intervale în care să-şi antreneze în linişte concentrarea, pentru a-şi trezi intuiţia, atunci trebuie să le oferim astfel de momente la şcoală, în timpul orelor. Ştiu că este puţin, dar altceva nu putem face. Părinţii oricum i-au abandonat în braţele “telefoanelor” diabolic de inteligente, de cele mai multe ori inconştienţi de ce au făcut (de aici în continuare internetul face totul; şi prietenii care se plictisesc şi îl bâzâie pe copilul conectat tot timpul: cf?, adică traducerea din engleză a lui whats up?).

Cum putem să le oferim momente de concentrare şi de a observa atent lucrurile în cadrul orelor de matematică? Folosind cât mai des predarea prin problematizare şi asta nu doar în cadrul rezolvării problemelor, ci şi în cadrul lecţiei, a “prezentării” noilor cunoştinţe, ce trebuie aduse cât mai des sub forma unor întrebări, urmate de scurte perioade de introspecţie, de căutare a unui posibil răspuns din partea elevilor. Ţin minte două exemple mai speciale în acest sens, ambele de la diferite generaţii de clasa a VI-a.

Primul exemplu se referă la felul cum “scoteam” de la elevi toate construcţiile cu rigla şi compasul din primul semestru (mediatoarea unui segment, bisectoarea unui unghi, coborîrea unei perpendiculare dintr-un punct pe o dreaptă, ridicarea unei perpendiculare pe o dreaptă într-un punct al său, construirea unui unghi congruent cu un unghi dat, construirea unei paralele la o dreaptă printr-un punct dat etc., totul fără echer!). O elevă din acea clasă a reuşit “să prindă şmecheria” şi le găsea foarte repede, aşa că o puneam să mai aştepte, poate reuşesc şi alţii să găsească o cale de construcţie (ea, până ce colegii săi se mai gândeau, uneori reuşea chiar să mai găsească încă o soluţie). Dar nu puteam aloca prea mult timp acestei aşteptări (2-3 minute, cel mult 5 în cazuri foarte importante). O dată, fiind mai grăbit, am vrut să divulgăm soluţia după numai un minut de gândire (eleva talentată avea deja răspunsul şi aştepta). În acel moment o altă elevă a sărit destul de “arţăgoasă”: staţi, staţi, numai puţin, să apucăm şi noi să gândim un pic! (după ce i-am mai lăsat două minute, şi cum nu mai apărea nici o altă reuşită, am prezentat totuşi soluţia la tablă) A fost evidentă însă dorinţa lor de a savura şi această ocazie de a gândi, alături de toate celelalte ce le aveau în orele de matematică. Înţeleseseră problema, nimic nu-i distrăgea şi căutau concentraţi o cale de soluţionare, o idee care să le lumineze calea (trebuie să menţionez că la noi în şcoală elevii predau telefoanele la începutul programului, aşa că în ore acestea nu îi distrag).

Al doilea exemplu se referă la lecţia despre trapez. Mă trezesc eu să filozofez în faţa clasei: dacă tăiem un triunghi oarecare cu o paralelă la o latură, se obţine un trapez oarecare; dacă tăiem un triunghi isoscel paralel cu baza, atunci se obţine un trapez isoscel. La care o elevă ridică mâna şi întreabă la fel de filozofic: dacă dintr-un triunghi isoscel obţinem un trapez isoscel, atunci dintr-un triunghi echilateral se obţine un trapez echilateral? Există aşa ceva?

Am reuşit să mă redresez destul de repede după micul şoc al acestei întrebări: Da, într-un fel. Dacă tăiem triunghiul cum trebuie obţinem la trapez trei laturi congruente şi baza cea mare dublul celei mici, iar în plus avem şi două unghiuri de 60o (discuţia a fost mai lungă de fapt). Acest exemplu ne arată cum, obişnuiţi fiind să gândească la generarea lecţiilor, elevii devin cu timpul creativi, iar uneori răspunsurile lor scot în evidenţă aspecte la care nici nu te aştepţi. Asta poate fi numită deja cu adevărat creativitate.

