Fracţiile zecimale periodice (3) – Gânduri metodico didactice (inclusiv dilema cognitivă)

Anul trecut şcolar am avut două clase paralele de a 5-a, aşa încât eu personal am putut evolua de două ori mai mult în lecţiile specifice. În primele două părţi ale prezentului eseu am prezentat momentul “întâlnirii” elevilor cu fenomenul periodicităţii zecimale, cât şi mai ales toate gândurile pregătitoare necesare unui dascăl, astfel încât acest moment să fie unul de un impact cât mai puternic, dar totuşi cât mai pozitiv, accesibil şi nefrustrant pentru cât mai mulţi elevi.

Din păcate, în astfel de momente foarte mulţi profesori greşesc. Mentalul nostru general, cel puţin în România, după atâţia ani de zdroabă, împinşi fiind spre olimpiade şi excelenţă, mentalul nostru este focusat pe zona de aplicaţii cât mai complexe ale fiecărei lecţii. Majoritatea profesorilor “cu rezultate” neglijează inconştient începutul lecţiilor. Introducerea noilor noţiuni, itemi, lecţii este total neglijată. Unii “uită” să le facă, alţii le dau să fie copiate acasă din culegere sau mai rar din manual (şi acesta este un fenomen interesant ce ar merita discutat cu o ocazie); alţii îi pun în clasă să copieze lecţia dintr-o carte (cică metode noi – dacă a mers în pandemie, de ce n-ar merge şi acum?, iar profesoara are timp să stea puţin pe telefon). Alţii nu le predau, nu le dau nici ca temă, dar dacă copilul nu stă cuminte la oră este ridicat în picioare şi întrebat din noţiuni nepredate, la care desigur nu ştie şi deci primeşte un 2 (ca să se înveţe minte!).

Chiar şi în afară de astfel de forme extreme, totuşi, în general noi nu mai avem o cultură a introducerii noţiunilor noi la clasă. Fenomenul poate fi explicat şi astfel: tu, ca profesor, ai mai făcut lecţia asta de n-şpe ori; între timp, de la ultima trecere, eventual de anul trecut, ai găsit noi probleme şi de-abia aştepţi să le dai la clasă. Pe tine începutul lecţiei te plictiseşte profund. Doar că, în entuziasmul tău, tu uiţi cumva că aceştia sunt alţi elevi, că aceştia habar nu au despre lecţia respectivă (cel puţin cei cu care nu a parcurs nimeni lecţia în avans acasă! Acesta este un alt aspect ce ar merita tratat separat şi analizat pendelete.).

Da, într-adevăr, majoritatea profesorilor nu se concentrează pe o introducere “organică” a lecţiilor. Desigur că la acest fenomen a contribuit şi moda introducerilor definiţioniste a lecţiilor din anii ’80 ai secolului trecut, modă care nu a fost niciodată luată în discuţie şi în analiză la nivel naţional. Profesorul are impresia că odată date definiţia şi regulile, elevii le ştiu în mod natural şi înţeleg instant toată lecţia. Nimic mai greşit. În plus, profesorii au impresia că, odată prezentate principalele aspecte ale unei lecţii, elevii ştiu automat şi toate aspectele despre care nu s-a vorbit încă în lecţie.

Despre felul în care putem evita astfel de “gafe pedagogice” am încercat să vorbesc “printre rânduri” în primele două părţi ale eseului de faţă. Astfel, am încercat să arăt cum putem veni “din înaltul cerului nostru matematic” în întâmpinarea elevilor novice, cât mai jos, acolo unde se află aceştia înaintea predării lecţiei (încă o dată: asta dacă nu le-a arătat cineva cum stă treaba, dând astfel “spoil” la “filmul” ce urmează a fi vizionat).

Eu, ca profesor, trebuie “să mă cobor acolo jos unde este elevul” (elevul mijlociu), adică să pornesc lecţia mea de la lucruri pe care majoritatea elevilor le ştiu deja bine şi să urc pe o pantă destul de lină, adaptată majorităţii, astfel încât să am siguranţa că “nu pierd pe drum prea mulţi puiuţi”. Lecţia astfel ar trebui structurată încât orice elev binevoitor să meargă cu lucrurile înţelese acasă (bine înţelese şi deja parţial fixate). Aşa se preda pe vremuri (până prin anii ’70) şi până la un anumit nivel al lecţiilor majoritatea elevilor de la toate nivelele nu aveau nevoie de explicaţii suplimentare acasă, nici vorbă de meditaţii regulate (cel puţin nu cei de la mediu în sus, cel puţin nu la o astfel de lecţie cu abilităţi de bază cum este algoritmul împărţirii). Tema de casă trebuie apoi să repete măcar parţial cele întâmplate la oră, astfel încât aceste abilităţi şi cunoştinţe să se fixeze bine.

Nu vreau să susţin că lecţiile de introducere ar trebui să dureze foarte mult, dar nici prea puţin sau defel. Profesorul trebuie să le adapteze la nivelul clasei. La o clasă bună, selectată, lecţia precedentă ar putea să dureze cel mult 15 min. Dimpotrivă, la o clasă ce are şi copii mai slabi la matematică, acestora trebuie să li se acorde mai mult timp pentru digerarea noilor situaţii.

Setul de exemple de împărţiri prezentat în prima parte este suficient de bogat în diversitatea formelor rezultatelor, acesta trebuind repetat şi la temă (desigur cu alte exemple, poate mai multe exerciţii, dar şi eventual amestecate cu câteva fracţii zecimale finite). În altă ordine de idei, sper că s-a observat faptul că setul propus spre parcurgere la clasă este totuşi destul de scurt (cum am spus, la elevii buni probabil până în 10-15 min.). Revin, precizând că acest aspect a fost intenţionat gândit ca atare: pentru elevii slabi o astfel de lecţie este suficientă pentru o oră (la aceştia munca va dura mult mai mult decât la cei buni), putând fi eventual pornită la clasă şi tema pentru casă (aşa sunt de fericiţi când au ocazia să pornească tema la clasă! Cei mai mulţi nu apucă să facă tare mult în ultimele 3-5 minute, dar sunt atât de recunoscători de ideea că tema a scăzut, încât pleacă toţi fericiţi de la ora de mate). Pentru elevii buni, desigur că o astfel de lecţie scurtă lasă loc şi pentru aplicaţii mai grele, atât la începutul orei (deci din lecţiile precedente), cât şi după (deci din lecţia de faţă).

Să revenim însă la fracţiile noastre periodice: mai avem de studiat şi drumul invers, adică transformarea fracţiilor zecimale periodice înapoi în fracţii ordinare. Elevii cunosc cumva ideea de la fracţiile zecimale finite, unde au cunoscut deja ambele direcţii de transformare şi unde am accentuat asupra faptului că fracţiile au două forme de manifestare, două “limbi de exprimare” şi că noi putem să transformăm o anumită fracţie şi într-o direcţie şi în cealaltă.

Apropos de fracţiile zecimale finite: aici apare un fenomen foarte ciudat din punct de vedere a felului în care văd profesorii o noţiune, o lecţie, un fenomen matematic, pe de-o parte, şi felul în care acesta este văzut de elevii aflaţi în procesul cunoaşterii. Daţi-mi voie să evidenţiez acest fenomen pe exemplul fracţiilor zecimale finite, deşi fenomenul este prezent şi în multe alte locuri.

Fracţiile zecimale apar de la împărţirea numerelor şi nu este normal să îi confruntăm “din prima” pe elevi cu situaţia periodicităţii (aici toată lumea este cumva de acord). Incluzând însă în titlu cuvântul finite, putem genera una din următoarele două situaţii: fie îi derutăm pur şi simplu pe cei mai mulţi, fie dăm “spoil” la ce urmează, adică stricăm surpriza lecţiei următoare, eventual cauzând la elevii mai curioşi impulsul să studieze în avans (pe internet sau întrebând un părinte). Părerea mea este că cel mai des se va întâmpla prima situaţie (că dacă s-ar întâmpla prea destul des a doua situaţie, măcar am ştii că le-am stârnit curiozitatea şi asta tot ar fi bine). Rămânând la prima variantă, uneori chiar am impresia că profesorii asta îşi şi doresc: să-i bulverseze pe elevi (şi de aici am putea să divagăm spre un fenomen ce a ajuns să se manifeste la nivel naţional).

