Unghiuri între degete

De-a lungul timpului oamenii au inventat diferite metode prin care să-i sprijine pe elevi în a reţine anumite informaţii considerate importante la o lecţie. În acest context se încadrează şi următoarea imagine pentru reţinerea valorilor importante ale lui sinus şi cosinus. Este evident că măsurile afişate sunt doar orientative.

Într-un context aparent asemănător, eu cunosc o altă imagine cu unghiurile dintre degetele unei mâini. Dacă deschidem cât mai larg evantaiul degetelor, până când cel mare şi cel mic devin oarecum colinear opuse, atunci vedem că obţinem trei unghiuri relativ egale şi unul dublu, cărora – prin împărţirea lui 180o la 5 – le putem asocia măsurile 36o de trei ori şi 72o o dată, care sunt unghiurile ce apar în pentagramă (steaua în 5 colţuri), asociată cu tăietura de aur, implicaţiile acesteia în trupul umenesc etc. cos/sin

Rezultatul 1.000.000.000 (din ciclul Gândirea aritmetică vs. Gândirea algebrică)

În toamna anului 2015 am avut postări pe tema Gândirea aritmetică vs. Gândirea algebrică, înţelegând prin acest titlu însoţirea elevului în trecerea sa din stadiul gândirii operaţionale concrete spre stadiul gândirii operaţionale formale, adică de la gândirea specifică copiilor de ciclu primar la stadiul adult de gândire. Conform lui Jean Piaget aceasta se petrece undeva în jurul vârstei de 11 ani.

Desigur că există excepţii în ambele sensuri. De pildă, la unii copii această trecere apare mai rapid, aceştia fiind pur şi simplu mai precoce. Totuşi, trebuie să fim foarte atenţi în goana noastră sau a părinţilor după cât mai mulţi “mici Einsteini”: nu ar trebui confundată orice aparentă precocitate cu situaţii în care anumiţi copii stochează informaţii de adult şi folosesc o terminologie corespunzătoare total nepotrivită vârstei, dobândită eventual chiar printr-o simplă învăţare pe de rost. Iată două exemple în cascadă: copilul care vine din grădiniţă şi ştie să numere pornind de la zero, iar apoi eventual ştie să strige şi la sfârşitul numărării: “infinit”. Urmărind de-a lungul anilor astfel de copii în dezvoltarea lor observăm că, de obicei aceste elemente de cunoaştere sunt destul de superficiale, o “spumă” de poleială aparentă, care însă cu timpul este abandonată, copilul dovedindu-se mai târziu absolut normal.

Pe de altă parte, există desigur şi copii care fac această trecere mai greu sau mai târziu, fie pentru că aşa le este felul, fie pentru că le este defectată dezvoltarea naturală din diferite motive, cum ar fi de pildă datorită folosirii diferitelor ecrane (TV, calculatoare, deşteptofoane, toate generatoare de ADHD).

Oricum, această trecere nu are loc la un copil brusc şi în nici un caz nu are loc la fel sau în acelaşi moment la toţi elevii dintr-o clasă, aşa încât o abordare cu respect faţă de fiinţa copilului ne-ar obliga să lucrăm cu multă răbdare şi tact pedagogic la subiectele care fac trecerea între cele două forme de gândire.

Subiectul principal asupra căruia am atenţionat accentuat în acest sens este introducerea operaţiei de putere din clasa a V-a, anume faptul că această temă are două etape distincte, câte una în fiecare din cele două forme de gândire: etapa de respectare a ordinii operaţiilor, corespunzătoare stadiului de gândire operaţională concretă, iar apoi etapa de încălcare a ordinii operaţiilor pe baza formulelor de operaţii cu puteri, corespunzătoare stadiului de gândire operaţională formală.

De obicei prima parte este neglijată, trecerea la a doua parte făcându-se foarte rapid, din prima oră, lăsându-i pe mare parte dintre elevi într-o totală “ceaţă” legat de această nouă operaţie. În postarea http://pentagonia.ro/gandirea-aritmetica-vs-gandirea-algebrica/ din sept. 2015 ofeream un material de bază din prima categorie de exerciţii, recomandând ca lecţia să rămână un pic în această zonă elementară înainte de a merge mai departe în zona de gândire algebrică. Prin “zonă elementară” înţelegeam atunci introducerea operaţiei de putere, înţelegerea şi fixarea acesteia (elevii să nu aibă tentaţia de a zice că 23 = 6 etc.), cât şi înţelegerea cazurilor particulare  cu 1 şi cu 0 (1n = 1, n1 = n, 0n = 0, dar n0 = 1 şi nu n0 = 0).

Între timp, din 2015 încoace au apărut în diferite culegeri sau manuale noi seturi cu exerciţii conţinând toate cele cinci operaţii, pur şi simplu aşa numitele “exerciţii de ordinea operaţiilor”. Stabilizarea acestui nivel se face cel mai bine pe exerciţii de calcul în care nou învăţata operaţie de putere se alătură celor patru operaţii de bază cunoscute deja din clasele primare. Ordinea operaţiilor este un subiect cunoscut, iar apariţia unui nou nivel de prioritate este foarte uşor primit de către toţi elevii, acesta trebuind doar exersat. În cadrul exerciţiilor cu toate cele cinci operaţii amestecate – cu sau fără paranteze – exersarea extinderii ordinii operaţiilor se face foarte bine alături de mai sus prezentatele cunoştinţe din zona elementară a operaţiei de putere, iar asta funcţionează foarte bine la majoritatea elevilor pentru că aceştia sunt setaţi din clasele mici să calculeze.