Titus Grigorovici, 25.07.2017

Predarea intuitivă – alte aspecte şi exemple

Predarea intuitivă a fost înlăturată din orele de matematică într-un proces ce a pornit în jurul anului 1980, prin noile manuale (la liceu în 1978, respectiv la gimnaziu în 1981) şi prin impunerea metodologiei aferente. Acesta a fost un proces de lungă durată, desfăşurându-se pe tot parcursul deceniului ce a urmat, îndeplinirea fiind impusă de către şi prin intermediul inspectorilor şcolari. În noua linie de predare erau dominante cuvinte precum axiomatizare şi rigurozitate, iar în manuale introducerea noilor noţiuni apărea uneori pe căi nemaivăzute (pentru profesori) şi de neînţeles (pentru elevi): pe profesori, unele din noutăţi îi lăsau cu gura căscată chiar în sens pozitiv; şi pe elevi noile căi îi lăsau cu gura căscată, dar în sens negativ, adică nu înţelegeau nimic (sau, mai exact, numărul celor care înţelegeau şi făceau faţă a scăzut dramatic!). Vechiile căi de introducere, cizelate de-a lungul zecilor de ani de către metodişti de carieră şi verificate în practică de către profesori printr-un simţ psiho-pedagogic natural sănătos, prezentau un raport optimizat între înţelegerea intuitivă de către elevi şi formarea gândirii matematice specifice respectivelor lecţii. După această reformă, reforma “din 1980”, uitată actualmente de majoritatea profesorilor, după această reformă intuiţia elevului şi formarea gândirii sale de către profesor au fost înlăturate dintre obiectivele predării matematicii, preocuparea principală din punct de vedere a autorităţilor concentrându-se pe predarea riguroasă conform principiilor axiomatice impuse prin intermediul unor autori, profesori universitari ce nu aveau nimic în comun cu metodica naturală a predării la vârstele gimnaziale şi liceale. În esenţă putem spune că formarea gândirii elevului a fost înlăturată din centrul atenţiei profesorimii, în locul acesteia întronându-se “în lumina reflectoarelor” matematica însăşi, rece, egocentristă, accesibilă doar unui număr extrem de restrâns de elevi capabili a o înţelege.

Nici profesorii n-o prea înţelegeau, şi o vreme chiar s-au împotrivit curentului. Dar, cu timpul, toţi au acceptat noul trend, înţelegând până la urmă orice lecţie pe noul sistem, după câţiva ani de încercări ajungând să fie convinşi de “justeţea” acesteia. Problema este că elevul nu are la dispoziţie mai mulţi ani pentru a înţelege o lecţie; el nu are la dispoziţie mai mulţi ani nici fizic (!) şi nici temperamental (!). Elevul înţelege o lecţie, sau nu o înţelege! Gata! Nu-i poţi preda o lecţie de neînţeles, cerîndu-i să stea liniştit că o va înţelege peste trei ani. Aşa ceva este absurd. Că se mai întâmplă izolat câte o astfel de situaţie, mai merge, dar să ai un sistem de învăţământ care generalizează respectiva linie de predare, asta este iresponsabil.

Pentru elev, ieşiri din situaţia în care a fost împins există doar două: ori abandonează demersul, impulsul natural de a înţelege matematica, ori dă fuga la un profesor particular, care-i va explica noţiunea respectivă “altfel”, adică pe mintea lui. Pricepem în acest moment de unde vine dezvoltarea explozivă a sistemului de ore particulare la vârste tot mai mici (după profesorii de liceu au început meditaţiile la gimnaziu, iar după aceştia s-au luat şi învăţătorii), în paralel cu procentele mari de elevi cu note extrem de mici la EN şi la BAC (elevi la care nu există de fapt în spate forţa familiei).

Până prin 2000 acest trend de predare a fost “pe val”, stare alimentată în subconştient de ideea impusă pe parcursul anilor ’80 că ar exista o legătură între rigurozitatea excesivă a predării şi rezultatele la diferitele concursuri şi olimpiade. Ţin minte din anii ’90 la ce nivel ajunsese formalizarea acestei false rigurozităţi (vă mai aduceţi aminte de unghiul plan corespunzător diedrului?). De abia cu scăderea tot mai puternică a disponibilităţii elevilor pentru această “tortură intelectuală” au început să se audă şi apoi să se ridice tot mai tare voci împotriva “matematicii mult prea grele” din şcoli.