Vorbim aici deci de fenomenul folosirii unor cuvinte sau expresii pe care elevii încă nu au de unde să le ştie, dar pe care programa oficială le impune la un anumit moment. Dar unde mai apare acest fenomen? Păi. să vă dau nişte exemple la întâmplare. Folosirea termenului de număr raţional pozitiv înaintea cunoaşterii numerelor negative va trezi în orice minte ageră curiozitatea despe ce şi cum. Dimpotrivă, folosirea termenului coplanare în definiţia dreptelor paralele din clasa a 6-a va bulversa masiv înţelegerea copilului obişnuit. Mai sus, în a 8-a sau a 9-a, apare un astfel de moment când discriminantul unei ecuaţii de gradul II este negativ şi nu spunem pur şi simplu că ecuaţia nu are soluţii în acest caz, ci ne simţim toţi datori să le precizăm că nu are soluţii reale. Întotdeauna de aici se iscă întrebarea: dar există şi alte numere pe lângă cele reale?

Există şi un exemplu de folosire a unei expresii legată de “ceva” ce însă nu va veni nici pe viitor, conform programei, iar asta o pot descrie ca “răutatea supremă”. Vorbesc aici despre folosirea denumirii de prismă dreaptă cu baza pătrat, ce se întâlneşte foarte des prin cărţi. Descriu asta drept o răutat pentru că elevii nu învaţă dualitatea prismă dreaptă – prismă oblică, dar nici măcar ideea de prismă dreaptă, care ar necesita desigur măcar un exemplu (de pildă o prismă dreaptă cu baza un romb, pe care calculele sunt foarte uşoare). Este evident că dacă ar fi incluse şi acestea în programă. s-ar năpusti toţi olimpiştii în acea zonă. Acestea au fost exluse din materie la începutul anilor ’90, aşa că nici expresii ce ţin de ele nu ar avea voie să apară prin cărţi.

De ce trebuie să le facem asta constant elevilor noştri, această înjosire constantă, prin care să le arătăm sistematic că ei nu ştiu destul? Haideţi să facem un experiment cu dvs., profesori de matematică ce aveţi pretenţia că ştiţi desigur totul despre matematica preuniversitară. Cum vă simţiţi la următoarea afirmaţie: numerele iraţionale de tipul radical din 2 sau radical din 3 etc. au o formă infinită neperiodică, dar asta doar în sistemul de scriere zecimal. Cum adică? Există o altă formă de scriere a acestor numere care este infinită dar periodică?, veţi întreba. Iar eu voi răspunde că Da!, există, doar că dvs. încă n-aţi învăţat-o. Iar acum schimb subiectul, pentru că nu ne-am propus să vorbim aici despre fracţiile continue.

Revenind la fracţiile zecimale finite, după părerea mea acestea pot fi denumite oficial de-abia după cunoaşterea fracţiilor periodice. În acest sens putem face o scurtă sistematizare la sfârşitul orei respective (dacă mai este timp suficient), sau putem să o aducem ca o formă de reactualizare la începutul orei următoare (aşa este poate chiar mai bine). Ca o paranteză pentru pedanţi, experienţa îmi arată că nu apar întrebări de genul: dar există şi fracţii infinite neperiodice? Totuşi, dacă ar apărea această întrebare, le-aş răspunde calm că da, sunt radicalii (de care elevii au cam auzit, că-i văd pe calculatoarele de pe telefoane), doar că despre aceştia vom învăţa prin clasa a 7-a pentru că sunt ceva mai complicaţi.

Înainte de a vorbi despre transformarea fracţiilor periodice în fracţii ordinare mai trebuie să prezint un scurt aspect ce ţine de didactica predării. Eu personal mă străduiesc cât se poate de mult să le aduc elevilor noile cunoştinţe în forme pe care ei să le înţeleagă de unde vin. Când predau prin întrebări (prin problematizare etc.) este evident că elevul care dă răspunsul corect a intuit de unde vine ideea. Chiar şi acolo unde nu pot să-i îndrum pe elevi pe o cale de descoperire, le explic eu cum se face, dar mă străduiesc să le-o prezint astfel încât să le generez o cât mai clară senzaţie de înţelegere a raţionamentului sursă al fenomenului respectiv. Înţelegând raţionamentul care duce la o nouă situaţie, elevul îşi formează totodată şi gândirea. Predând cât mai des astfel încât elevii să înţeleagă sursa logică a noţiunilor, eu am certitudinea şi bucuria că pot contribui constant la formarea unei gândiri raţionale la elevi.

Totuşi, există situaţii când uneori chiar nu le putem explica nicicum de unde vine ideea, cel puţin nu la nivelul la care sunt elevii în acel moment (algoritmul de extragere a rădăcinii pătrate este o astfel de situaţie; chiar aşa, ştiţi cum se justifică acesta? Întrebarea asta a venit în contextul în care am vorbit de înjosirea celorlalţi; Scuze că folosesc asta pe dvs.).

Pentru că elevii trăiesc constant strădania mea de a-i face să înţeleagă, într-un asfel de moment beneficiez de un soi de “clemenţă” din partea lor atunci când le spun: aici nu am cum să vă explic de unde vine; aici pot doar să vă arăt cum se face. Aici pot să fac doar ca toţi ceilalţi din breasla mea; dacă-mi aduceţi aminte peste doi ani, atunci vă voi putea explica de ce se face aşa. Un astfel de moment este şi la transformarea fracţiilor zecimale periodice în fracţii ordinare.

Faptul că transformarea se face într-o fracţie cu numitorul format din atâţia de 9 câte cifre erau în perioadă, acesta este un fapt ce are un efect tranchilizant, de anestezie totală asupra gândirii învăţăcelului. De unde 99 la o fracţie de tipul 0,(37)? Regula se înţelege destul de uşor; de pild la 0,(375) vom scrie automat numitorul 999. Dar de ce? DE CE?

Trecând peste acest moment de neînţelegere “că de ce se face aşa?”, elevii nu au mari probleme în a aplica noua regulă în cazurile simple. Cumva ţine însă de arta profesorului “să le facem viaţa cât mai uşoară” şi să le prelungim cât mai mult starea de “cazuri simple”, adică să nu-i trecem prea repede la “cazuri complicate”.

Pentru a prelungi starea de “caz simplu”, eu le dau forma de fracţii zecimale periodice simple supraunitare prin trecere în scriere cu întregi ca fracţie ordinară. Concret, odată ce a înţeles primele cazuri (cele de mai sus, pe câteva exemple), eu le dau modele de felul 3,(45) = 3 întregi şi 45/99 (scuzaţi scrierea, vreau să am garanţia că se poate citi de orice aparat). Astfel şi acest caz este unul simplu, aducând doar combinaţia noii reguli cu forma mai veche, uşor de reamintit, ce necesită apoi doar introducerea întregilor în fracţie (o bună ocazie de reactualizare).

De-abia la forma fracţiilor periodice mixte vin cu varianta ce implică scădere, simultan cu numitorul ca o combinaţie de 9 şi de 0. De pildă 0,4(25) = (425 – 4)/990. De ce se întâmplă aşa, asta este din nou o mare enigmă pe care nu le-o putem explica acum elevilor. Ce putem însă este ca la forma din aliniatul precedent să nu le-o băgăm încă (aşa cum din păcate s-a stabilizat la ora actuală în toate manualele şî auxiliarele). Evident că lecţia urmează să primească cât mai multe exerciţii, dar aici eu nu mai continui pentru că acestea se găsesc peste tot în cantităţi suficiente.

Legat de exerciţii, am un singur “contra-exemplu”, anume o hiper-capcană pentru elevi găsită într-o culegere (seria condusă de dl. profesor Artur Bălăucă, la ed. Taida). Fracţia zecimală periodică mixtă 1,0(6) este cuprinsă într-un exerciţiu cu mai multe operaţii, inclusiv paranteze (direct paranteze drepte, pentru că cele rotunde sunt rezervate pentru perioade). De ce este acesta o hiper-capcană? Pentru că elevul a fost împins pe calea unei rezolvări care permite apoi o capcană. Rezolvarea cu scrierea întregilor, sugerată mai sus, nu ar împinge elevul spre această greşeală. Despre ce este vorba? Aplicând rezolvarea propovăduită actualmente de toată lumea, elevul va avea tendinţa să neglijeze acel zero şi să scrie 106 – 1 la numărător, şi nu 106 – 10. Pe această capcană o mai putem numi şi “mină anti-elev”.