Acestor gânduri onorat cititorul le poate contra-argumenta cu următoarea întrebare: bine, bine, dar cu elevii buni ce facem, că se plictisesc “de moarte” la aceste “banalităţi” şi, după cum se ştie, subsolicitarea este la fel de dăunătoare ca şi suprasolicitarea. Ce facem deci cu elevii buni în acea perioadă scurtă, de cel mult o săptămână, în care îi lăsăm să exerseze puterea alături de celelalte operaţii în stadiul operaţional concret? Un răspuns posibil vine de la următoarea “problemă” asupra căreia ne atrage atenţia profesorul Vasile Bobanciu în lucrarea sa Caleidoscop matematic, Editura Niculescu, ed. a III-a, 2005, la pagina 71 (cu răspunsuri la pagina 100).

Astfel, aflăm că în anul 1907 profesorul Ion Ionescu a propus cititorilor Gazetei Matematice să scrie un miliard utilizând toate cele zece cifre o singură dată. În lunile următoare s-au primit mai multe soluţii, ce au fost prezentate în anul 1908 în Gazeta Matematică. Preluând ideea, eu le propun elevilor de clasa a V-a doar să le verifice pe rând pe fiecare dintre aceste scrieri, adică să observe dacă sunt scrise într-adevăr cu fiecare cifră folosită măcar o dată şi doar o singură dată, iar apoi să calculeze dacă acestea dau rezultatul 1.000.000.000:

(2 + 3 + 4 + 7 + 9) ∙ 5 ∙ 8 ∙ 106

(897 + 106 + 4 – 2 – 5)3

23 ∙ 6 –  9 ∙ 58 + 7 + 4 – 10

23 ∙ 4 ∙ 59 + 6 – 7 ∙ 8 ∙ 10

29 ∙ (8 + 7 – 10)63 – 54

26 ∙ 57 ∙ [8 ∙ (1 + 9) + 4 ∙ 30]

5 ∙ 20 ∙ (1 + 3 ∙ 9 – 4 – 6 – 8)7

(897 + 106 + 5 – 2 ∙ 4)3

(64 – 59)8 ∙ 20 ∙ (3 – 1)7

(510 + 4 – 2) ∙ (73 – 68)9

[2 ∙ 10 ∙ (4 ∙ 5 + 6 + 7 + 8 + 9)]3

(40 : 8 – 3)(62 + 1) : 7 ∙ 59

Unele sunt mai uşoare, altele mai grele (pentru elevul mediu în sem. I din clasa a V-a); la unele dintre acestea anumiţi elevi reuşesc să găsească singuri faptul că zero-urile de la sfârşit sunt generate de produse de 2 ∙ 5, situaţii de genul 26 ∙ 57 generând din start şase zero-uri la sfârşitul rezultatului. Pe de altă parte, în acestea apar şi situaţii de tipul 103 ∙ 106 = 109 pentru obţinerea unui miliard. În acest sens, respectivele exerciţii devin o bază bună pentru predarea prin problematizare în vederea “descoperirii” formulelor de operaţii cu puteri (în orele următoare). Anexez o variantă pdf a acestor exerciţii. CTG

Rezult 1000 000 000.pdf

Echerul geometric

La peste un sfert de secol după schimbările din 1990 în şcolile din România se folosesc încă instrumentele de tip vechi. Nu vreau să susţin că acestea sunt depăşite; şi eu le cer elevilor în clasa a VI-a cunoscutele truse chinezeşti în cutiuţă de metal care îi ajută să înţeleagă toate mişcările specifice. Din clasa a VII-a le cer însă achiziţionarea unui alt instrument. Despre ce este vorba?

În vestul Europei se foloseşte de mult timp un instrument din plastic transparent care poate face orice construcţie în afara de trasarea cercurilor. Acesta este cunoscut sub denumirea de echer geometric: Geo-dreieck în germană pe scurt (complet ar fi Geometrie-Dreieck), Equerre géometrique pe franceză, Geometrical square pe engleză, Escuadra geometrica pe spaniolă, Triangolo Geometrico pe italiană etc. Iată o imagine cu acesta:

Haideţi să-l analizăm pas cu pas în elementele sale. În primul rând ne uităm la sistemul de linii paralele (paralele cu ipotenuza echerului), din 5 în 5 mm depărtate de ipotenuză. Cu acestea poţi trasa paralele la o dreaptă. Dacă punctul prin care doreşti să trasezi paralela nu este la distanţă de 5, 10, 15 etc. cm, atunci te poţi ajuta de cele două gradaţii suplimentare în mm cu care poţi poziţiona ipotenuza paralel faţă de dreapta iniţială.

Al doilea element important este linia mediană a acestui echer (îmi place să numesc astfel înălţimea din unghiul drept pe ipotenuza echerului, totodată şi mediană, bisectoare, mediatoare şi axă de simetrie a instrumentului). Cu ajutorul acesteia în primul rând se pot trasa perpendiculare pe o dreaptă dată, perpendiculare care să traverseze dreapta. O astfel de perpendiculară este mult mai bună pentru că poate trece dintr-o parte în cealaltă a dreptei iniţiale “dintr-o mişcare”, fără mutarea echerului şi fără acea “rotunjire” deranjantă la piciorul perpendicularei, ce apare “vrei-nu vrei” la echerele de modă veche (dacă vrei perpendiculară doar pe o parte, te opreşti la dreaptă). Este atât de comodă trasarea perpendicularelor cu această linie mediană, încât cine s-a obişnuit să o folosească nu va mai accepta să lucreze cu alte echere.

