Trigonometria în vremea solstiţiului de vară

Zilele acestea (în 24, 06 2023), dl. profesor Florin Nechiţi ne-a prezentat pe Comunitatea profesorilor de matematică faptul că trigonometria are ceva de basm! Astfel, dânsul observă că:

Sînziana – SINUS,
Cosînziana – COSINUS.

Iată şi câteva comentarii la respectiv postare:
– Mai există şi tanziana şi cotanziana.
Şi mai trag şi cu arcul unele … Sunt violoniste?
– Periodice, unduitoare, dar mărginite la infinit …
– Mărginite, dar de neatins dacă nu eşti Făt-Frumos.
– Nu ştiu ce sunt, dar se unduiesc de te bagă’n boală …
O fi având legătură cu faptul că în febra BAC-ului pregătirea matematică din mintea unora se amestecă cu pregătirea la Română? (comentariile aparţin d-lor: Octavian Vajoi, Laurenţiu Daniel, Dumitrescu Costel şi Adrian Dranga, iar în final din nou Florin Nechiţi)

Prea devreme! – (5) Teme la interferenţa cu fizica

Elevii sunt confruntaţi deseori cu elemente de matematică nepotrivite pentru momentul predării, de obicei mult prea repede pentru capacităţile naturale de înţelegere şi pentru faza de dezvoltare a gândirii în care se află. Ca să fie clar că există multe astfel de situaţii, am decis să extind “trilogia” din primăvară cu încă două episoade despre elemente care “se înghesuie agresiv în faţă” în viaţa elevilor. Ca o curiozitate, ambele, atât elementele de trigonometrie cât şi subiectul prezentului eseu se desfăşoară într-o zonă comună de preocupare a matematicii numerelor cu matematica formelor (a aritmetico-algebrei cu geometria). Oare, unde au loc acest tip de activităţi pe creierul nostru, deci care parte a creierului este afectată de greşelile respective?

Ne vom uita acum la o categorie mai specială, anume la zona de interferenţă a matematicii cu  fizica, unde lucrurile sunt grăbite doar din ambiţii exterioare procesului de învăţământ matematic. Primul exemplu îl reprezintă teorema lui Pitagora în finalul clasei a 6-a, pusă acolo doar ca să o prezinte matematica prima, pentru că altfel o făceau de obicei olimpiştii de fizică prin toamna clasei a 7-a. Al doilea ar fi apariţia vectorilor în clasa a 9-a, care dau buzna peste starea aia de savurare a geometriei sintetică ce s-a instalat în clasa a 8-a (odată cu stabilizarea materiei de clasele 6-7 în procesul de pregătire a examenului de EN), vectorii întrerupând-o brutal cu un “alt fel de geometrie”, care nici măcar nu prea arată a geometrie. Aşadar, să pornim cu subiectele eseului de faţă, reunite sub ideea că, urmare a interferenţei cu fizica, matematica a decis să parcurgă anumite conţinuturi mai devreme, ceva cam prea devreme (că sigur nu ne-au obligat fizicienii să le facem mai devreme!).

(1) De mulţi ani copiii care alegeau să se pregătească pentru olimpiadă la fizică în clasa a 7-a învăţau cu profesorii respectivi “pe repede înainte” diferite cunoştinţe de geometrie, fără nici cea mai mică atenţie pentru rigurozitatea matematică (sau o făceau cu toată clasa?). Astfel, te trezeai că elevii respectivi ştiau brusc teorema lui Pitagora şi rapoartele trigonometrice (superficial, doar aplicativ), iar asta devenea deranjant în diferite momente ale procesului educativ matematic (elevii respectivi nu mai erau atenţi la lecţia respectivă de la matematică, că “doar o ştiu”, sau profesorii se bazau că o ştiu, pe când în mintea acestor elevi lucrurile nu erau clare, iar cei care nu participaseră la orele respective la fizică oricum rămâneau “pe de lângă”; ani la rând am putut observa astfel de fenomene). Asta fără să mai amintim şi de partea de orgoliu a profesorilor de matematică: cea mai importantă lecţie a geometriei ne era “subtilizată” fiind divulgată înainte într-un mod destul de neglijent. Iar asta acţiona înjositor la adresa noastră (se simţea ca şi cum cei de fizică ar da “spoil” la filmul matematic – în limba engleză cuvântul este folosit des ca şi cum ai strica o surpriză, divulgând secretul dinainte, de pildă povestind cuiva cum se va termina un film).