O altă problemă ce implică aspectele metodico-didactice ale acestei lecţii o reprezintă forma în care le dăm aceste reguli elevilor. Din păcate, majoritatea profesorilor şi majoritatea cărţilor prezintă aceste reguli într-o formă scrisă cu litere în loc de cifre, având astfel pretenţia că devine generală. Din păcate marea majoritate a elevilor nu înţeleg NIMIC din aceste scrieri, dar NIMIC-NIMIC! Realitatea acestei predări e ca şi cum acele sfaturi din startul Programei de gimnaziu din 2017 despre o predare cât mai întuitivă, cel puţin la clasele gimnaziale mici, sunt de fapt aplicate exact pe dos. Aici o predare intuitivă înseamnă să-i dai câteva exemple cât mai sugestive, iar elevul prin simpla imitaţie să facă mai departe alte şi alte exerciţii similare în acelaşî fel. Atâta tot! Cei mai mulţi le vor înţelege imediat, iar cei care nu le înţeleg nici aşa, “asta e!”. Cei mai slabi oricum nu le vor înţelege nici din forma generală dată prin litere. Dând însă aceste reguli prin exemple, creştem considerabil numărul elevilor ce le vor înţelege şi le vor putea face fără ajutor de acasă.

Din forma cu litere însă, “marea mare” majoritate nu vor înţelege nimic şi vor avea deci nevoie de explicaţii reluate acasă. Iar acasă, fie un părinte, fie un meditator plătit le va prezenta câteva exemple şi gata: elevul va înţelege.

E aşa de simplu cu exemple. Dar de ce să le prezinte profesorii lucrurile simplu elevilor, când pot să le facă viaţa grea şi amară la orele de matematică? Această atitudine mi se pare stupidă, chiar profund încărcată de o adevărată răutate. Îmi pare rău pentru agresivitatea acestor rânduri, dar aşa se văd lucrurile din punctul meu de vedere.

După părerea mea şase exemple lămuresc cu totul situţiile de aici. Gândind acum, eu le-aş aranja astfel: pe coloana din stânga trei exemple subunitare cu perioadă de una, doua respectiv trei cifre, măcar una sau două care să se simplifice, iar pe coloana din dreapta o fracţie supraunitară dar cu partea zecimală simplu periodică, apoi una subunitară mixtă (deci fără întregi), cât şi una supraunitară mixtă (deci cu întregi). La ultimele două trebuie să aleg diferit numărul de cifre din perioadă şi cel de cifre dintre virgulă şi perioadă, pentru a da impresia de situaţie generală.

Ajută la aceste exemple dacă folosim puţină culoare pentru a conecta vizual de pildă numărul de cifre din perioadă cu numărul de 9 de la numitor. Desigur că merită adăugate înaintea acestui set şi unul-două exemple de transformare de fracţii zecimale finite, care implică un 1 şi atâia de 0 la numitor câte cifre erau în partea zecimală. Două culori diferite vor ajuta elevii să conecteze exact aşa cum trebuie cele întâmplate.

Am convingerea că un set bine ales de astfel de exemple este mult mai clar pentru oricine decât nişte forme artificiale de reguli cu litere, sau o descriere în text (atunci când, pe lângă linia de fracţie, mai apare şi bara de deasupra, pentru scrierea în baza 10, cei mai mulţi elevi “cad pe spate, ca gândacii” şi “dau neajutoraţi din mâini şi din picioare!”). Îmi cer încă o dată scuze, dar chiar nu se gândeşte nimeni la aspectele acestea?

Haideţi să încheiem totuşi într-o notă pozitivă: deci, cum se poate demonstra la nivelul unor elevi de clasa a 7-a să zicem, sau a 8-a, de ce are loc transformarea în fracţie ordinară cu numitorul atâţia de 9 câte cifre erau în perioadă? Şi ca să fiu cât se poate de clar, vă voi face prezentarea exact în formatul unui exemplu numeric, situaţie ce acţionează deosebit de intuitiv la orice om, şi la noi, la profesori, dar şi la elevi.

Să alegem de pildă numărul 0,(375) pe care îl şi notăm cu a = 0, (375). Să înmulţim această egalitate cu 1000 şi obţinem 1000a = 375,(375). Scăzând prima egalitate din a doua obţinem 999a = 375 de unde deducem imediat că a = 375/999 (scrieţi dvs. pe hârtie varianta obişnuită, cu linie de fracţie). Asta a fost. E simplu pentu un elv de a 7-a, a 8-a. Poate ar merge şi în a 6-a, dar sigur marea majoritate nu o vor înţelege în finalul clasei a 5-a. Eu am găsit această “demonstraţie” într-o culegere veche din 1970 de pregătire a examenului de admitere în licee, deci pentru recapitularea din clasa a 8-a a materiei de clasele 5-8. Nu mai găsesc culegerea respectivă (cine ştie în ce cutie am pus-o), dar ştiu că pe copertă era ca nume dominant Ivanca Olivotto (m-a surprins pentru că la vremea respectivă, profesor tânăr fiind, nu-i ştiam istoricul şi cunoşteam doar culegerea de aritmetică cu acest nume).

Precizez un aspect important: chiar dacă un profesor ar avea impresia că aceste artificii de calcul într-adevăr pot fi înţelese de către elevi şi s-ar gândi să le arate elevilor în clasa a 5-a, realitatea ar avea şanse mari să fie una opusă. Haideţi să analizăm puţin lucrurile din punct de vedere a fenomenului dilemei cognitive. Elevii tocmai ce au fost confruntaţi cu o puternică dilemă cognitivă. În aceste condiţii lămurirea şi justificarea respectivei dileme cognitive ar trebui să aibă loc pe o cale cognitivă care face deja parte din uzualul elevilor, din “zona lor de confort” intelectual. Or, astfel de artificii sigur încă nu fac parte din zona de confort calculaţionist al elevilor obişnuiţi în clasa a 5-a. Făcând această “demonstraţie” la clasă, pentru cei 2-3 vârfuri ai colectivului, asta îi va bulversa şi mai mult pe toţi ceilalţi, împingându-i din nou spre învăţat pe de rost şi spre meditaţii private. Dimpotrivă, la o grupă de excelenţă, acolo s-ar putea face liniştit.

Tot în acea lucrare am găsit şi o “demonstraţie” foarte accesibilă a criteriului de divizibilitate cu 9, fapt ce întăreşte ideea că la clasele mici le putem da anumite reguli nejustificate, dar că odată ce elevii evoluează pe scara gândirii, noi ar trebui să venim cu o reluare mai matură în timpul căreia să aducem şi astfel de completări. Din păcate, nici în a 7-a şi sigur nici în a 8-a nu are nimeni timp pentru astfel de “filozofii”, acolo toată lumea fiind focusată pe “doparea” elevilor cu problemele şi situaţiile specifice verificate în examen (nimeni nu te întreabă la EN dacă cunoşti de ce se scrie cu 999 la numitor).

Da, cam astfel de gânduri ar trebui să avem noi atunci când venim cu “o lecţie banală” în clasă. Pentru mine gândurile pregătioare urmăresc un astfel de evantai de aspecte diverse, dar profund interconectate între ele. Nu poţi doar să turui o lecţie cât mai teoretic şi scurt, iar apoi să te plângi că elevii “n-au învăţat acasă”. Într-o lecţie de matematică trebuie pus mult suflet. Eu. doar aşa ştiu să fac. Închei cu câteva poze de tablă de la lecţiile din anul şcolar precedent, din care se poate obţine o oarecare impresie despre aspectele prezentate. C.Titus Grigorovici


P.S. Starea de îngâmfare, acea renumită stare de “eu ŞTIU!” este foarte periculoasă. Noi trebuie să fim conştienţi de acest aspect şi constant treji împotriva ei. De pildă, acum în final, recitind tot articolul şi aruncând o ultimă privire asupra celor două poze, mi-am dat seama de o mică gafă. În ultimele pagini am propovăduit calea transformării fracţiilor zecimale supraunitare în fracţii ordinare cu întregii scrişi separat, dar în pozele respective eu n-am dat nici măcar un exemplu similar în cazul fracţiilor zecimale finite. De pildă, la recapitularea dinaintea transformării fracţiilor periodice eu ar trebui să dau măcar un exemplu de transformare de felul: 3,65 = 3 întregi şi 65/100 care apoi să fie transformat prin introducerea întregilor în fracţie în (3 · 100 + 65)/100 = 365/100. Da, da! Cât trăim învăţăm.