Probabil că aşteptaţi să vorbesc şi de raportor, elementul cel mai vizibil, dar nu, al treilea element valoros la echerul geometric îl reprezintă gradaţia liniarului de pe ipotenuză, avându-l pe zero la mijloc, numerele crescând în ambele părţi. Cu ajutorul acesteia se poate în primul rând găsi mijlocul unui segment, fără a-l măsura şi a împărţi lungimea la doi. Pur şi simplu trebuie să poziţionezi liniarul gradat de pe ipotenuză pe segment cu capetele acestuia egal depărtate de mijlocul zero, punct pe care îl însemnăm ca mijloc.

Combinând linia mediană cu gradaţia liniarului putem foarte uşor să construim bisectoarea unui unghi. Pentru asta trebuie să poziţionăm echerul geometric cu linia mediană trecând prin vârful unghiului şi laturile unghiului tăind gradaţia liniarului de pe ipotenuză în două puncte simetrice faţă de zero, în mod similar cum am procedat la mijlocul unui segment. Practic, astfel aranjate laturile unghiului şi cu liniarul gradat în cm cuprind între ele un triunghi isoscel, linia mediană a echerului ca înălţime devenind automat şi bisectoare.

Vine în sfârşit şi raportorul la rând de a fi analizat. Acesta nu aduce numic nou faţă de ce ştie toată lumea, dar trebuie folosit cu atenţie pentru că baza sa este chiar ipotenuza echerului şi nu o linie trasată pe suprafaţa interioară a plasticul echerului (vedeţi că pe echer nu sunt scrise valorile de 0o respectiv 180o, linia unghiului alungit 0o-0-180o fiind chiar liniarul gradat în cm al echerului, punctul 0 fiind vârful acestui unghi alungit). În mod similar cu construcţia unghiurilor drepte, aceste echere geometrice au şi nişte linii ajutătoare pentru construcţia unui unghi de 45o. În plus, având suprapunerea dintre centrul raportorului şi originea gradaţiei de pe liniar se pot trasa foarte uşor segmente de o anumită lungime la o anumită înclinaţie faţă de un segment dat (tocmai am descris construcţia triunghiurilor în cazul LUL).

Folosind linia mediană şi gradaţia ciudată a liniarului, putem construi foarte uşor şi simetricul unui punct sau al unei întregi figuri faţă de o dreaptă (privită ca axă de simetrie). Ştiu că astfel de sarcini nu sunt în repertoriul orelor de geometrie din România, dar am ţinut să prezint şi acest aspect deosebit de folositor în practică.

Vedeţi deci cât este de folositor acest instrument, permiţând construcţii foarte exacte atât pe foaia de matematică cu pătrăţele, dar în poziţii înclinate, cât şi pe coală velină (folosită la examenul de la finalul clasei a VIII-a sau la BAC). Să vedeţi ce uşor desenezi cu echerul geometric clasica figură din teorema lui Pitagora (cea cu pătratele construite pe fiecare latură a triunghiului dreptunghic)! Dar să luăm şi un exemplu mai simplu: construiţi cu echerul geometric un triunghi dreptunghic cu ipotenuza orizontală şi unghiul drept în vârf. La fel de folositor este echerul geometric şi la trasarea sistemului de axe ortogonale cu unităţi pe cele două axe ale sale, pentru trasarea punctelor şi a graficelor funcţiilor (desigur, pe foaie velină, când nu ai reperele pre-trasate ale pătrăţelelor de pe foaia caietului tradiţional de matematică). Da, echerul geometric construieşte aproape orice; doar cercuri nu ştie trasa.

Unde se găsesc astfel de instrumente valoroase? Am mai spus, sincere mulţumiri magazinelor Lidl care au tăria de a aduce măcar în fiecare septembrie astfel de echere în truse deosebit de ieftine (un echer geometric mic, unul mare şi un liniar ordinar) la 4 lei. Şi alte magazine aduc, dar neconstant şi de obicei la preţuri mult mai piperate, şi asta doar pentru că nu există o cerere constantă şi în cantităţi mari. De ce nu există această cerere? Pentru că şi după un sfert de secol de la “eliberarea oficială de comunism” organizatorii programelor şi a manualelor de matematică româneşti nu au preluat acest echer, ne-existând o recomandare oficială pentru folosirea sa.

În acest sens am o scurtă, dar edificatoare povestioară: prin 1992 m-am adresat conducerii întreprinderii Napochim din Cluj, care pe lângă lighiane şi alte castroane, producea şi instrumente geometrice din plastic transparent, cerându-le să introducă în producţie şi astfel de echere. Mi-au răspuns sec că, fie rezolv ca înainte să fie introduse prin materia din manuale, fie să plătesc eu realizarea matriţei. Am întrebat cât costă matriţa şi răspunsul “m-a dat pe spate”: era vorba de salariul meu de începător pe mai mult de un an. Q.E.D. La castroane şi lighiane aveau garanţia că se vând, la aceste instrumente deştepte aveau mari dubii. Şi uite-aşa au dispărut încet toate capacităţile de producţie româneşti, refuzând progresul.

Desigur că există echere geometrice şi mari, pentru uzul profesorilor la tablă (tot din import, e clar). Nu sunt ieftine, dar merită şi profesorul un instrument bun (iar şcolile la ora actuală chiar îşi pot permite astfel de achiziţii).