În acest context este evidentă strădania reparatorie a comisiei condusă de către Dl. Profesor Radu Gologan, comisie ce a redactat noua programă pentru clasele gimnaziale, care va intra în funcţiune începând cu clasa a V-a ce porneşte în septembrie 2017. Haideţi să mai aruncăm câteva priviri printre rândurile lui George Pólya din  Descoperirea în matematică, vânănd citate despre folosirea intuiţiei în predare.

În capitolul 15, la 15.6. Un exemplu istoric, este propusă o “temă de cercetare” ce are ca finalitate renumita formulă a lui Euler, relaţia dintre numărul feţelor, a muchiilor şi a vârfurilor unui poliedru: F + V = M + 2. Pe parcursul raţionamentului, la pag. 351, găsim următoarele rânduri: (…) Pentru variaţie, să facem acum mai întîi suma unghiurilor care au ca vîrf un acelaşi vîrf al poliedrului. Nu ştim cît face exact această sumă, dar ştim că ea este sigur mai mică decît 2π, unghiul plan maxim. (Aşadar, ne limităm acum, în mod explicit, la cazul poliedrelor convexe; faptul amintit este intuitiv, dar puteţi căuta în Euclid XI 21, unde găsiţi o demonstraţie.) (…) Consider că exemplul respectiv nici măcar nu mai trebuie comentat, acesta supliniind clar întrebarea din spatele predării intuitive, despre ce trebuie demonstrat la clasă, şi prin ce metode, la fiecare vârstă şi în fiecare context separat.

Predarea intuitivă nu înseamnă însă o predare superficială a fenomenului matematic, doar la nivelul dictonului “se vede că-i aşa!”. Fenomenul intuitiv reprezintă baza raţionamentului matematic în 99,99% din cazuri şi trebuie tratat cu foarte multă responsabilitate, pentru a nu conduce la o învăţare superficială, tocilară a matematicii. În cadrul capitolului 14, la pag. 333 găsim următoarele rânduri ca sfaturi adresate profesorilor:

Profesorul care urmăreşte cunoaşterea bine organizată trebuie să fie atent, în primul rînd, la modul cum introduce faptele, elementele noi. Elementul nou nu trebuie să apară de nicăieri, sau din nimic, (Doamne câţi profesori procedează astfel la ora actuală în licee!*) ci trebuie să fie motivat de, referit la, corelat cu lumea din jur şi cunoştinţele existente, cu experienţa de fiecare zi şi curiozitatea înnăscută a elevului.

Mai mult, după ce noul fapt a fost înţeles bine, el trebuie folosit la rezolvarea unor probleme noi, la rezolvarea mai simplă a unor probleme mai vechi, cu ajutorul lui trebuie explicate şi puse în lumină anumite lucruri deja cunoscute, trebuie deschise noi perspective. (Cel puţin, aşa se aşteaptă elevul!*)

La rândul său, elevul ambiţios trebuie sprijinit să studieze cu cea mai mare atenţie fiecare fapt nou: trebuie să-l întoarcă pe toate feţele, să-l considere sub diferitele lui aspecte, să-l scruteze sub toate unghiurile, şi să se străduiască să-l plaseze la locul cel mai potrivit printre cunoştinţele deja existente – adică acolo unde este cel mai convenabil corelat cu faptele înrudite. Numai atunci el va fi în situaţia de a putea înţelege noul element de cunoaştere cu minim efort şi în modul cel mai intuitiv. (…)

(8) Ca profesori devotaţi profesiunii, trebuie să ştim să ancorăm un fapt nou în bagajul cognitiv al elevului, să-l corelăm cu faptele învăţate anterior, să-i consolidăm asimilarea prin aplicaţii în cazuri concrete. Numai cunoaşterea bine ancorată, bine corelată, bine consolidată, bine organizată în intelectul elevului, – numai o astfel de cunoaştere putem spera că va deveni, în cele din urmă, cunoaşterea intuitivă.