Fracţiile zecimale periodice (2) – Gânduri metodico didactice (inclusiv dilema cognitivă)

Anul trecut şcolar am avut două clase paralele de a 5-a, aşa încât eu personal am putut evolua de două ori mai mult în lecţiile specifice. În prima parte a prezentului eseu “am ajuns cu elevii” până la momentul când aceştia au descoperit existenţa şi fenomenul fracţiilor zecimale periodice, pe baza câtorva exemple la clasă, dar şi la temă.

Pentru mine este foarte important ca în acest moment elevii să vieţuiască în mod sănătos diversitatea fracţiilor periodice. Atenţionez că procesul trebuie să se întâmple într-un ritm accesibil majorităţii elevilor, astfel încât aceştia chiar să şi înţeleagă ce se petrece. Această recomandare vine desigur în opoziţie cu impulsurile spre o viteză cât mai mare de parcurgere a lecţiei, conducând la o cantitate tot mai mare de informaţii, viteză spre care au fost împinşi profesorii în anii ’80-’90. Gândul acestei recomandări ţinteşte spre o accesibilizare a vitezei şi a cantităţii de lucru la nivelul majorităţii elevilor (mă refer aici mai ales la clasele cu colective eterogene). Din această temperare a impulsurilor mele elitiste de profesor face parte şi ideea de a relua la începutul orei următoare cele întâmplate şi descoperite pănă acum, aşa ca o mică recapitulare. În acest sens am văzut în pozele de tablă de la sfârşitul primei părţi unele tentative de sistematizare pe scurt a celor deja descoperite până în acel moment.

În setul de exerciţii sugerat în prima parte a prezentării am inclus şi impărţiri cu două cifre în perioadă, dar şi cu patru sau şase cifre în perioadă (împărţirea la 101 respectiv la 7). Tehnic, am putea renunţa pentru prima zi la împărţirea la 7 (adică la perioada de 6 cifre), lăsând-o ca “surpriză” pentru a doua oră a temei fracţiilor zecimale periodice (eu de multe ori aşa am făcut şi este de-a dreptul interesant când eu mă contrazic pe mine faţă de ce-am spus în prima parte; de fapt vreau să vă arăt diferite variaţiuni posibile ale lecţiei).

În această a doua prte a eseului de faţă va fi activ un principiu despre care încă n-am vorbit, aşa că o fac acum. Este sănătos pentru predare ca noi să ştim mai mult decât le aducem elevilor în clasă. Elevii capătă cu timpul o siguranţă în profesor dacă simt, chiar nearătat, că acesta ştie mult mai mult decât le arată lor. Este penibil dacă elevii te surprind prea des cu întrabări la care nu ai răspuns şi faţă de care te eschivezi (gen: acum n-avem timp pentru asta). Pe de altă parte, dacă uneori, rar, chiar se întâmplă, atunci eu prefer să fiu cinstit şi să spun că nu ştiu; asta mă umanizează în faţa lor. Dar, desigur, trebuie să nu se întâmple prea des.

Revenind, îÎn plus, din acea zonă vastă de cunoştinţe suplimentare profesorul poate scoate din când în când câte o idee, dacă consideră că este sănătos pentru clasă (de fapt asta fac toţi colegii în sistemul olimpic, elitist, dar o fac doar în zona problemelor). În cazul de faţă ajută dacă noi cunoaştem de unde se obţin perioade cu 2, cu 3, cu 4, cu 5 sau 6 cifre. Elevilor nu le explicăm de unde “le scoatem”, decât eventual în finalul capitolului.

*

Deci, de unde obţinem o împărţire cu trei cifre în perioadă? Repet: acum vorbesc pentru profesori (!!!); elevii nu au de unde să ştie a răspunde la această întrebare. Sau, la ce trebuie să împart astfel încât să obţin o perioadă de patru cifre? Cu această mega-întrebare ar trebui să ne ocupăm în continuare. Eu mi-am pus-o de câţiva ani buni şi iată cum am raţionat.

Pentru început ar trebui să recapitulăm ce cunoaşte sigur orice profesor (adică ce cred eu că este cunoscut). impărţirile la 2, la 5, la puteri ale acestora sau la numere compuse doar din factori de 2 şi 5, dau un număr finit de zecimale (în plus faţă de deîmpărţit), egal cu exponentul cel mai mare al împărţitorului scris ca produs de puteri de factori primi (astfel de exprimări “ne ies pe gură” dacă ne punem în cap să vorbim cât mai riguros; cam ce-aţi simţit dvs. la citirea acestei fraze, cam asta simt elevii când “îi duduim” cu câte o exprimare de-a noastră prea riguroasă). Fraza de deasupra este valabilă dacă nu are loc o simplificare prin 2 sau 5; atunci lucrurile trebuie reanalizate după simplificare (oare cum ar fi sunat fraza cea complicată dacă aş fi inclus şi ultimul aspect în ea?).

Un al doilea aspect pe care cam toţi profesorii îl ştiu este că împărţirea la 3, la 6 şi la 9 dă perioadă de o cifră. De unde vin atunci perioadele de mai multe cifre? Păi, de la alte numere! Dar, de la care? Unii profesori cunosc că împărţirea la 11 dă perioadă de două cifre. Dar, de ce? Poate unii au observat că o împărţire de felul 37 : 22 va da o perioadă de două cifre precedată de o cifră zecimală izolată (adică o fracţie zecimală periodică mixtă). Este destul de clar că acea cifră izolată provine de la factorul 2, iar perioada de două cifre de la factorul 11. Un bun exemplu aici ar fi o împărţire la 88 = 23 · 11, care va da o fracţie periodică mixtă cu … (aţi înţeles, da?).

Un al treilea aspect cunoscut nouă, profesorilor, dar elevilor încă nu, este felul în care se transformă fracţiile zecimale periodice în fracţii ordinare, adică renumitele scrieri cu atâţia de 9 la numitor câte cifre în perioadă (numitorii de felul 9. 99. 999, 9999, ….) la care se adaugă şi combinaţii de tipul 990, 900, etc.

La toate acestea se mai adaugă un aspect de obicei necunoscut, dar pe care eu îl ştiam, anume descompunerea numărului 1001 = 7 · 11 · 13. Precizez că 1001 se compune multiplicativ exact din “următoarele trei numere prime”, adică exact cele ce urmează după primele trei numere prime (2, 3, 5), care sunt cunoscute şi uzate de obicei. Această descompunere apare folosită magistral într-un număr vechi de magie matematică. Iată-l pe scurt: magicianul îi cere subiectului (unui voluntar din audienţă, unuia care ştie bine socoti) să scrie la alegere un număr de trei cifre diferite (magicianul nu vede numărul respectiv). Apoi subiectul magiei este rugat să scrie în continuarea numărului încă o dată cele trei cifre, obţinând un număr de şase cifre (de pildă, la numărul 735 se va obţine numărul 735735). Apoi, acest număr trebuie împărţit la 7 (împărţirea se face exact); apoi, rezultatul va trebui împărţit la 11 (din nou iese împărţire exactă, adică fără rest). În final ultimul rezultat trebuie împărţit la 13 (desigur că se divide şi la 13). Magia este că după cele trei împărţiri, rezultatul final este exact numărul iniţial ales (adică exact 735).

Eu fac acest număr de magie trecând calculele de la un elev la altul, implicând astfel mai mulţi elevi. Surpriza va fi şi mai mare când ultimul elev îi poate spune primului elev numărul ales (pe care doar el şi următoarul îl ştiau). După efectuarea numărului de magie îi provoc pe elevi să-l descifrăm, adică să vedem cum de s-a întâmplat chiar aşa. Problema are două aspecte: primul ar fi că alipirea unui număr de trei cifre după acesta înseamnă de fapt o înmulţire cu 1001 (adică 735 · 1001 = 735735). Aici trebuie pur şi simplu făcută această înmulţire pentru a vizualiza ce se întâmplă; al doilea aspect este chiar descompunerea numărului 1001. S-ar putea ca un elev să se prindă de legătura cu cele trei numere ce apar ca împărţitori succesivi, sau se prea poate să fie nevoie ca profesorul să le spună acest fapt. Acest număr de magie mi-a fost foarte de folos la studiul periodicităţii ce apare la împărţirea la 7. Să revenim deci la studiul ce l-am propus.