Închei această prezentare cu o precizare: imaginile de mai sus sunt toate culese de pe internet. Dacă daţi cuvinte de căutare denumirea echerului geometric în diferite limbi străine vă vor apărea şi filmuleţe postate în care puteţi vedea cum se foloseşte acesta. Dau un singur exemplu, anume un filmuleţ cu paşii de urmat pentru trasarea mediatoarei (în germană Mittelsenkrechte).

Mittelsenkrechte und Winkelhalbierende

Este interesant că autorul trasează mediatoarea cu echerul geometric, dar la bisectoare (în germană Winkelhalbierende) foloseşte metoda antică cu compasul, dovedind astfel o ciudată inconsecvenţă. Eu personal îi învăţ pe elevi în clasa a VI-a metodele tradiţionale cu rigla negradată şi compasul, iar din clasa a VII-a metodele mai moderne şi mai rapide cu echerul geometric.

Căutaţi şi cumpăraţi un astfel de echer, folosiţi-l şi veţi vedea că merită. Noi îl folosim de prin ’93-’94 şi elevii noştri a avut de atunci întotdeauna cele mai frumoase desene la examene.  Titus G.

Introducerea noţiunii de grad pentru măsurarea unghiurilor şi a arcelor de cerc-(2)

De curând am primit o întrebare deosebit de clară despre acest subiect, întrebare la care m-am străduit din răsputeri să răspund cât mai dataliat cu putinţă. Reiau întrebarea: Dacă introducem noţiunea de unghi mai întâi în forma unghiului la centru, ar fi de preferat să definim notiunea de grad întâi pentru arce de cerc şi să definim măsura unui unghi ca măsura arcului cuprins între laturi prin deschiderea unghiului, justificând astfel şi folosirea raportorului (studiind oarecum în paralel cercul şi unghiurile, cum am văzut în Manualul de a VI-a din ’69 de Rusu şi Hollinger)? (comentariu din 22.aug. 2018 la postarea din 1.mai 2018)

Pe când făceam corectura finală şi ultimele retuşuri la eseul cu pricina, am reuşit să găsesc şi manualul de geometrie de a VI-a despre care vorbea colegul Alex D. Mai exact, am găsit două manuale ale profesorului A. Hollinger, unul din 1966 (bănuiesc că acesta este de forma celui despre care era vorba în întrebare) şi încă unul din 1977. Avem foarte multe manuale vechi acasă şi nu apuc să le studiez în detaliu; nici pe acestea nu le ştiu pe de rost, aşa că le-am luat la “puricat” în contextul de faţă. Permiteţi-mi să vă prezint ce am găsit în cele două manuale legat de subiectul discutat în prima parte a eseului ca răspuns la întrebarea de mai sus. (observaţie de pronunţie: numele se citeşte “Holingăr”)

1) Haideţi să vedem în primul rând cum erau prezentate lucrurile în manualul lui  Hollinger din 1966 (mulţumesc pentru acest manual fostei mele colege Cristian Marina, profesoară de engleză, dar mare iubitoare de matematică, care şi-a păstrat manualele din gimnaziu de pe vremuri). Iată începutul cuprinsului: Cap.I: Noţiuni introductive; Cap. II: Linia dreaptă; Cap. III: Cercul; Cap. IV: Unghiuri etc.

Să spicuim câteva aspecte din capitolul de introducere a cercului. Acesta este împărţit în nişte subteme pe care le enumăr în continuare: 29. Ce este cercul. 30. Proprietăţi ale cercului. 31. Rază, diametru, coardă, arc. 32. Mijloace practice de a obţine un cerc. 33. Aplicaţii ale cercului (aplicaţii practice ale proprietăţilor cercului în lumea înconjurătoare). 34. Mişcarea de rotaţie. 35. Cercuri egale. 36. Compararea arcelor. 37. Operaţii cu arce. 38. Măsurarea arcelor. 39. Observare. (o observaţie scrisă cu litere mai mici şi în care se spune că măsura în grade a unui arc nu indică lungimea acelui arc etc.) 40. Arce şi coarde. 41. Construcţia unui arc egal cu un arc dat. Reiau câteva pasaje din acest capitol:

34: Mişcarea de rotaţie. Când o figură plană se mişcă în planul ei astfel ca unul dintre punctele ei să rămână pe loc, se spune că are o mişcare de rotaţie. În figura 71 se arată cum putem da unei foi de hîrtie  o mişcare de rotaţie. (Foaia de hîrtie este fixată pe masă cu ajutorul unui ac.) Când o figură plană are o mişcare de rotaţie, toate punctele ei descriu cercuri sau arce de cerc, care au acelaşi centru (punctul unde este înfipt acul). Acest punct se numeşte centru de rotaţie. Cînd o roată se învîrteşte (nu cînd se rostogoleşte), ea are o mişcare de rotaţie, centrul de rotaţie fiind chiar centrul roţii.