Dar, la ce le trebuia fizicienilor teorema lui Pitagora şi trigonometria aşa de repede? Bănuiesc că la situaţiile acelea cu compunerea de forţe, de pildă la studiul deplasării pe plan înclinat, forţe ce se compun sau se descompun pe nişte triunghiuri, de multe ori dreptunghice. Aici este vorba clar o necorelare crasă între programele celor două materii. Pe de-o parte aveam o întârziere agresivă a predării teoremei lui Pitagora datorită programei de matematică, existând ambiţia de a demonstra această teoremă doar prin teorema catetei, care la rândul ei avea acceptată doar demonstraţia prin asemănare (ce-i drept cea mai scurtă, dar şi cea mai ne-vizibilă pentru copilul de rând, dar şi bazată pe unul dintre cele mai grele şi inaccesibile capitole pentru elevul mediu – la asemănare m-am referit). Asta în condiţiile în care există şi o grămadă de demonstraţii pe bază de arii (spre deosebire de proporţionalitate şi asemănare, aria “se vede” ceva mai bine, în afara unor excepţii notabile desigur). Dar aici ne confruntăm din nou cu moştenirea ambiţiei celor care au trasat linia programei de la începutul anilor ’80, de a rupe teorema lui Pitagora de fenomenul ariilor şi nimeni nu a mai îndrăznit de atunci să reanalizeze situaţia. Pe de cealaltă parte avem necesitatea forţată din punct de vedere a materiei pentru olimpiada de fizică, de a putea folosi acele elemente practice de geometrie a triunghiului dreptunghic. Este evident că avem aici o luptă între orgolii la nivelul cel mai înalt (pe seama cui?). Apropos, astfel de fenomene de necorelare există desigur şi între alte materii, cum ar fi între cerinţele de cunoştinţe de gramatică la limbi străine, cunoştinţe care însă nu s-au parcurs încă la limba română.

Aceasta era situaţia în momentul când s-a organizat redactarea unei noi programe gimnaziale. Nu cunosc cum s-a ajuns la decizia respectivă, dar e clar că teorema lui Pitagora a ajuns să fie poziţionată total artificial în finalul clasei a 6-a (în plus exilată de-a dreptul într-un final de an şcolar, atunci când de fapt nu prea se mai face mare lucru! – ştim asta din alte ocazii). Am tratat acest subiect din punct de vedere al posibilităţilor de integrare a lecţiei în acel moment, pe baze de predare intuitivă într-o serie de postări, dând astfel posibilitatea unei prezentări decente în faţa elevilor (http://pentagonia.ro/teorema-lui-pitagora-si-ciocolata-ritter-sport-in-clasa-a-6-a/ , http://pentagonia.ro/teorema-lui-pitagora-si-patratele-acesteia-in-clasa-a-6-a/, http://pentagonia.ro/teorema-lui-pitagora-si-tripletele-de-numere-pitagoreice-in-clasa-a-6-a/).

Realitatea crudă este însă că profesorii nu au fost defel pregătiţi pentru această mutare, nici mental, nici practic, aceasta haotizând parcursul lecţiilor, chiar erodând astfel autoritatea profesorilor în procesul predării. Mai mult, profesorii nu au fost în stare nici măcar să tragă anumite foloase din această mutare intempestivă: nici acum nu găseşti clar o integrare a cunoştinţelor şi tehnicilor de lucru legate de teorema lui Pitagora în capitolul despre arii din toamna clasei a 7-a. (Că, dacă tot este cunoscută, să şi fie folosită. Sau, o facem de fapt doar pentru cei de fizică? Dar măcar, atunci să o facem mai bine, nu la fel de superficial. Că, ei măcar o făceau doar colateral, pentru “vârfurile” lor; noi ar trebui să le-o cerem tuturor). Autorii de manuale nu au integrat-o, dar nici profesorii. Deloc&Defel! (ok, cu unele rare excepţii) Am întâlnit chiar situaţii în care profesorii “le-au interzis” elevilor să o folosească: “deşi o ştim, încercăm să facem o rezolvare fără teorema lui Pitagora“. De ce? DE CE?