Cercetarea noastră poate începe de la perioada de două cifre, care este legată de numărul 99 = 9 · 11. Numărul 9 apare prima dată ca factor chiar la numitorul 9, al perioadelor de o cifră. Doar numărul 11 apare prima dată ca factor la 99, deci la numitorul perioadei de două cifre (dacă aveţi comentarii legate de exprimarea neriguroasă, să ştiţi că o fac intenţionat ca să fie mai accesibilă). De aici apare întrebarea, conexiunea absolut legitimă: ce numere apar noi ca factori în acest proces, ca divizori ai numerelor cu cifre doar de 9, în studiul de creştere a numărului de cifre de 9? Adică, ce factori noi apar la 999, sau la 9999, sau la 99999? Sau invers: de vreme ce am văzut că împărţirea la 7 dă perioadă de şase cifre, înseamnă că factorul prim 7 apare prima dată ca divizor al numărului 999.999, respectiv mai exact la numărul 111.111?

Oare, aţi prins ideea de unde am dedus toate cele? Dacă da, atunci opriţi-vă din citit, luaţi hârtie şi creion şi studiaţi singuri mai departe. Dacă nu v-aţi prins ce vreau să sugerez, atunci puteţi lectura prezentarea în continuare.

Numărul 111.111 este de tipul celor de la numărul de magie matematică de mai sus. Ca urmare deducem că 111.111 = 111 · 1001, având astfel ca divizor pe 7. Deoarece numărul 111.111 este primul de tipul 11…1 care se divide la 7, rezultă că împărţirea la 7 dă perioadă de şase cifre. Doar de curând “mi-a picat fisa” că desigur şi la împărţirea cu 13 vom obţine o perioadă tot de şase cifre. Evident!

După ce am înţeles acestea merită să ne întoarcem şi să o luăm sistematic. 11 este el însuşi număr prim. Primul unde putem pune în discuţie ce am observat la 7, este numărul 111, care este divizibil cu 3. Aşadar 999 = 33 · 37. Deducem că la împărţirea cu numărul prim 37 se obţine perioadă de trei cifre. Asta o ştiam mai de mult timp. dar prin primăvară mi-am dat seama că avem perioadă de trei cifre şi la împărţirea cu 27, care însă nu este prim. Totuşi, ca divizor el apare prima dată la numitorul 999, asta însemnând că şi el generează perioade de trei cifre (ce bun e calculatorul de pe telefon ca să verifici repede astfel de afirmaţii!).

Următoarea întrebare la rând este despre descompunerea lui 1111. În mod similar cu fenomenul de la şase de 1, preluat de la magia de mai sus, vom putea spune şi aici că 1111 = 11 · 101. Numărul 101 fiind număr prim, iar 11 apărând deja ca divizor la 99, deducem că factorul 101 este cel mai mic număr care generează perioadă de patru cifre.

Oare, care este cel mai mic divizor al lui 11.111? Aici m-a ajutat nevastă-mea, care din plictiseală (în timpul unei şedinţe) a abordat problema din altă parte. Astfel, ea lua numere ciudate şi le studia cu ce ar trebui să le înmulţească astfel încât să obţină produse numere scrise doar cu cifra 9, adică de tipul 99…9. Pe această cale la găsit ea pe 41 ca divizor al lui 99.999 (mai exact 11.111 = 41 · 271). În poza următoare găsiţi exemplificarea metodei chiar pentru 41. Am încercat să fac separat fiecare pas într-o imagine nouă, evidenţiind pasul nou cu roşu.  Prima cifră cu care începe un pas este cea roşie din mijloc, stabilită astfel încât să completeze suma pe coloana respectivă la 9; în funcţie de aceasta se stabileşte şi cifra din acel pas de la înmulţitor, iar apoi se revine în mijloc şi se completează produsul pasului respectiv. Finalul procesului este atunci când obţinem direct o sumă de 9, nemai fiind nevoie să o completăm cu nimic; această sumă directă de 9 este prezentată în forma finală cu albastru. Interesant, ce se mai poate face în timpul unor şedinţe prea lungi!

Rezumând, vom obţine perioadă de două cifre la 11, perioadă de trei cifre la împărţirea cu 27 sau 37, perioadă de patru cifre la împărţirea cu 101, perioadă de 5 cifre la împărţirea cu 41 şi perioadă de şase cifre la împărţirea cu 7 sau cu 13. Asta cu împărţitori cât de cât accesibili; pe 271 nu l-am băgat în seamă pentru că sigur nu vreau să îl folosesc, nici la clasă cu elevii, nici eu singur acasă (dar se poate verifica cu telefonul, de la 11.111 = 41 · 271).

Repet, desigur că toate aceste gânduri nu sunt menite să ajungă la elevi, nu sunt pentru ei. Acest studiu, ca o mică cercetare, a fost menit doar să ne ajute pe noi să găsim exemple diverse pentru elevi, cu împărţiri având la rezultat perioade mai lungi de o cifră, aşa încât elevii să priceapă din start acest aspect: că pot exista perioade de diferite lungimi, iar asta nu doar pe bază de încredere (doar aşa, că le spunem noi, iar ei ne cred “pe cuvânt”), ci chiar vieţuind asta, adică prin efectuarea unor împărţiri. Este important acest aspect, pentru ca elevii să nu se uite “ca mâţa-n calendar” la lecţia următoare, atunci când îi vom învăţa să transforme fracţiile zecimale periodice înapoi în fracţii ordinare, şi unde acolo avem cu mare conştiinciozitate exemple cu perioade de diferite lungimi. Elevii nu trebuie să ştie mare lucru din studiu de mai sus. Ei trebuie doar să primească atât la clasă, cât şi la temă, câteva exemple cu perioade de alte lungimi, nu doar exemple cu perioade de o cifră. Dar, vedeţi câtă nebunie de gânduri stă în spatele celor câteva exemple din lista de exerciţii dată ca sugestie în finalul primei părţi.

Vedeţi acum şi de ce în prima parte a eseului am făcut acea ciudată delimitare pe categorii de dificultate a împărţirilor din primul semestru. Avem pentru început împărţirile la numere de o cifră la care se mai adaugă împărţirile foarte uşoare la 10 şi la 11. Aha, la 11! Deci, pe lângă perioadele de o cifră, le putem oferi împărţiri destul de accesibile cu perioada de două sau şase cifre. Apoi, am spus atunci şi deîmpărţiri cu şirul multiplilor accesibil sau parţial accesibil, aici intrând 15 sau 12 (care dau fracţie periodică mixtă) sau 13 (care dă fracţie periodică de şase cifre). Apoi vorbeam la început şi de împărţiri care s-ar mai putea face relativ uşor, cum sunt împărţirile la 101 (patru cifre la perioadă) sau la 41 (cu cinci cifre la perioadă). Cele mai greuţe mi se par împărţirile la 27 sau la 37 (care amândouă generează o perioadă de 3 cifre).

*

În cadrul acestui pasaj de împărţiri ce dau ca rezultat fracţii zecimale periodice, eu am pentru elevi şi două momente speciale. Primul ar fi cel ce l-am numit “poarta lui 7” cu două forme uluitor de asemănătoare: “poarta perioadei împărţirii la 7”, respectiv “poarta resturilor intermediare ale împărţirii la 7”. Am vorbit despre acest fenomen ciudat în postarea din 2020 de la adresa http://pentagonia.ro/poarta-impartirii-lui-7-studiul-grafic-pe-cercul-de-9-cifre/ şi vă rog să-l studiaţi în acest moment, ca să nu mai reiau acele idei. În pozele de tablă de la sfârşitul acestei a doua părţi vor apărea din nou exemple în acest sens.

Suplimentar la cele spuse atunci sau la cele ce apar în poze, vă propun şi un exerciţiu de cercetare descoperit personal la începutul acestei săptămâni în care scriu rândurile de faţă. De vreme ce la numărul 111.111 apar pentru prima dată ca divizori noi ai numerelor de tipul 11…1 numerele prime 7 şi 13 (11 apăruse înainte, ca divizor al lui 99), iar la împărţirea cu 7 avem perioada de şase cifre, deducem două informaţii: şi la împărţirea la 13 vom avea perioadă de şase cifre (am mai spus asta şi este foarte uşor de verificat cu telefonul), dar şi că la împărţirea cu 13 ar trebui să apară o reprezentare grafică similară cu poarta lui 7, un fel de “poarta lui 13”. Vă las pe dvs. să studiaţi şi să savuraţi veridicitatea acestor supoziţii. Atenţionez totodată că această asemănare absolut surprinzătoare între comportamentul împărţirii la 7 şi al împărţirii la 13 nu are decât cel mult o legătură de tip misticist cu faptul că 7 + 13 = 20, care reprezintă exact numărul degetelor unui om.