38: Măsurarea arcelor. Ca unitate de măsură pentru arce se ia a 360-a parte din cerc, numită grad (o). Gradul se subîmparte în 60 de părţi egale (…) Arcele se măsoară cu ajutorul unui instrument numit raportor (…)

Să ne uităm în mod similar şi la capitolul de introducere a unghiurilor. Acesta este împărţit în următoarele teme: 42. Ce este un unghi. 43. Unghi cu laturile în prelungire. 44. Compararea unghiurilor. 45. Operaţii cu unghiuri. 46 Observare. 47. Unghi la centru. 48. Unghiuri şi arce. Aici apare un titlu mai mare, Măsurarea unghiurilor, care are următoarele teme: 53. Măsura unui unghi. 54. Raportorul. 55. Observări. 56. Măsurarea unghiurilor pe teren. (…) Capitolul se încheie cu tema 72. Unghiuri mai mari ca 180o. Reiau şi aici câteva pasaje:

42: Ce este un unghi. (…) Un unghi este format din două semidrepte care pornesc din acelaşi punct. El poate lua naştere prin rotaţia unei semidrepte în jurul capătului ei. (…) Când este vorba de mărimea unui unghi, avem în vedere porţiunea din plan cuprinsă între laturile sale (haşurată în figura 85 – un unghi ascuţit şi unul obtuz cu interiorul haşurat) sau cât de mult trebuie să rotim una din laturi ca să o suprapunem cu cealaltă (…). Laturile unui unghi sînt semidrepte (nu segmente), ele indică două direcţii. Faptul că ele sînt mai lungi sau mai scurte (desenate evident) nu influenţează mărimea unghiului. Se are în vedere deschiderea lor. Uneori este mai bine să reprezentăm un unghi printr-o bucată de carton ca în figurile 87-90. (…)

46: Observare. Compararea unghiurilor, precum şi operaţiile cu unghiuri se pot înţelege şi dacă privim unghiul ca fiind născut prin rotaţia unei semidrepte. Astfel, în figura 87, a, unghiul al doilea este mai mic decît primul; aceasta înseamnă că, pentru a aduce o semidreaptă din poziţia OA în poziţia ON, trebuie s-o rotim mai puţin decît pentru a o aduce în poziţia OB; în figura 87, b, trebuie s-o rotim tot atît, iar în figura 87, c, – mai mult. În figura 88, unghiul AON este suma unghiurilor 1 şi 2; aceasta înseamnă că, pentru a aduce semidreapta OA în poziţia ON, trebuie să o supunem unei rotaţii date de unghiul 1 şi încă unei rotaţii, în continuare, dată de unghiul 2. A roti în continuare corespunde operaţiei de adunare a unghiurilor, aşa cum după ce am dus un segment de dreaptă AB, dacă mişcăm creionul în continuare pînă în C, adăugăm segmentul BC (fig. 92). (…) Mă bazez în redarea citatelor că onorat cititorul reuşeşte să-şi imagineze figurile la care Hollinger face referire (am preferat să nu mai încarc postarea cu diferite imagini; cine ţine neapărat să vadă acele imagini şi atmosfera emanate de acestea merită să facă efortul de a vâna aceste manuale în anticariate virtuale şi a le achiziţiona; ce frumos şi sugestiv este acest cuvânt: anticariat).

47: Unghi la centru. Nu reiau din această parte decât ultimul aliniat, urmare a unei figuri ce reprezintă un ceas tradiţional, la care oarecum acele sale sunt prelungite în două semidrepte, ca laturile unui unghi: Acele unui ceas formează un unghi la centru (fig. 94).

53: Măsura unui unghi. Dată fiind legătura dintre un unghi la centru şi arcul cuprins între laturile sale, putem măsura unghiurile măsurînd arcele lor. (…)

55: Observări. Cînd măsurăm un unghi cu raportorul, noi măsurăm de fapt un arc. Cînd aşezăm raportorul peste unghi ca în figura 100, unghiul devine unghi la centru, iar arcul corespunzător este partea din marginea raportorului cuprinsă între laturile unghiului. (…)

Nu are legătură cu subiectul nostru, dar nu mă pot abţine să nu vă redau şi aliniatul 3 de la aceste observări: Un unghi şi un arc sînt lucruri cu totul diferite. Un unghi nu poate fi egal cu un arc, nici mai mare ca el, nici mai mic, aşa cum un metru nu este egal cu un kilogram, nici mai mic, nici mai mare. Ne putem imagina situaţia acestui profesor emerit, de câte ori s-o fi lovit dânsul de întrebări în ceaţă de genul: Vreţi să spuneţi că unghiul şi arcul de cerc sînt acelaşi lucru? De vreme ce se măsoară ambele în grade?

72: Unghiuri mai mari ca 180o. Cînd o semidreaptă se roteşte în jurul unui punct, ea poate descrie unghiuri oricît de mari. Să luăm, de exemplu, acul mare (minutarul) al unui ceasornic (fig. 121). Într-o junătate de oră, el descrie un unghi de 180o, în ¾ de oră un unghi de 270o, într-o oră de 360o, în două ore de 720o ş.a.m.d. În acest manual vom folosi însă numai unghiuri mai mici decît 180o.

Mă opresc aici cu citatele din manualul de clasa a VI-a din 1966, sperând că aţi prins linia în care preda profesorul A. Hollinger aceste aspecte. Este evidentă forma în care eu m-am format şi din care peste ani a ieşit forma de predare ce v-am prezentat-o în prima parte. Pasajele citate de mai sus le-am citit însă conştient, ca dascăl, doar acum, odată cu redactarea acestui eseu, mai exact după ce tot restul eseului a fost redactat.

*

2) În cei 11 ani trecuţi până la următorul manual, cel din 1977, s-au produs unele modificări, dar multe lucruri au rămas la fel (am vaga imagine în minte că prin 1972 a fost o scurtă reformă). Vedem ca urmare două variante aparent diferite, dar care au clar elemente comune.

Iată începutul cuprinsului manualului din care am învăţat generaţia noastră: Cap.I. Recapitulare şi completări. Cap.II. Linia dreaptă. Cap. III. Unghiuri. Rotaţia. Simetria faţă de un centru. Restul cuprinsului nu este de interes pentru subiectul de faţă. Oricum, se vede că a dispărut capitolul despre cerc. Să analizăm cum funcţionau aspectele în discuţie în acel capitol III despre unghiuri.