Această stare de prohibiţie a apărut în mentalul profesorilor deoarece tot parcursul de probleme pentru clasa a 7-a era setat pe vechea programă fără folosirea teoremei lui Pitagora până în primăvară, când aceasta urma să fie predată (pe programa veche). Acum însă fiind disponibilă teorema lui Pitagora, totuşi nimeni nu s-a străduit să rearanjeze parcursul şi felul problemelor, de pildă la capitolul despre arii, acolo unde în sfârşit elevul mediu ar fi putut primi şi el o sarcină de lucru pe măsura sa (calcule de arii şi perimetre cu determinarea elementelor prin teorema lui Pitagora). Dar nu, se pare că strădaniile de integrare au fost minimale, de obicei inexistente, aşa încât singurul lucru reuşit clar a fost instalarea acestei stări generale de nefolosire decât în cazuri absolut excepţionale a teoremei lui Pitagora.

Pe de altă parte, datorită mişcărilor de materie prin noua programă, această teoremă (împreună cu prietenele ei premergătoare, teorema catetei şi teorema înălţimii) au ajuns şi mai târziu, în lecţiile profesorilor, deseori după vacanţa de Paşte. Cunosc o situaţie de la o şcoală cu pretenţii din Cluj, unde în a doua jumătate a lunii Mai încă nu a fost parcursă oficial, şi deci nici integrată în materia folosită la clasă (a apărut însă în forma specifică geometriei analitice la lecţia de prezentare a sistemului de coordonate carteziene prin calculul lungimii unui segment în funcţie de coordonatele punctelor, desigur că fără nici cea mai elementară preocupare că “de unde provine” minunea asta de formulă).

Astfel, această cea mai importantă teoremă a omenirii a ajuns să fie într-un fel de-a dreptul prohibită, pe parcursul marii părţi a clasei a 7-a. A fost ca o conspiraţie totală împotriva folosirii în orice fel a acestei teoreme. Nu zic că această “conspiraţie” a fost clar intenţionată, voită, dar asta s-a întâmplat şi desigur că nici folosirea denumirii nu este acceptată. Elevii slabi nu au siguranţă în aplicarea ei, doar pe baza puţinelor exerciţii din finalul clasei a 6-a (atunci când cine ştie cât de serios a fost făcută şi învăţată), pe când elevii buni nu au fost învăţaţi să o ia în serios. Curat minunat!!! Dacă mă gândesc bine, am impresia că acum elevii o ştiu cumva, însă doar într-o formă neglijent calculaţionistă, pe care probabil au dobândit-o de la fizică sau din foarte rarele ocazii când totuşi această teoremă “s-a întâmplat” şi în orele de matematică. Cu alte cuvinte, lucrurile arată ca şi cum matematica ar fi abandonat, măcar parţial, această teoremă în zona de autoritate a fizicii (e doar o părere personală neverificată, dar aşa pare să arate situaţia).

Acest fenomen se întâmplă şi datorită altuia, care s-a accentuat în ultimii ani. Teorema lui Pitagora este cuprinsă tot mai puţin în zona de interes a olimpiştilor, preocupările acestora evoluând clar în alte direcţii de materie (asta şi pentru că de zeci de ani teorema lui Pitagora apărea oricum după olimpiadele locale, chiar judeţene).

Pe de altă parte, mulţi profesori care “dau tonul” în societatea noastră nu sunt preocupaţi defel de matematica pentru cei slabi (se poate observa cât de puţine exemple elementare se găsesc la începutul lecţiilor în diferite manuale sau culegeri; toată preocuparea autorilor este îndreptată către zonele mai înalte ale aplicaţiilor). Ori, de vreme ce a fost prezentată deja pe scurt în clasa a 6-a, mulţi profesori consideră că au făcut destul pentru partea de aplicaţii elementare ale teoremei lui Pitagora.

Care este însă marele perdant al acestei situaţii? Păi, desigur abilitatea elevului mediu (80% din populaţia şcolară) de a se descurca – fără meditaţii – în calculul ariilor şi al perimetrelor în figurile de bază (romb, triunghi isoscel, trapez etc.). Capitolul de arii din toamna clasei a 7-a nu le-a integrat, fiind în continuare un capitol doar cu aplicaţii ale proprietăţilor ariilor (de pildă proprietatea de arie a medianei sau chiar generalizări ulterioare ale acesteia).

Rog onoraţii cititori să nu aştepte în acest moment o propunere salvatoare din partea mea. Nu că n-aş putea încerca aşa ceva, dar asta ar deschide discuţia mult prea larg pentru spaţiul unui eseu în direcţia coordonării materiei. Pot doar să spun că soluţia ar fi undeva între o poziţionare a teoremei lui Pitagora cât mai la începutul clasei a 7-a (demonstratbilă cu arii), coordonată cu o acţiune concentrată din partea autorităţilor pentru implementarea acesteia până în structura problemelor ce se fac de către profesori şi se propun de către autori, desigur cu integrarea clară şi a elevilor medii în procesul de predare şi de aplicaţii.