Un al doilea moment special ar fi cel doar amintit în eseul despre conflictul cognitiv. Pe acesta aş vrea să-l detaliez în următoarele rânduri. Astfel, elevilor le-am adus următoarea întrebare, ca dilemă cognitivă: dacă împărţim un număr (desigur impar) la 2 (adică la 21), vom obţine un cât cu o cifră zecimală; dacă împărţim un număr impar la 4 (adică la 22), vom obţine un cât cu două cifre zecimale; dacă împărţim un număr impar la 8 (adică la 23), vom obţine un cât cu trei cifre zecimale şi tot aşa mai departe (nici n-am mai precizat denumirea de fracţii zecimale finite). Acelaşi lucru se întâmplă la împărţirea cu puteri ale lui 5. Dimpotrivă, dacă împărţim un număr la 3 (desigur, unul nedivizibil cu 3), atunci vom obţine o fracţie zecimală periodică cu o cifră în perioadă; dacă însă împărţim un număr la 9 (desigur, la fel, unul nedivizibil la 3), atunci vom obţine o fracţie zecimală periodică tot cu perioadă de  o cifră; oare ce se va întâmpla la împărţirea unui număr la 33 = 27? Vom avea tot perioadă de o cifră sau vom avea perioadă de trei cifre? Sau poate o altă situaţie?

Această întrebare, evident destul de îmbârligată, ce necesită o concentrare bună, această întrebare clasele în ansamblu au înţeles-o. Aici a fost momentul când un elev a exclamat: “E aşa de palpitant că eu nu mai pot; vreau să aflu cum se întâmplă” (sau ceva de genul acesta, că desigur nu m-am oprit să-i notez vorbele). Prima parte a afirmaţiei era de mult lămurită; împărţirile la 3 şi la 9 erau proaspete (de ora trecută), aşa că nu aveam decât să facem o împărţire la 27.

Legat de afirmaţia de mai sus, despre cât ar trebui să cunoaştem noi ca profesori în plus faţă de ce le aducem elevilor, la una din clase s-a ivit întrebarea despre ce se întâmplă la împărţirea la 34 = 81. Vă las pe dvs. să studiaţi ce se întâmplă aici.

Nu am pretenţia că am lămurit subiectul cu totul, dar vedeţi câte gânduri se află în spatele unei banale lecţii, dacă vrei să respecţi mintea curioasă şi gândirea vie a elevilor. Din păcate, majoritatea profesorilor vin la lecţia respectivă cu împărţiri generând doar perioade de o cifră, cel mult două, prin aceasta contribuind din nou la înceţoşarea gândirii elevilor. Chiar şi dacă un elev ar întreba aici – mânat de o curiozitate naturală, dintr-o gândire trează – dacă profesorul nu ştie ce să-i răspundă, momentul este ratat (ca să nu mai spun că profesorul respectiv “s-a făcut de …”).

Pe de altă parte, nu cred că am exagerat în studiul meu, de vreme ce m-am dus doar până la perioade de şase cifre, corespunzând împărţirii accesibile la 7 (care e un număr de o cifră). Ce se întâmplă mai încolo chiar nu mă mai interesează.

Vedem însă cum această a doua parte a studiului despre predarea fracţiilor zecimale periodice se adresează în mare parte doar înţelegerii fenomenului de către profesor, astfel încât acesta “să-şi umple tolba” cu o varietate sănătoasă de exemple. Această a doua parte a studiului despre fracţiile zecimale periodice este adresată doar profesorului. De-abia cândva după ora următoare am putea “la o adică” să-i provocăm pe elevii cei mai buni (doar pe aceştia) cu o întrebare despre sursa diferitelor lungimi ale perioadelor. Poate fi o discuţie de câteva minute, care doar să atingă subiectul şi să sugereze de unde vin acestea, sau poate să vină ca un studiu de o oră extra, în cazul unei clase foarte bune, după parcurgerea materiei, cândva în ultimele ore înainte de vacanţa mare.

Închei aici cu un nou pachet de poze de tablă din lecţiile ultimului an, în care puteţi regăsi anumite aspecte discutate aici (nu neapărat exact în forma descrisă acum). Precizez că lecţiile respective s-au desfăşurat în regim de “eu la tablă iar elevii pe caietul lor”. De pildă, uneori scriam eu în faţă, apoi elevii trebuiau să meargă singuri înainte, fiecare în caietul său, iar apoi – după ce destul de mulţi terminaseră – făceam şi eu calculele pe tablă, atât ca verificare pentru cei care au făcut, cât şi pentru completarea notiţelor celor care nu s-au priceput. În partea a treia a prezentului studiu vom analiza lecţia inversă, anume transformarea fracţiilor zecimale periodice în fracţii ordinare. C.Titus Grigorovici



Fracţiile zecimale periodice (1) – Gânduri metodico didactice (inclusiv dilema cognitivă)

Anul trecut şcolar am avut două clase paralele de a 5-a, aşa încât am putut evolua de două ori mai mult în lecţiile specifice. Stimulat de strădania intensă, m-am preocupat totodată şi mai aprofundat despre ce se întâmplă în afara vieţii mele metodico-didactice, adică la alte şcoli.

Înţelegerea fenomenului fracţiilor zecimale periodice este profund legată de două teme premergătoare: algoritmul împărţirii numerelor naturale (de reluat cândva la începutul clasei a 5-a) şi înţelegerea fracţiilor zecimale finite (imediat precedentă, cu care face practic pereche în predare). La acestea s-ar mai adăuga una “de paranteză”, anume simplificarea fracţiilor. Toate vor apărea la momentul potrivit, aşa încât acestea trebuie bine lămurite înainte, atunci când le este vremea. Să le luăm pe rând.

În principiu, fracţiile zecimale se obţin din fracţiile ordinare prin împărţirea numărătorulului la numitor. Fracţia ordinară echivalând de fapt câtul unei împărţiri, este foarte important ca elevii să stăpânească algoritmul împărţirii. Cum am mai spus, chiar dacă elevii le învaţă deja în clasele primare, este foarte bine să ne asigurăm cândva la începutul clasei a 5-a că toată lumea le şi ştie cum trebuie (unele învăţătoare “nu le chiar stăpânesc” cum trebuie). În acest context merită acordat măcar două ore pentru recapitularea, fixarea şi fluentizarea algoritmului de împărţire, la vremea respectivă încă sub forma împărţirii cu rest.

Important este să nu-i năucim atunci pe elevi cu împărţiri foarte grele, adică cu împărţiri la numere “tare complicate” (pentru cine n-a înţeles, precizez: lecţia trebuie să fie neapărat una pentru toată lumea, nu doar pentru cei mai buni din clasă). În acest sens, eu am următoarele categorii de împărţitori: (1) împărţiri la numerele de o cifră, la care putem presupune că elevii le cunosc “tabla înmulţirii”, adică şirurile de multipli (împărţiri la toate numerele de o cifră!); la acestea se pot alătura natural şi împărţirile la 10 sau la 11, care au cele mai uşoare şiruri de multipli, elevul având astfel oportunitatea să exerseze şi să conştientizeze primele împărţiri la numere de două cifre (dacă nu le-a făcut până acum, în clasa a 5-a); (2) împărţiri la numere ceva mai mari, ale căror şiruri de multipli se pot găsi destul de uşor, cum ar fi 15, 20; 25, 30, 40, 50; după exersarea acestora se poate trece şi la anumite extensii, anume înspre (3) împărţiri la numere ale căror şiruri de multiplii sunt parţial intuitive (12, 13) sau relativ uşor de generat (75; 125), sau altele aproximabile la unele deja cunoscute (14 < 15, 23 şi 24 < 25 etc.). Dacă elevii fac destule exerciţii cu împărţitori de două cifre, atunci vor fi suficiente doar câteva (două-trei) exemple cu împărţitori de trei cifre la clasă şi câteva acasă, încât algoritmul de împărţire să fie stabilizat şi bine înţeles.