3.1. Noţiunea de unghi. 1. În clasele anterioare s-a arătat ce este un unghi; în cele ce urmează vom preciza această noţiune. (puţin neinspirată – pentru noi – această exprimare “vom preciza această noţiune”, dar trebuie să avem înţelegere: Hollinger avea deja o vârstă avansată, era numit profesor emerit, venea din alte vremuri; Apropos manuale vechi, noi avem un manual semnat de dânsul din perioada interbelică). Două semidrepte OA şi OB (fig. III.1) care au aceeaşi origine împart punctele din plan nesituate pe nici una din ele în două părţi. În figură una din aceste părţi este haşurată şi cealaltă este acoperită cu puncte. Cele două semidrepte împreună cu una din aceste părţi ele planului formează un unghi.

Aşadar, Hollinger dă din startul capitolului drepturi egale unghiurilor proprii (cum le numim noi acum) şi unghiurilor supraobtuze. În figura respectivă este haşurată zona care actualmente se numeşte exteriorul şi este punctată zona care se numeşte actualmente interiorul unghiului propriu. Urmează o Definiţie. Un unghi este format din două semidrepte care au aceeaşi origine împreună cu una din părţile planului determinate de ele. (UAU!!!) Apoi vin componentele unghiului: Cele două semidrepte se numesc laturile sau braţele unghiului, originea lor comună se numeşte vîrful unghiului, şi partea din plan se numeşte interiorul unghiului. (Care parte din plan? Păi, aia care am ales-o, şi am haşurat-o în această fază incipientă.)

În general, una dintre părţile planului determinate de cele două semidrepte este mai mică (cea acoperită cu puncte în fig. III.1). Un astfel de unghi se numeşte unghi convex (în subsolul paginii apare şi un comentariu: Căci, dacă M şi N sînt două puncte oarecare din interiorul lui, tot segmentul MN se află în interiorul lui – ceea ce nu mai este adevărat în cazul unui unghi neconvex). Pentru a reprezenta un unghi, se desenează numai cele două semidrepte (fără haşuri). Ca să se ştie despre care din cel două unghiuri este vorba, se face în interiorul lui un arc de cerc cu centrul în vîrful unghiului sau un alt semn. În figura III.1, unghiul convex este indicat prin două arce, şi celălalt printr-un singur arc. Când nu există nici un arc, se înţelege că este vorba de unghiul convex. (…)

2. Un unghi poate lua naştere prin rotirea unei semidrepte. De exemplu, unghiul din figura III.4 poate lua naştere prin rotirea unei semidrepte din poziţia OM pînă în poziţia ON în sensul indicat de săgeata 1 sau din poziţia ON pînă în poziţia OM în sensul indicat de săgeata 2. În ambele cazuri, semidreapta descrie (mătură) tot interiorul unghiului – ca limba unui ceas (privită ca semidreaptă). (…)

3.2. Măsura unui unghi. 1. Unghi la centru. Când o semidreaptă se roteşteîn jurul originii sale descriind un unghi AOB (fig. III.7), în fiecare dintre punctele ei descrie un arc de cerc. Punctul M  descrie arcul 1, punctul N descrie arcul 2 ş.a.m.d. (M şi N sunt situate în figură pe latura OA a unghiului AOB, şi mai este încă un arc, cele trei arce trecând dincolo de latura OB) Toate aceste arce au acelaşi centru O. Prin trasarea unuia dintre aceste arce, unghiul devine unghi la centru. Un unghi la centru este un unghi al cărui vîrf se află în centrul unui cerc. Limbile unui ceas (privite ca semidrepte) formează un unghi la centru (fig. III.8). Între un unghi la centru şi arcul său există o legătură strînsă.

Urmează, sub titlul 2. Unghiuri şi arce o scurtă prezentare a acestei legături, după care vine partea 3. Măsura unui arc pe care o cunoaştem din manualul din 1966. La fel, cunoaştem şi partea 5. Măsura unui unghi etc. Aşadar, Hollinger introduce măsura în grade mai întîi tot pe arce de cerc, iar apoi la unghiuri, chiar dacă aparent a introdus mai întâi unghiurile.

Acestea erau părerile şi punctele de vedere ale profesorului A. Hollinger în anii ’60-‘70. Părerile mele, atât cele pro, cât şi cel contra, le-am prezentat detaliat în prima parte a eseului. Înainte de a încheia îmi permit totuşi să ordonez într-un scurt rezumat ideile despre cum ar trebui să arate introducerea noţiunii de grad în primele clase gimnaziale. Cu această ocazie voi mai face şi câteva ultime observaţii metodice legate de acest subiect, în contextul ultimei programe pentru gimnaziu. Mulţumesc încă o dată pentru oportunitatea oferită de a trata această temă de detaliu atât de fină şi totuşi atât de controversată.