Permiţându-mi o glumă mai acidă, aş avea în final o singură dilemă: dacă a fost mutată teorema lui Pitagora în finalul clasei a 6-a ca să fim siguri că o facem primii noi, matematicienii, de ce nu a fost adusă în finalul clasei a 6-a şi trigonometria? Pentru că elevii încă nu ştiu radicalii? Păi, se poate rezolva uşor şi asta! Adică – acum serios vorbind – mutându-se teorema lui Pitagora s-a rezolvat doar jumătate de problemă, pentru că cei de fizică oricum fac trigonometria înaintea noastră. Oare, de asta este prezentată trigonometria de către unii profesori aşa de “în scârbă”?

(2) Al doilea exemplu de haotizare a procesului educativ matematic la zona de interferenţă cu fizica, unul mult mai vechi, ar fi introducerea prea devreme a capitolului de geometrie vectorială în clasa a 9-a. Eu personal nu am fost nevoit să predau această temă în integralitatea sa, aşa încât pot vorbi doar “din tribună” (aşa cum şi la televizor vorbesc foarte mulţi “specialişti” despre fotbal). Totuşi, ca profesor din famile de profesori de matematică, dar şi ca preocupat intens de fenomenul predării sănătoase (de peste un sfert de secol), cred că pot prezenta câteva idei valabile. Asta în condiţiile în care discuţii pe acest subiect există oricum şi la nivelele cele mai înalte (mai ţineţi minte exprimarea părerii respective de către dl. Ministru Câmpeanu – început de 2022 – despre ne-importanţa vectorilor în clasa a 9-a; este evident că dânsul o preluase de undeva, de la unii mai specialişti decât el; parcă şi Dl. Prof. Radu Gologan se exprimase cândva în acest sens). Aşadar, să analizăm puţin când, cum şi oare de ce au ajuns vectorii la începutul liceului în locul geometriei sintetice.

Trebuie lămurit încă de la început un aspect foarte important, anume că vectorii reprezintă fără discuţie un subiect de origine fizică. Vectorii sunt în primul rând ai fizicii! Vectorii sunt forma în care oamenii au reuşit cel mai bine să reprezinte grafic (vizual) forţele împreună cu mărimile şi direcţiile acestora de acţiune. Orice includere a vectorilor între lecţiile de matematică trebuie pornită de la acest adevăr şi de la faptul că la început au fost observaţiile fizice. Doar apoi, cu timpul, teoreticienii matematicieni au stabilit o formă teoretică axiomatic definiţionistă de introducere a ideii de vector ca început pentru o teorie ce integrează multe proprietăţi ale vectorilor de natură matematică, sau care se dovedesc că au aplicabilităţi matematice, atât geometrice cât şi algebrice. Mie de exemplu îmi plac foarte mult suprapunerile de proprietăţi ale numerelor complexe cu vectorii, de pildă rotirea unui vector cu 90o prin înmulţirea numărului complex corespunzător cu i.

Teoria matematică a vectorilor a reprezentat un experiment şi o provocare extraordinară pentru matematicieni, de a aranja pe bazele rigurozităţii matematice un set uriaş de cunoştinţe acumulate pe această temă. La fel ca şi teoria extrem axiomatică a geometriei euclidiene, acest experiment al geometriei vectoriale şi-au avut originea în cercetarea de nivel universitar, dar aducerea lor în zona de liceu trebuie făcută cu mare precauţie. Orice exagerare, atât din punct de vedere al cantităţii, cât mai ales şi din punct de vedere al vârstei poate produce pagube inimaginabile în percepţia şi mentalul marii mase a elevilor. Astfel, în forma (în cantitatea) şi la vârsta (clasa a 9-a) în care a fost introdusă prin reforma din 1997, studiul geometriei vectoriale s-a dovedit total neproductivă, dăunătoare până “în măduva oaselor” la adresa celor mai mulţi elevi.