O faţetă specială a acestei lecţii o reprezintă şi capacitatea de trecere de la împărţirea în scris la împărţirea în minte; despre asta am scris în articolul http://pentagonia.ro/profesorul-hollinger-ca-inspiratie-pentru-o-noua-lectie-1/ . Pe lângă aplicabilitatea la descompunerea în factori a numerelor, abilitatea de a face împărţiri în minte le dă elevilor şi o mai mare siguranţă la împărţirile în scris, ce la va fi de mare folos la zona de împărţiri din semestrul II, la studiul fracţiilor zecimale. Atunci vom fi nevoiţi să luăm şi împărţiri mai urâte, iar o “relaţie caldă” cu algoritmul împărţirii ajută mult la buna concentrare pe fenomenul fracţiilor zecimale. Oricum, de la prima lecţie despre împărţiri împreună cu noua clasă, eu le spun elevilor că trebuie să o ia foarte în serios, pentru că împărţirea va fi unul dintre “firele roşii”, una dintre temele cele mai folosite de-a lungul întregii clase a 5-a. În acest sens facem un târg: eu nu le dau împărţiri grele, decât atâta cât e nevoie cu adevărat, iar ei în schimb fac toate împărţirile serios şi conştiincios.

Spuneam că fracţiile zecimale se obţin din fracţiile ordinare prin împărţirea numărătorulului la numitor. Să discutăm puţin înainte despre “ce şi cum”, deşi această discuţie eu nu aş face-o apriori complet cu clasa (încă o dată: asta nu se discută înainte cu elevii, ci doar după).

Tehnic, dacă această împărţire are rezultat exact (adică dă fără rest, cum spun copiii), atunci fracţia respectivă este de fapt un număr natural. Dacă la finalizarea împărţirii întregi avem rest, atunci în continuare se poate întâmpla una din următoarele două variante: fie fie apar un număr finit de zecimale, după care împărţirea se termină, fie apare un număr de cifre care încep să se repete grupat, obţinând perioada. Desigur că există şi forma mixtă între cele două. Pentru a înţelege fenomenul, trebuie să vedem când se întâmplă fiecare din cele două variante, fracţia zecimală finită, respectiv fracţia zecimală periodică.

Pe scurt, dacă împărţitorul (numitorul fracţiei ordinare) este o putere a lui 2 sau o putere a lui 5 sau este compus doar din factori de 2 şi 5, atunci rezultatul va fi o fracţie zecimală finită. numărul de zecimale fiind egal cu exponentul puterii respective (sau cu cel mai mare dintre exponenţii celor două puteri, în cazul unui număr compus din 2 şi 5). La orice alt factor prim ce apare în structura împărţitorului (în format ireductibil desigur), fracţia zecimală va intra în periodicitate. Dar, vorba unui prieten, “dacă n-am spus, atunci mă repet!”: aceste aspecte nu le discut iniţial cu elevii; cu ei le vom descoperi pas cu pas, savurând procesul enigmatic ca pe un film, şi doar în final le vom sistematiza şi le vom repeta de câteva ori.

Să vedem cum funcţionează concret această abordare. Pentru început ar fi bine ca în prima zi să facem cu elevii (şi să le dăm ca temă) doar împărţiri la numere din prima categorie: 2, 4, 5, 8, 16; 20, 25, 50, 125, 200, 250, 500, 2000 (asta în cazul când deja am făcut împărţiri la 10, 100, 1000, văzând cum “se mută virgula”). În această primă etapă elevii învaţă noua “mişcare” doar în forma simplă, anume că lângă restul împărţirii întregi să coboare un zero  de după “virgula” deîmpărţitului întreg, să mai facă o împărţire parţială, apoi încă un zero ş.a.m.d. până ce se termină. Pentru că aici “lucrurile se termină”: copilul învaţă o nouă “mişcare”, dar în rest totul rămâne în zona lui de siguranţă. Cu alte cuvinte, introducem un item nou de cunoaştere, dar în rest îl lăsăm în zona sa de confort din punct de vedere a cunoaşterii. E bine şi sănătos aşa; prea mulţi itemi noi îi bulversează pe cei mai mulţi.

Elevii s-ar prinde dacă le-am da doar împărţiri cu aceşti împărţitori, aşa încât putem apela aici şi la o şmecherie (nici pe asta încă nu le-o explicăm). Le putem da şi situaţii la care împărţitorul are şi alţi factori, de pildă 3, dar la care fracţia ordinară corespunzătoare ar fi reductibilă cu 3. Astfel, factorul 3, care este unul generator de perioadă nu-şi poate face acest efect. Se pot obţine astfel împărţiri de tipul 21 : 6, care este de fapt echivalentă cu 7 : 2., sau 18 : 15 echivalentă cu 6 : 5, sau ceva mai complicatul 91 : 14 reductibil prin 7 la 13 : 2. Încă o dată, aceste aspecte le ţinem pentru moment secrete; elevii primesc doar exerciţiile şi se bucură că le pot face, savurând astfel procesul matematic.

Pentru a mai diversifica exerciţiile, putem să le dăm şi în forma de “transformaţi fracţiile ordinare în fracţii zecimale” şi în forma de “efectuaţi împărţirile”. Astfel de succesiuni de exerciţii pot ajuta şi la fixarea ideii că fracţia ordinară reprezintă de fapt o împărţire.

Prin această lecţie elevii trebuie să se obişnuiască pe noul tip de împărţire, diferit de împărţirea cu rest, iar pentru asta au nevoie măcar de o zi, adică de un set de oră la clasă plus temă singur acasă (desigur cu încă câteva repetări în orele următoare). Probabil că foarte mulţi profesori nu-şi iau acest timp, astfel încât în mentalul elevilor nu se înţelege profund şi nu se fixează definitiv noua formă de împărţire. Dovada palpabilă şi clar vizibilă a acestei “fuşăreli” apare peste o bucată bună de vreme, când intervine uitarea şi mulţi elevi fac împărţirea cu rest iar apoi pun restul “după virgulă”.

Ei, da, iar acum, odată aceste lucruri fiind lămurite, putem să venim într-o bună dimineaţă cu o nouă împărţire, având aerul că “mai facem două-trei exerciţii, aşa pentru încălzire”. De fapt, însă, vom veni cu o primă împărţire cu perioadă. Elevii încă nu ştiu ce urmează, va fi o surpriză destul de puternică, iar pentru asta nici măcar nu vom scrie titlul pe tablă; putem, ca “din greşeală” să lăsăm loc sau, mai bine, putem rezerva locul pentru titlu printr-o subliniere “goală”, astfel încât şi în caiete să le arate frumos, noi adăugând titlul la momentul când ne vom fi lămurit despre ce este vorba (Fracţii periodice).

Atrag atenţia asupra faptului că trebuie gestionat cu mare grijă primul contact cu aceste noi “bestii matematice”. Eu spun că lecţia precedentă se desfăşoară “pe marginea prăpastiei” şi de aia a fost aşa de important ca la acel moment elevii să nu se împiedice de o situaţie cu perioadă. Acolo, încă în lumea lor totul este “în bună regulă”; în curând însă se va dezlănţui o “furtună intelectuală” nebănuită. Este important ca aceasta să se petreacă în timpul orei de matematică şi nu acasă, astfel încât lucrurile să fie gestionate cu mână sigură de către profesor (din acest motiv am spus să luăm noua împărţire la începutul orei, ca să apucăm să lămurim existenţa acestor noi fenomene în timpul orei respective, adică şocul şi lămuririle să se întâmple sub supravegherea noastră). Putem privi lucrurile şi astfel: e bine ca lucrurile să se desfăşoare la clasă, regizate fiind pentru un cât mai mare impact emoţional sub strictul control al profesorului.

Ar fi o prostie să le dăm la sfârşitul orei sau să se ajungă încât să fie “descoperite” acasă, poate neintenţionat, adică elevul să se “împiedice” de o astfel de împărţire când nu este cu profesorul. Părinţii le-ar arăta direct cum se întâmplă, eventual bucuroşi fiind că-şi mai aduc aminte, dar de fapt spulberându-le elevilor bucuria descoperirii, emoţia procesului de întrare în contact cu această “civilizaţie extraterestră”, total nouă pentru ei. Pentru a preveni un astfel de scenariu ar fi bine ca tema de la lecţia cu fracţiile finite să fie destul de consistentă, încât să nu apară vre-un părinte cu ideea “hai s-ţi mai dau eu câteva” iar acolo să dea din greşeală şi o împărţire cu perioadă (măcar să minimalizăm pe cât se poate acest risc).