*

Cerinţa introducerii pe principii intuitive a noţiunilor la clasele gimnaziale mici era considerată de la sine înţeleasă înainte de reforma uitată din 1980, dar este precizată şi în noua programă. În vederea introducerii pe baze intuitive a noţiunii de grad la copii trebuie să pornim de la realitatea lumii înconjurătoare. Or, lumea înconjurătoare, din punct de vedere al copilului, este o lume în mişcare. Copilul sănătos se mişcă mult; el cu greu stă locului (poate doar dacă este ţintuit în faţa micului ecran, vrăjit de imaginile fâlfâitoare). Prezentându-i lucrurile în mişcare le înţelege cel mai bine. Acesta este unul din principiile ce mi-au fost prezentate de mult despre predarea matematicii în general şi a geometriei în particular, de către cei mai vechi decât mine în pedagogia Waldorf. Dar predarea în mişcare nu este un principiu ce ţine neapărat de această pedagogie, ci este pur şi simplu un principiu al predării sănătoase, oblogatoriu mai ales la vârstele mici. Şi se vede din plin cum Hollinger foloseşte acest principiu al predării prin mişcare la introducerea noţiunilor la clasa a VI-a (semidreapta care în rotirea sa în jurul punctului de origine “mătură” interiorul unghiului, sau punctul care rotindu-se în jurul centrului descrie un arc de cerc etc.).

Am două observaţii speciale aici, legate de poziţionarea acestui tip de predare mai ales în conexiune cu vârsta elevilor: pe vremea acestor manuale elevii mergeau la şcoală, în clasa I, după împlinirea vârstei de 6 ani. Actualmente, elevii (vorbesc de cei ajunşi anul acesta în clasa a VI-a) au mers la şcoală, în clasa pregătitoare, tot cam după împlinirea vârstei de 6 ani. Astfel, vârsta de atunci de clasa a VI-a cam echivalează cu vârsta medie a copiilor de clasa a V-a, poate cu o mică întârziere datorată celor care au fost înscrişi în clasa pregătitoare înaintea împlinirii vârstei de 6 ani. Cu alte cuvinte, semestrul II din clasa a V-a este numai potrivit pentru a introduce noţiunea de grad în mişcare, într-o formă cum am văzut-o la Hollinger (pentru cei care pot să înţeleagă şi să creadă într-aşa o predare în mişcare, detaşându-se de predarea statică din ultimii 35 de ani). Totuşi, introducerea unei noţiuni noi în mişcare nu estestrict legată de vârstele mici, ci este doar strict necesară majorităţii elevilor din clasele mici. Să presupunem că am dori să-i explicăm această lecţie unui adult care nu a învăţat-o, nu o ştie, habar nu are ce-i acela un unghi. Şi la acesta tot prin mişcare şi prin analogie cu lumea înconjurătoare o vom face cel mai eficient. Metoda statică constructivistă, pe baza unor definiţii, este potrivită doar în cazul predării prin sistematizare a cunoştiinţelor la nouă reluare (predare în spirală la cunoştiinţe anterior dobândite)

Să reluăm firul discuţiei. Aşadar, există două mişcări de bază, mişcarea rectilinie şi mişcarea de rotaţie. Pentru a măsura mişcarea rectilinie avem unităţile de lungime. Trebuie introdusă o unitate de măsură pentru rotaţie, care este o mişcare de cu totul alt tip, cauză pentru care suntem puşi în faţa unor probleme de cu totul alt tip. Unităţile de lungime măsoară mărimea unui segment, segmentul obţinându-se punând vârful unui creion pe hârtie şi mişcându-l de-a lungul unei drepte, de-a lungul unui liniar. Trebuie însă să rezistăm tentaţiei de a face exact acelaşi lucru în cazul rotaţiei. Rotind un punct, manifestat prin vârful creionului de la compas, în jurul unui centru de rotaţie – vârful acului – vom obţine un arc de cerc la care putem fi uşor tentaţi să-i măsurăm ca mărime tot lungimea. Dar acest fapt trebuie evitat cu abilitate.

Aceasta este marea provocare la introducerea unităţii de măsură pentru rotaţie, de a distrage atenţia elevului, natural manifestată către un soi de lungime, doar că rotundă, şi a îndrepta atenţia spre centrul de rotaţie. Vom face aceasta ataşându-i centrului de rotaţie o direcţie, văzând apoi cum se roteşte direcţia în jurul centrului; un fel de punct care se uită într-o direcţie şi care învârtindu-se mătură cu privirea o porţiune din planul înconjurător. Hollinger făcea asta rotind o semidreaptă cu originea chiar în centrul de rotaţie, în jurul acestui centru. Pentru a coborî din zona abstractă în lumea înconjurătoare a elevilor, obţinând astfel o accesibilizare a spuselor sale, Hollinger apela apoi la exemplul ceasurilor (desigur cu ace, cele cu afişaj digital apăreau primele spre finele anilor ’70).

Eu prefer o altă variantă: stau drept în faţa clasei, cu faţa îndreptată către uşă şi o mână ridicată orizontal în faţă. Apoi, în timp ce explic, încep să mă rotesc, arătându-le elevilor o rotaţie completă, adică până sunt iarăşi poziţionat cu faţa şi cu mâna către uşă. În acest moment le explic că o rotaţie completă se împarte în 360 de părţi numite grade. Repet oarecum mişcarea sub formă de întrebare: cât m-am rotit dacă am făcut doar o jumătate de tură şi m-am întors doar pănă la a arăta spre geam? 180o, strigă toată clasa, apoi mă rotesc doar un sfert de tură etc. Îmediat apoi trec la tablă şi îi întreb pe elevi: dacă aş fi făcut treaba asta cu o cretă în mână pe o suprafaţă, ce aş fi obţinut? Un cerc, strigă toţi copiii. Aşa că desenăm un cerc ca manifestare a rotaţiei, şi în acesta trasez apoi diferite raze ca reprezentare a mâinii mele întinse în faţă, şi reprezint grafic astfel ceea ce am arătat mai înainte când mă roteam şi prezentam oral apariţia gradelor de rotaţie. Pe desen voi scrie 90o, 180o, 270o şi 360o atât pe cerc, cât şi pe nişte arce mici orientate cu săgeată până la direcţia respectivă. Apoi, cu o cretă colorată voi desena poziţia iniţială a semidreptei şi una finală oarecare, haşurând porţiunea măturată de semidreapta în rotire, explicând că acesta este un unghi. Aici luăm raportorul, îl poziţionăm cu atenţie exact în centrul cercului şi cu linia de 0o pe raza iniţială şi toată lumea citeşte câte grade s-a rotit raza respectivă. Apoi scriem măsura obţinută atât pe cerc, cât şi pe o săgeată rotundă în interiorul unghiului. Astfel, măsurarea rotaţiei este transferată simultan şi la unghiuri şi la arce (cei doi “copii” ai rotaţiei).