În geometria vectorială vedem că algebra – într-o formă ciudată, nouă – câştigă teren în detrimentul înţelegerii clare a fenomenului geometric. Reţete automate dar neînţelese, aplicate orbeşte, ajung să domine peisajul, astfel încât marea masă a elevilor învaţă materia doar ca un fel de dresaj intelectual, înspre rezolvarea unor modele de probleme. Formarea gândirii practice este redusă dramatic faţă de varianta de gândire dobândită pe baza studiului geometriei sintetice, iar explicaţia pentru acest fenomen este absolut elementară: geometria sintetică lucrează cu nişte “obiecte iniţiale” mult mai “vizibile” în lumea înconjurătoare, decât geometria vectorială. Segmentele, unghiurile, planele, apoi dreptunghiurile, cercurile, corpurile geometrice, toate acestea sunt mult mai “vizibile” decât vectorii, chiar şi studiaţi sub forma lor fizică de forţe, darămite sub forma abstractă matematică.

Rezultatul este îndepărtarea, de-a dreptul “repulsionarea” fără precedent a elevilor faţă de studiul matematicii, iar asta se întâmplă chiar de la începuturile matematicii de liceu. Asta simte toată lumea. Faptul că are de suferit formarea generală a gândirii, asta se vede mai greu, dar nu înseamnă că nu are loc. Cumva, până la urmă, toţi le învaţă mai mult sau mai puţin, dar urmările negative depăşesc clar eventualele beneficii teoretice sau câştiguri în sensul unor metode de rezolvare mai eficiente (incontestabile, dar puţine şi cu ce sacrificii enorme).

Apropos metode de rezolvare: ţin minte pe la începutul anilor ’90 un fel de Skanderbeg intelectual, o înverşunată competiţie între câţiva pasionaţi de matematică în sensul ambiţiei de a rezolva cât mai multe probleme de geometrie prin vectori. Da, aşa da, pentru pasionaţii de senzaţii tari în matematică, geometria vectorială era un teren competiţional deosebit de valoros. Dar de aici până la generalizarea exclusivă a metodelor specifice de lucru pentru toţi elevii, mult prea devreme, la începutul liceului, când gândirea specifică nu este încă formată şi antrenată ca atare, asta reprezintă o cale mult prea lungă. Astfel, privim la deja un sfert de secol de chinuială gratuită a gândirii elevilor pe baza unui experiment teoretic, ce-i drept foarte valoros din punct de vedere matematic, dar nu şi din punct de vedere pedagogic.

Putem scoate în evidenţă anumite aspecte interesante dacă alegem să privim şi precedentul experiment mult prea teoretic, cel al încercării introducerii geometriei axiomatice euclidiene în licee, prin manualele din 1978. În vremea acestora profesorii mai aveau cale de scăpare, măcar parţială din chingile teoretice, evadând în problemele clasice pentru formarea gândirii (experiment ce a durat cca. 20 de ani, lăsând în urmă o prelungire teoreticistă în geometria gimnazială, prelungire ce s-a atrofiat lent dar ciudat de atunci). Aici, în geometria vectorială, profesorii au slabe şi rare şanse de a mai evada cu elevii în gândirea geometriei sintetice.

Analizând comparativ poziţionarea şi natura geometriei vectoriale faţă de geometria sintetică, putem observa un aspect mai profund. La o analiză serioasă se poate observa cum începând din anii ’90 matematica şcolară a fost supusă tot mai mult unui proces de algebrizare. Rădăcinile acestui proces pot fi urmărite în programele şcolare până în anii ’70, dar prin reforma din 1997 fenomenul s-a accentuat puternic. Geometria vectorială este unul din locurile matematicii în care gândirea spaţială intens şcolită în geometria sintetică face clar un pas mare înapoi în detrimentul gândirii numeric-algebrice. În geometria sintetică din manualele claselor 9-10 din anii 1978-1997 geometria şi algebra ajungeau să se îmbine în diferite probleme aplicative, adevărate “simfonii matematice” (pe care le puteai compune doar dacă înţelegeai profund baza fiecărei componente). În geometria vectorială, dimpotrivă, se simte clar cum gândirea algebrică, pe bază de formule (aplicabile orbeşte), dă clar de-o parte gândirea spaţială geometrică. De obicei, aici fenomenul geometric se consideră deja cunoscut, fiind deci neglijat. Pe scurt, aş descrie astfel situaţia: pe când în geometria sintetică din anii ’80-’90 algebra venea în geometrie cu un rol de potenţare, în geometria vectorială algebra vine către geometrie dând-o afară din viaţa elevilor.