Nici culegerile sau manualele nu ne ajută neapărat în sensul respectiv, pentru că cele două lecţii – aşa cum le văd eu ca separate – sunt de obicei unite într-una. Degeaba eu mă opresc înainte de a apărea fracţiile periodice, că există oricând pericolul ca vre-un părinte mai ambiţios să zică “numai atâta ai avut temă?; hai, fă-le şi pe următoarele din carte!”, următoarele fiind deja cu rezultate periodice (vorbesc din experienţă).

Dar să revenim la detaliile trecerii la fracţiile periodice. Alegerea primelor noi împărţiri este foarte importantă. Confruntaţi cu o noutate, elevii au deseori obiceiul de a “vedea” diferite reguli ce nici măcar nu există. De pildă, dacă vom face doar împărţiri având perioada de o cifră, este absolut natural ca elevii să creadă că există doar astfel de rezultate. În acest context, trebuie neapărat să apară suficiente exemple cu perioadă de două cifre, cât şi măcar două-trei cu perioade mai lungi de două cifre.

Apoi trebuie să evităm pentru început să dăm prea multe exemple în care deîmpărţitul sau împărţitorul se regăsesc şi ca atare în perioadă [de felul 1 : 3 = 0,(3) sau 7 : 9 = 0,(7)]; pot să apară şi din acestea izolat, dar nu între primele pentru că se vor găsi unii elevi care să vadă aceste apariţii ca regul de scurtătură.

Sau, dacă vom da doar rezultate cu parte inteagă nenulă, elevii se vor speria când vor avea o împărţire corespunzătoare unei fracţii subunitare, de tipul zero virgulă ceva. Această ultimă observaţie este la fel de importantă şi în cazul lecţiei precedente, cu fracţii zecimale finite (această situaţie nu se putea rezolva natural la recapitularea împărţirii cu rest din semestrul I, ci îşi are locul mai potrivit doar la fracţiile zecimale finite). De fapt situaţia trebuia deja acolo clarificată prin sufieciente exemple la clasă şi la temă, astfel încât să nu mai reprezinte pentru nimeni o neclaritate acum, când ne pregătim să dăm faţa cu fenomenul periodicităţii (repet pentru ultima dată, elevii încă habar nu au despre ce vine spre ei, despre ce ciudăţenie urmează să se întâmple la începutul acestei ore, sub atitudinea plată şi inofensivă “hai să mai facem două-trei exerciţii (aşa doar de încălzire – această ultimă parte o las doar să se simtă)”.

Analizând lucrurile, pentru un impact maxim al introducerii acestei dileme cognitive, eu recomand aici exemplul: 17/3 = 17 : 3 (care este de fapt 5 întregi şi 2/3) = 5,(6), exemplul fiind cu numere mici şi totuşi toate diferite). Momentul când începe să se vadă că se tot repetă noi şi noi cifre de 6 la partea zecimală a câtului, acela este un moment foarte important. Elevii trebuie lăsaţi să repete şi să scrie pasul de suficiente ori astfel încât să vieţuiască clar şi convingător ce se întâmplă. Ei trebuie lăsaţi să trăiască din plin surpriza de proporţii în urma acestei noi situaţii, nemaiîntâlnite până acum. La început, rezultatul îl vom scrie de felul 5,6666… De-abia după câteva exemple, inclusiv măcar unul cu perioadă de două cifre, ne vom întoarce şi vom scrie sub acest tip de rezultat şi cele oficiale, de felul 5,(6).

Este evident că acest tip de surpriză, acest tip de moment de “Uau!” este stricat în cazul când părintele unui copil, sau mai degrabă profesorul particular îi arată înainte lecţia, pentru ca “elevul să ştie la clasă”. Din păcate foarte mulţi astfel de meditatori procedează în acest fel, habar ne-având ce pagube produc lecţiei de la clasă (cel puţin din punctul de vedere a unei astfel de abordări “artistice”, lecţia derulându-se cu suspans, ca un adevărat film).

Revenind la desfăşurarea lecţiei, după primul exemplu ce a prudus atâta uimire, chiar bulversare, se cer date imediat noi exemple (“mai aveţi dinastea?”, s-ar putea să întrebe unii elevi, plini de entuziasm). Acestea au menirea de a prelungii trăirea acestei uimiri spre o certitudine, dar şi menirea de a aduce ocazii ca elevul să vadă cât mai repede tot felul de astfel de ciudăţenii şi de a se obişnui cu existenţa lor. Pentru lămurirea cât mai rapidă a acestei dileme cognitive, eu recomand aici următoarele exerciţii, exact în această ordine:

23/9 = 23 : 9 = 2,(5)

295/9 295 : 9 = 32,(7)

2/3 = 2 : 3 = 0,(6)

22/3 = 22 : 3 = 7,(3)

4/9 = 4 : 9 = 0,(4)

13/6 = 13 : 6 = 2,1(6)

19/11 = 19 : 11 = 1,(72)

173/22 = 173 : 22 = 7,8(63)

7/12 = 7 : 12 = 0,58(3)

379/101 = 379 : 101 = 3,(7524)

18/7 = 18 : 7 = 2,(571428)

Exerciţiile le-am dat şi cu rezultate astfel încât să puteţi vedea dintr-o privire care-i logica alegerii acestora. Elevii nu le vor primi desigur aşa, ci doar a doua, eventual împreună primele două forme; în continuarea împărţirii vor aplica algoritmul şi vor scrie rezultatul în final (am explicat deja cum apare scris rezultatul şi cum le dau ulterior forma oficială). Important este să alegem în primul set de exerciţii o varietate destul de largă de rezultate, astfel încât la finalul acestei ore elevii să aibă o vedere destul de clară, completă şi realistă despre formele fracţiilor zecimale periodice.

Foarte important este să oferim elevilor pe lângă exemple cu o cifră în perioadă şi exemple cu perioadă de două cifre sau mai multe. Se pare că majoritatea profesorilor nu respectă această cerinţă, astfel încât elevii văd la oră multe fracţii periodice cu o cifră în perioadă, eventual printre acestea rătăcită ca din greşeală o situaţie cu două cifre în perioadă şi atât. Desigur că astfel elevii nici nu-şi vor putea imagina clar cum există situaţii cu mai multe cifre în perioadă (poate profesorul le spune că există, dar nu-i suficient). Cum înţeleg aceştia matematica atunci când profesorul vine cu partea de lecţie opusă, cea de transformare a fracţiilor zecimale periodice în fracţii ordinare şi le vorbeşte despre situaţii de pildă cu trei cifre în perioadă şi un numitor de 999? Fie nu vor înţelege iar în mintea lor vor crede că sunt proşti, fie le va explica cineva ulterior cum stă treaba iar atunci vor înţelege că profesorul este slab, dezinteresat etc. (acum iar am fost răutăcios, dar să ştiţi că acesta a fost unul din motivele principale care m-au determinat să scriu prezentarea de faţă).

La sfârşitul orei, sau poate chiar la începutul orei viitoare, le putem prezenta denumirile de fracţie periodică simplă, respectiv fracţia periodică mixtă. Oricum, ora viitoare “se cere” o analiză a situaţiilor întâlnite (la clasă sau la temă), inclusiv despre apariţia fracţiilor periodice mixte, dar şi despre eventuala sursă a diferitelor lungimi ale perioadelor. Pentru elevii care calculează destul de rapid, sau poate ca temă, vă mai ofer câteva situaţii interesante:

257/88 = 257 : 88 = 2,920(45) având o perioadă de două cifre pornită de-abia după trei zecimale neperiodice (înţelegeţi acum clasificarea meticuloasă a împărţirilor de la început);

349/101 = 349 : 101 = 3,455445544…, care sugerează două scrieri diferite, atât ca 3,(4554) cu cei doi de 4 din perioadă despărţiti, cât şi ca 3,4(5544);

953/41 = 953 : 41 = 23,(24390) cu o perioadă de cinci cifre.

Mă opresc aici cu această primă parte a prezentării predării fracţiilor zecimale periodice, lăsându-vă să analizaţi şi să gândiţi toate aspectele deja evocate. Închei cu câteva poze de tablă de la lecţiile din acest an, pe baza cărora să vă puteţi face o imagine a unor aspecte evocate până acum, dar precizez că predarea din aceste poze nu a fost exact pe tipicul prezentat în eseul de faţă. Primele trei poze sunt de la o clasă, următoarele două de la cealaltă. C.Titus Grigorovici