* Mi-am permis inserarea unui mare OFF! în cadrul textului lui Pólya cu gândul la mulţii colegi care acţionează ca nişte mici dumnezei, încercând să creeze lecţia din nimic, după un fals dar aparent justificat model axiomatic. Dau aici cel mai simplu contraexemplu ce-mi trece prin minte, unul din vremea manualelor alternative, unde în clasa a VI-a apărea următoarea definiţie: Aria unui triunghi este, prin definiţie, semiprodusul bazei cu înălţimea (citat orientativ). Aria triunghiului nu se defineşte, ea se deduce printr-un amestec sănătos de logică şi intuiţie, putând eventual purta titlul de teoremă. Nici măcar aria dreptunghiului sau cea a pătratului nu se definesc, ele fiind de fapt nişte raţionamente aritmetice primare, din care se pot deduce apoi toate celelalte formule, unele mai uşor, altele mai greu. Câţi profesori procedează şi acum la clasă în acest fel, jucându-se dea Dumnezeul cu gândirea elevului! Iar elevii învaţă pe de rost “kilograme întregi de matematică” fără să-i înţeleagă sensul şi logica! La liceu fenomenul este absolut generalizat. Dau aici un singur exemplu: prezentarea tuturor relaţiilor trigonometrice fără a le deduce din cercul trigonometric.

* O a doua observaţie inserată în cursul citatului din Pólya vine ca urmare a gândurilor legate de predarea vectorilor în clasa a IX-a. În sensul acestui aliniat, demonstrarea diferitelor probleme de geometrie prin vectori ar avea sens doar după parcurgerea serioasă a unei doze bune de geometrie sintetică (vorbesc de clase de real, peste nivelul geometriei elementare din gimnaziu).

În acest moment mă simt obligat să fac totuşi o observaţie despre un aspect “nevralgic” al comentariilor metodologice la noua programă de gimnaziu. Astfel, la partea de Sugestii metodologice se sugerează că predarea intuitivă şi-ar avea locul şi ar fi îndreptăţită în clasele V-VI, dar că începând din clasa a VII-a se poate renunţa cât de repede la aceasta. Citez de la pag. 32: În clasa a VII-a se realizează trecerea de la metodele predominant intuitive, abordate în clasele anterioare la definirea unor noi concepte, demonstrarea unor proprietăţi şi la aplicarea unor algoritmi de calcul.

Ar fi greşit dacă profesorii ar înţelege prin aceasta o rupere bruscă de la un an la altul în privinţa folosirii intuiţiei. (Oare, de ce există acest impuls în mintea profesorilor de matematică, impuls de a pune în calea elevilor diferite trepte greu de trecut, după principiul “de-acum se schimbă foaia, gata cu leneveala!”; de ce nu putem organiza totul într-un proces de creştere continuă fără şocuri?) Dimpotrivă, se pot găsi exemple de studiu intuitiv al fenomenului matematic la toate vârstele şcolare, existând numeroase exemple chiar şi în clasele de final a liceului. Da, sunt de acord că începând din clasa a VII-a se pot introduce treptat (şi chiar trebuie introduse) elemente de o rigurozitate crescută, dar fenomenul intuitiv îşi are în continuare locul său natural într-o predare vie şi sănătoasă, chiar şi în clasele mai mari.

C. Titus Grigorovici, 10.07.2017

Corpuri geometrice din carton

În spiritul unei predări vii, intuitive, este bine să le cerem elevilor să construiască din carton corpurile geometrice studiate. O problemă în acest sens o reprezintă însă chiar procurarea unui carton potrivit. În acest sens m-am gândit că multe ambalaje au exact textura şi grosimea potrivite pentru aşa ceva. Aşa că m-am pus pe treabă pentru a verifica personal dacă funcţionează. Iată ce a ieşit:

În fundalul pozei am pus şi lipiciul cu care am lucrat, adezivul universal de la UHU. Se pot confecţiona astfel mare parte din corpurile studiate, acest proces ajutându-i pe elevi să înţeleagă şi mai bine corpurile şi formulele acestora, mai ales cele de arii. Se pot desigur confecţiona şi alte corpuri în afara celor din materia oficială. Bucuria unui elev când face un astfel de corp este foarte mare (atrăgându-l astfel puternic către matematică). Dau în acest sens doar câteva exemple: un octaedru regulat (opt feţe triunghiuri echilaterale); o antiprismă patrulateră (două baze pătrate rotite unul faţă de celălalt cu 45o şi opt feţe laterale triunghiuri isoscele, cu vârfurile alternativ în sus sau în jos); un tetraedru neregulat cu lungimile muchiilor date; diverse tetraedre cu feţe dreptunghice, mai mult sau mai puţin regulate etc.