Acelaşi lucru îl face desigur şi geometria analitică ce apare tot mai repede, mai nou deja din clasa a 7-a. Simt aici un impuls similar cu cel al puiului de cuc: cunoaştem toţi cum se înmulţesc aceste păsări, anume că femela depune oul în cuibul altor păsări, acestea îl clocesc, iar după eclozarea puilor, puiul de cuc are impulsul de a-i împinge afară din cuib pe fraţii săi vitregi, beneficiind astfel de toată atenţia de îngrijire a părinţilor adoptivi. Cam aşa aş putea descrie şi fenomenul de algebrizare forţată a matematicii de liceu în şcoala românească a ultimului sfert de secol. Fenomenul este mult mai extins, un alt exemplu în acest sens fiind de pildă abandonarea cercului trigonometric în procesul de trecere de la trigonometria geometrică (pe bază de triunghi) din gimnaziu la trigonometria mult mai algebrică din liceu.

Dar să revenim: oare de unde a apărut impulsul introducerii geometriei vectoriale în clasa a 9-a? La această întrebare ar trebui să răspundă cei implicaţi atunci, în mişcările de materie ale reformei din 1997. Noi acum putem să ne dăm doar cu părerea. Eu personal suspectez un puseu puternic de orgoliu axiomatist-definiţionist din partea matematicienilor (a unor profesori universitari), puseu încărcat de un dispreţ teoreticist faţă de “fizicienii ăia” care nu sunt în stare să facă o ştiinţă pură, teoretică, ei fiind capabil doar să pornească de la concret, de la observaţii. Ceva de felul: “Ei nu sunt interesaţi să aşeze lucrurile pe baze teoretice abstracte, aşa că haideţi să vă arătăm noi cum se face!

Eu, în anii ’80 făcusem în clasa a 11-a ceva elemente cât de cât ordonate de geometrie vectorială, dar acestea plecau de la modelul compunerii forţelor (regula paralelogramului), nu de la un model abstract de adunare a vectorilor (regula triunghiului; aceasta apărea însă imediat după prima, generalizându-se apoi în regula poligonului). În aceste condiţii, la fel ca în cazul precedent al geometriei axiomatice euclidiene, trebuie că s-au sesizat anumiţi profesori universitari în legătură cu “amatorismul demersului”, implicându-se şi sesizându-se “din oficiu” ca să ne arate nouă, profesorilor din preuniversitar “cum se face treaba” serios.

Închei cu precizarea clară că acest eseu este redactat doar pe baza unor supoziţii, dar unele verificate clar prin lungi observaţii de-a lungul anilor. C.Titus Grigorovici

P.S. Dacă tot am analizat zone de interferenţă a matematicii cu fizica, aş dori însă să ne uităm puţin şi în clasa a 5-a unde programa din 2017 ne oferă o altă surpriză ciudată, aş spune total neplăcută. Concret: unde şi de ce au dispărut din programa de matematică unităţile de măsură pentru capacitate (litraj) şi pentru masă (aşa-zisa “greutate” după cum este numită în limbajul uzual, de zi cu zi)? Şi chiar aşa, o fi rău că au fost scoase? De ce? Pentru că – ar putea zice cineva – s-a mai descongestionat materia, sau? Să analizăm mai profund situaţia.

Cele două, capacitatea şi masa formau, împreună cu lungimea, o “triadă” de mărimi ale căror sisteme de unităţi şi sub/supraunităţi sunt construite pe acelaşi model intelectual, schimbarea unităţii într-alta mai mare sau mai mică făcându-se la toate trei după aceleaşi “pattern”-uri comportamentale ale numerelor (cu mica diferenţă a prelungirii sistemului de la masă până la tone). Astfel, elevii aveau posibilitatea să facă transferul de cunoştinţe şi de competenţe de la una la cealaltă, fixând astfel modelele de calcul mult mai bine. Iar modelele respective de calcul fac parte fără discuţie din matematică. Astfel, prin eliminarea acestora din programă a fost văduvită matematica, şi mai exact chiar partea cea mai practică a matematicii, pentru lipsa căreia materia noastră este constant criticată la nivelul societăţii.

Pe de altă parte, rămânând înţelegerea şi învăţarea modului de funcţionare a modelului doar pe baza unităţilor de măsură a lungimii, adică pe un singur exemplu fenomenologic, este evident că învăţarea elevilor va fi mai slabă, dar totodată va avea loc şi la mai puţini dintre aceştia. Orice învăţare pe un singur exemplu (unidirecţinală) este mai slabă decât o învăţare cu o oarecare diversitate în exemplele de aplicat (într-un evantai controlabil de direcţii); prin forţarea transferului de cunoştinţe se întăreşte şi înţelegerea şi învăţarea. Dimpotrivă, nefiind necesar un transfer de gândire, învăţarea este mai slabă.

Dar, de ce au fost scoase? Aici pot doar – din nou – să-mi dau cu părerea. Bănuiala mea este că unităţile de măsură pentru masă au fost scoase datorită pericolului real ca mulţi profesori de matematică să permită folosirea incorect ştiinţific a cuvântului greutate (din limbajul vulgar) în locul termenului teoretic corect de masă. Păi ce să-i faci dacă în limba română cuvântul masă de care vorbim aici se suprapune identic cu cuvântul masă folosit pentru obiectul acela pe care ne punem farfuriile să mâncăm sau caietele să scriem, sau pentru înruditul cuvânt folosit pentru activitatea de mâncat? (ai luat masa?)

De unde vine această suprapunere stupidă? Nu am studiat foarte mult, pentru că eu personal am o explicaţie simplă: cuvântul corespunzător pentru măsură în germană este Mass, cuvânt ce a fost preluat la noi ca masă. Nemţii însă nu au problema suprapunerii de la noi. În germană cuvântul pentru obiectul acela de mobilier, de obicei cu patru picioare este Tisch (pronunţat tiş). La ei e clar că Mass în general este o măsură a ceva. Ştiinţific a fost fixată pentru mărimea folosită şi în română, dar nemţii o mai folosesc şi pentru alte chestii. De pildă bavarezii o folosesc absolut natural pentru cănile acelea mari de un litru din care beau bere (de pildă la Oktoberfest). Ale noastre sunt puţin mai mici (de jumătate de litru) şi se numesc halbe. Ştiţi de ce? Simplu, cuvântul vine de la jumătate în germană: halb (a înjumătăţi: halbieren). Lăsând tonul glumeţ de-o parte, putem surprinde o nuanţă din plaja largă ce o are cuvântul în limba germană atunci când spunem “o masă de oameni”. Lăsând gluma de-o parte, să ştiţi însă că şi la nemţi există preocuparea de atenţionare legată de folosirea incorect teoretică a cuvântului Gewicht (greutate) în locul cuvântului Mass (masă).

Despre excluderea unităţilor de măsură pentru capacitate (denumită uneori “litraj”), aici nu am multe de comentat. Este evident că litrul ocupă un rol central în sistemul internaţional de unităţi de măsură (pe scurt, un litru de apă cântăreşte un kilogram), care este unul dintre domeniile clare, centrale ale fizicii elementare.

Atenţionez însă că şi aici sistemul de unităţi al capacităţii este conectat în mod evident din punct de vedere matematic cu sistemul de unităţi de măsură pentru volum, aşa încât excluderea primului din programă slăbeşte profund studiul matematic al fenomenului, văduvind elevul de o nouă situaţie unde să-şi exerseze şi să-şi dezvolte abilităţile şi competenţele corespunzătoare. Ce se întâmplă astfel în cazul tradiţionalelor probleme de felul următor? Un acvariu paralelipipedic cu dimensiunile de 40 cm pe 20 cm şi înalt de 30 cm este umplut până la o treime cu apă. Câţi litri de apă sunt necesari? Merită repetat aici faptul că această excludere ajunge să scoată din programa de matematică exact astfel de momente de care ar fi atât de mare nevoie pentru a oferi elevilor şi probleme cu aplicabilitate practică (cu sens), de lipsa cărora se plânge aşa de multă lume. Asta fără să mai discutăm de schizofrenia situaţiei ca întreg: deci la matematică elevul învaţă de pildă dm3, la fizică învaţă despre litru, dar unde învaţă să conecteze cele două?

Este evident că la matematică se pune accent pe anumite aspecte ale fenomenului, pe când la fizică acestea se tratează mai superficial, poate chiar defel uneori, atenţia profesorilor fiind concentrată în alte direcţii ale fenomenului. Astfel, am întâlnit elevi care – de pildă – nu cunoşteau dal, hl sau kl. O fi de vină pandemia sau o fi de vină “profa’ de fizică”? Chiar nu mă interesează. Permiţându-mi o scurtă deviaţie, aş întreba dacă, oare, aşa a început fenomenul şi în Austria, acolo unde elevii nu fac dam sau hm, dar fac km?

Există însă aici şi un alt aspect care influenţează tot mai puternic subiectul nostru în discuţie. Criza profesorilor de fizică este tot mai extinsă, aşa încât pentru orele de fizică se găsesc tot mai greu profesori responsabili şi “de calitate”. Astfel, fenomenul orelor ţinute “de mântuială” este mult mai răspândit la fizică decât la matematică (nu că la noi n-ar fi prezent). Oare, asta să fie cauza fenomenului sesizat în alineatul precedent?