Aici se deschide o nouă discuţie: corpurile ar trebui făcute înaintea sau ulterior lecţiei respective? Elevilor le place mult mai mult înainte (au ocazia să devină ei creativi), dar în acest caz procesul este mare consumator de timp. Dimpotrivă, confecţionarea poate fi dată şi ca temă după lecţie, dar în acest caz există mari şanse ca să le facă părinţii. Eu am încercat şi altă variantă, anume să-i pun pe elevi să confecţioneze primele corpuri la sfârşitul clasei a VI-a, ca aplicaţie la construcţia exactă a figurilor geometrice cu rigla şi compasul. Această încercare poate deschide astfel o nouă linie de discuţie, anume: la ce vârstă ar fi potrivite confecţionările corpurilor geometrice? De aici putem merge apoi mai departe cu gândul la modificările programei: dacă la cunoaşterea figurilor geometrice plane am confecţionat şi corpuri, atunci nu ar trebui să le calculăm aria în clasa a VII-a, ca aplicaţii la calculele învăţate (de pildă în finalul anului, ca recapitulare)? Interesante întrebări! Da, da!

TITUHUS

Predarea intuitivă – alte aspecte şi exemple

Predarea intuitivă a fost înlăturată din orele de matematică într-un proces ce a pornit în jurul anului 1980, prin noile manuale (la liceu în 1978, respectiv la gimnaziu în 1981) şi prin impunerea metodologiei aferente. Acesta a fost un proces de lungă durată, desfăşurându-se pe tot parcursul deceniului ce a urmat, îndeplinirea fiind impusă de către şi prin intermediul inspectorilor şcolari. În noua linie de predare erau dominante cuvinte precum axiomatizare şi rigurozitate, iar în manuale introducerea noilor noţiuni apărea uneori pe căi nemaivăzute (pentru profesori) şi de neînţeles (pentru elevi): pe profesori, unele din noutăţi îi lăsau cu gura căscată chiar în sens pozitiv; şi pe elevi noile căi îi lăsau cu gura căscată, dar în sens negativ, adică nu înţelegeau nimic (sau, mai exact, numărul celor care înţelegeau şi făceau faţă a scăzut dramatic!). Vechiile căi de introducere, cizelate de-a lungul zecilor de ani de către metodişti de carieră şi verificate în practică de către profesori printr-un simţ psiho-pedagogic natural sănătos, prezentau un raport optimizat între înţelegerea intuitivă de către elevi şi formarea gândirii matematice specifice respectivelor lecţii. După această reformă – reforma “din 1980” uitată actualmente de majoritatea profesorilor, după această reformă intuiţia elevului şi formarea gândirii sale de către profesor au fost înlăturate dintre obiectivele predării matematicii, preocuparea principală din punct de vedere a autorităţilor concentrându-se pe predarea riguroasă conform principiilor axiomatice impuse prin intermediul unor autori, profesori universitari ce nu aveau nimic în comun cu metodica naturală a predării la vârstele gimnaziale şi liceale. În esenţă putem spune că formarea gândirii elevului a fost înlăturată din centrul atenţiei profesorimii, în locul acesteia întronându-se “în lumina reflectoarelor” matematica însăşi, rece, egocentristă, accesibilă doar unui număr extrem de restrâns de elevi capabili a o înţelege.

Nici profesorii n-o prea înţelegeau, şi o vreme chiar s-au împotrivit curentului. Dar, cu timpul, toţi au acceptat noul trend, înţelegând până la urmă orice lecţie după câţiva ani de încercări, ajungând cu timpul să fie convinşi de “justeţea” acesteia. Problema este că elevul nu are la dispoziţie mai mulţi ani pentru a înţelege o lecţie; el nu are la dispoziţie mai mulţi ani nici fizic (!) şi nici temperamental (!). Elevul înţelege o lecţie, sau nu o înţelege! Gata! Nu-i poţi preda o lecţie de neînţeles, cerîndu-i să stea liniştit că o va înţelege peste trei ani. Aşa ceva este absurd. Că se mai întâmplă izolat câte o astfel de situaţie, mai merge, dar să ai un sistem de învăţământ care generalizează respectiva linie de predare, asta este iresponsabil.