Aşa, cum le făceau profesorii de matematică, uneori “pe fugă”, inclusiv cu gafele teoretice din punct de vedere al fizicii, totuşi includerea respectivelor lecţii şi în orele de matematică îşi aducea aportul clar pozitiv la învăţarea fenomenului în ansamblu. Nu mă pot abţine să observ cât suntem de aproape în discuţia de faţă de momentul când facultatea de matematică-fizică (inclusiv pregătirea profesorilor ca profesori de matematică şi fizică) s-a rupt în două (la Cluj prin anii ’60). Părinţii mei au absolvit ca profesori cu dublă specializare. Fratele tatălui meu a trebuit să aleagă în timpul facultăţii în care parte rămâne, el alegând fizica. În clasele gimnaziale, în finalul anilor ’70, eu am făcut fizica cu acelaşi profesor cu care făceam şi matematica.

Dar de ce au fost excluse cele două lecţii din programa de matematică. O altă explicaţie logică nu văd, decât că asta s-a întâmplat la presiunea fizicienilor. Poate n-a fost o presiune clară de a fi scoase, ci doar o cerinţă fermă de a rezolva situaţia folosirii termenilor de masă sau greutate. Nu ştiu, dar cred că nici nu mă interesează foarte mult detalii; eu văd doar rezultatul. Trebuie precizat aici, pentru cine nu ştie, că breasla profesorilor de fizică este mult mai avansată pe calea refacerii predării pe principii sănătos pedagogice, pe când matematicienii până la programa din 2017 au ţinut cu dinţii de principiile rigurozităţii ştiinţifice ale matematicii (sau de urmările acestora, aşa cum au fost acestea creionate la bazele reformei din 1980), neglijând masiv aspectele pedagogice (vârstă, prima cunoaştere etc.). Putem să ne imaginăm astfel că la momentul respectiv fizicienii au ştiut mult mai bine “ce vreau” şi au fost mult mai fermi “pe poziţie”. Da, şi astfel putem concluziona că în acest moment matematica “a pierdut” pur şi simplu materie valoroasă datorită fizicii.

Salariul cercetătorului şi aria cercului

Uitaţi ce banc circulă pe reţelele “sociale” taman în plină grevă în învăţământ:

*

Un cercetător, observând că are ceva probleme cu chiuveta din bucătărie, a fost nevoit să cheme un instalator. În următoarea zi, instalatorul a venit, a strâns câteva şuruburi, a înfiletat câteva chestii, apoi totul a funcţionat ca înainte. Cercetătorul a fost mulţumit. Totuşi, când instalatorul i-a dat nota de plată, acesta a fost şocat:

– Asta înseamnă o treime din salariul meu lunar!!!

Păna la urma, totusi a plătit, iar instalatorul i-a zis:

– Vă înteleg, să ştiti. De ce nu veniţi la firma noastră, să depuneți dosarul pentru o slujba de instalator? Veți câștiga de trei ori mai mult decât o faceţi acum. Dar nu uitaţi, când depuneţi dosarul, să le spuneţi că ați terminat doar 7 clase. Nu le plac oamenii educați.

Prin urmare, cercetătorul nostru și-a luat o slujba de instalator, iar viața lui a devenit mai ușoară din punct de vedere financiar. Tot ce trebuia sa facă era să străngă un şurub-două. Într-o zi, șeful companiei a hotărât că fiecare angajat trebuie să se ducă la seral, pentru a-şi termina și clasa a 8-a. Omul nostru a trebuit să meargă, evident.

S-a întâmplat ca primul curs să fie de matematică. Profesorul, vrând să vadă nivelul de cunoaștere al studenților, i-a întrebat formula ariei cercului. Cel pe care l-a numit a fost chiar cercetătorul. Ajungand la tablă, și-a dat seama ca a uitat formula, așa că a început să o deducă. A umplut tablele cu integrale, diferentiale etc.

La sfârşit, rezultatul pe care-l avea era “minus pi R pătrat”. Neconvenindu-i acel minus, s-a apucat iarăși de calcule, de la început. Nimic nu s-a schimbat, tot acelaşi rezultat… De fiecare dată a obţinut aceeași chestie.

S-a uitat puțin spre clasă speriat, moment în care a observat că toţi instalatorii ii şopteau:

– Schimbă mă limitele de integrare!