Pentru elev, ieşiri din situaţia în care a fost împins există doar două: ori abandonează demersul, impulsul natural de a înţelege matematica, ori dă fuga la un profesor particular, care-i va explica noţiunea respectivă “altfel”, adică pe mintea lui. Pricepem în acest moment de unde vine dezvoltarea explozivă a sistemului de ore particulare la vârste tot mai mici (după profesorii de liceu au început meditaţiile la gimnaziu, iar după aceştia s-au luat şi învăţătorii), în paralel cu procentele mari de elevi cu note extrem de mici la EN şi la BAC (elevi la care nu există de fapt în spate forţa familiei).

Până prin 2000 acest trend de predare a fost “pe val”, stare alimentată în subconştient de ideea impusă pe parcursul anilor ’80 că ar exista o legătură între rigurozitatea excesivă a predării şi rezultatele la diferitele concursuri şi olimpiade. Ţin minte din anii ’90 la ce nivel ajunsese formalizarea acestei false rigurozităţi (vă mai aduceţi aminte de unghiul plan corespunzător diedrului?). De abia cu scăderea tot mai puternică a disponibilităţii elevilor pentru această “tortură intelectuală” au început să se audă şi apoi să se ridice tot mai tare voci împotriva “matematicii mult prea grele” din şcoli.

În acest context este evidentă strădania reparatorie a comisiei condusă de către Dl. Profesor Radu Gologan, comisie ce a redactat noua programă pentru clasele gimnaziale, ce va intra în funcţiune începând cu clasa a V-a care porneşte în septembrie 2017. Haideţi să mai aruncăm câteva priviri printre rândurile lui George Pólya din  Descoperirea în matematică, vânănd citate despre folosirea intuiţiei în predare.

În capitolul 15, la 15.6. Un exemplu istoric, este propusă o “temă de cercetare” ce are ca finalitate renumita formulă a lui Euler, relaţia dintre numărul feţelor, a muchiilor şi a vârfurilor unui poliedru: F + V = M + 2. Pe parcursul raţionamentului, la pag. 351, găsim următoarele rânduri: (…) Pentru variaţie, să facem acum mai întîi suma unghiurilor care au ca vîrf un acelaşi vîrf al poliedrului. Nu ştim cît face exact această sumă, dar ştim că ea este sigur mai mică decît 2π, unghiul plan maxim. (Aşadar, ne limităm acum, în mod explicit, la cazul poliedrelor convexe; faptul amintit este intuitiv, dar puteţi căuta în Euclid XI 21, unde găsiţi o demonstraţie.) (…) Consider că exemplul respectiv nici măcar nu mai trebuie comentat, acesta supliniind clar întrebarea din spatele predării intuitive, despre ce trebuie demonstrat la clasă, şi prin ce metode, la fiecare vârstă şi în fiecare context separat.

Predarea intuitivă nu înseamnă însă o predare superficială a fenomenului matematic, doar la nivelul dictonului “se vede că-i aşa!”. Fenomenul intuitiv reprezintă baza raţionamentului matematic în 99,99% din cazuri şi trebuie tratat cu foarte multă responsabilitate, pentru a nu conduce la o învăţare superficială, tocilară a matematicii. În cadrul capitolului 14, la pag. 333 găsim următoarele rânduri ca sfaturi adresate profesorilor:

Profesorul care urmăreşte cunoaşterea bine organizată trebuie să fie atent, în primul rînd, la modul cum introduce faptele, elementele noi. Elementul nou nu trebuie să apară de nicăieri, sau din nimic, (Doamne câţi profesori procedează astfel la ora actuală în licee!*) ci trebuie să fie motivat de, referit la, corelat cu lumea din jur şi cunoştinţele existente, cu experienţa de fiecare zi şi curiozitatea înnăscută a elevului.

Mai mult, după ce noul fapt a fost înţeles bine, el trebuie folosit la rezolvarea unor probleme noi, la rezolvarea mai simplă a unor probleme mai vechi, cu ajutorul lui trebuie explicate şi puse în lumină anumite lucruri deja cunoscute, trebuie deschise noi perspective. (Cel puţin, aşa se aşteaptă elevul!*)

La rândul său, elevul ambiţios trebuie sprijinit să studieze cu cea mai mare atenţie fiecare fapt nou: trebuie să-l întoarcă pe toate feţele, să-l considere sub diferitele lui aspecte, să-l scruteze sub toate unghiurile, şi să se străduiască să-l plaseze la locul cel mai potrivit printre cunoştinţele deja existente – adică acolo unde este cel mai convenabil corelat cu faptele înrudite. Numai atunci el va fi în situaţia de a putea înţelege noul element de cunoaştere cu minim efort şi în modul cel mai intuitiv. (…)

(8) Ca profesori devotaţi profesiunii, trebuie să ştim să ancorăm un fapt nou în bagajul cognitiv al elevului, să-l corelăm cu faptele învăţate anterior, să-i consolidăm asimilarea prin aplicaţii în cazuri concrete. Numai cunoaşterea bine ancorată, bine corelată, bine consolidată, bine organizată în intelectul elevului, – numai o astfel de cunoaştere putem spera că va deveni, în cele din urmă, cunoaşterea intuitivă.

* Mi-am permis inserarea unui mare OFF! în cadrul textului lui Pólya cu gândul la mulţii colegi care acţionează ca nişte mici dumnezei, încercând să creeze lecţia din nimic, după un fals dar aparent justificat model axiomatic. Dau aici cel mai simplu contraexemplu ce-mi trece prin minte, unul din vremea manualelor alternative, unde în clasa a VI-a apărea următoarea definiţie: Aria unui triunghi este, prin definiţie, semiprodusul bazei cu înălţimea (citat orientativ). Aria triunghiului nu se defineşte, ea se deduce printr-un amestec sănătos de logică şi intuiţie, putând eventual purta titlul de teoremă. Nici măcar aria dreptunghiului sau cea a pătratului nu se definesc, ele fiind de fapt nişte raţionamente aritmetice primare, din care se pot deduce apoi toate celelalte formule, unele mai uşor, altele mai greu. Câţi profesori procedează şi acum la clasă în acest fel, jucându-se dea Dumnezeul cu gândirea elevului! Iar elevii învaţă pe de rost “kilograme întregi de matematică” fără să-i înţeleagă sensul şi logica! La liceu fenomenul este absolut generalizat. Dau aici un singur exemplu: prezentarea tuturor relaţiilor trigonometrice fără a le deduce din cercul trigonometric.

* O a doua observaţie inserată în cursul citatului din Pólya vine ca urmare a gândurilor legate de predarea vectorilor în clasa a IX-a. În sensul acestui aliniat, demonstrarea diferitelor probleme de geometrie prin vectori ar avea sens doar după parcurgerea serioasă a unei doze bune de geometrie sintetică (vorbesc de clase de real, peste nivelul geometriei elementare din gimnaziu).

În acest moment mă simt obligat să fac totuşi o observaţie despre un aspect “nevralgic” al comentariilor metodologice la noua programă de gimnaziu. Astfel, la partea de Sugestii metodologice se sugerează că predarea intuitivă şi-ar avea locul şi ar fi îndreptăţită în clasele V-VI, dar că începând din clasa a VII-a se poate renunţa cât de repede la aceasta. Citez de la pag. 32: În clasa a VII-a se realizează trecerea de la metodele predominant intuitive, abordate în clasele anterioare la definirea unor noi concepte, demonstrarea unor proprietăţi şi la aplicarea unor algoritmi de calcul.

Ar fi greşit dacă profesorii ar înţelege prin aceasta o rupere bruscă de la un an la altul în privinţa folosirii intuiţiei. (Oare, de ce există acest impuls în mintea profesorilor de matematică, impuls de a pune în calea elevilor diferite trepte greu de trecut, după principiul “de-acum se schimbă foaia, gata cu leneveala!”; de ce nu putem organiza totul într-un proces de creştere continuă fără şocuri?) Dimpotrivă, se pot găsi exemple de studiu intuitiv al fenomenului matematic la toate vârstele şcolare, existând numeroase exemple chiar şi în clasele de final a liceului. Da, sunt de acord că începând din clasa a VII-a se pot introduce treptat (şi chiar trebuie introduse) elemente de o rigurozitate crescută, dar fenomenul intuitiv îşi are în continuare locul său natural într-o predare vie şi sănătoasă, chiar şi în clasele mai mari.

Titus Grigorovici, 10.07.2017