Pe caiet însă, nu vom scrie nici o definiţie, nici pentru arc de cerc, nici pentru unghi, şi desigur nici pentru grad. Dimpotrivă, trecem repede la raportorului ca instrument de măsurare a gradelor, pentru a face repede un nou desen, anume împărţirea cercului în cinci părţi egale (aplicaţie cu caracter ludico practic) şi a stelei în cinci colţuri (pentagrama): câte grade are o parte?, iar elevii care stăpânesc bine împărţirea strigă 72o! Ca temă se poate da desenarea unei octograme, o stea în opt colţuri, pe baza împărţirii cercului în opt părţi egale de făcut cu raportorul. Ora următoare se poate face o reactualizare prin împărţirea cercului în 9 părţi egale şi ca temă în 10 părţi egale (merge şi ca temă din prima, dar eu prefer să o fac ora următoare pentru a “aduna” şi ultimele “oiţe rătăcite”). Anexez în acest sens poza unui desen făcut zilele acestea pe post de recapitulare la începutul clasei a VI-a (avem 4 elevi noi în clasă pe care trebuie să-i iniţiem repede în aceste tehnici), ca să înţelegeţi la ce mă refer când vorbesc de desene frumoase şi abordare iniţial ludică a cunoaşterii elementelor geometrice (un desen asemănător cu roza vânturilor, dar cu 5 + 5 vârfuri, plecând de la împărţirea cercului în 10 părţi egale cu ajutorul raportorului: 360o : 10 = 36o etc.). Noi folosim nişte caiete fără poze pe copertă, cu foaie velină, şi câţiva elevi vor desena acest desen ca imagine pe caietul de geometrie.

În final doresc să accentuez câteva aspecte atinse pe parcurs, inclusiv prin citatele din Hollinger, dar nediscutate clar ca atare. În primul rând, consider dăunător să facem un transfer simplu de conţinut din forma de predare ce o aveam când unghiurile se introduceau doar în clasa a VI-a, un transfer ad literam în semestrul II din clasa a V-a, doar pentru că au apărut aici aceste titluri. Mult mai sănătos este ca în clasa a V-a să introduc noţiunile în mod ludic, pe baze intuitive, şi apoi, doar în clasa a VI-a, la o reluare şi stabilizare a noţiunilor, să le dăm eventual definiţii mai ordonate ale noţiunilor. Acolo nu mai este nevoie să vorbim despre rotaţie şi putem da direct gradele ca unităţi de măsură a unghiurilor (în vremurile noastre acestea au întâietate în faţa arcelor). Recitiţi vă rog, în acest sens, prima frază de la Noţiunea de unghi din manualul din 1977.

În altă ordine de idei, doresc să accentuez, şi rog cititorul a se întoarce cu atenţie la citatele de mai sus din manualele lui Hollinger: dânsul lăsa o perioadă bună de la introducerea unghiului până când apărea măsura unghiului (la fel şi la arce). Pe parcursul acelor lecţii dânsul vorbea doar de mărimea unghiurilor, le compara, le aduna etc., nu măsurile (adică nişte numere), ci unghiurile ca obiecte în sine. Recitiţi vă rog temele 36-38 de la componenţa capotolului despre cerc şi temele 44-54 din cadrul capitolului despre unghi în manualul din 1966.

Închei revenind în prezent, anume cu câteva citate din noua programă de matematică, pasaje care subliniază cât de mult se revine prin aceasta la stilul de predare de pe vremea profesorului Abraham Hollinger: Note definitorii (…) O caracteristică a acestei programe este că, în clasele a V-a şi a VI-a, noţiunile sunt prezentate intuitiv, evitându-se abuzul de noţiuni sau de abstractizare. (pag. 3) Programele şcolare de matematică pentru clasele a V-a şi a VI-a se axează pe introducerea intuitivă a conceptelor matematice, fără utilizarea excesivă a formalismului specific matematicii (…) Clasa a V-a: (…) Abordarea elementelor de geometrie urmăreşte, cu precădere, dezvoltarea deprinderilor de utilizare a instrumentelor geometrice (pag. 31) Clasa a VI-a: Programa şcolară de matematică (…) continuă demersul început în clasa a V-a din punct de vedere al prezentării intuitive/ descriptive a noţiunilor (…) Tema Noţiuni geometrice fundamentale continuă introducerea realizată în clasa a V-a (…) în aceeaşi manieră, prin raportare la imagine, model, obiect, mediul înconjurător. (pag. 32)

P.S. (scurtă lecţie de germană) După finalizarea eseului am mai găsit un argument de ordin lingvistic în favoarea gradelor de unghi. Cuvântul pentru “raportor” în limba germană este Winkelmesser, cuvânt compus din Winkel însemnând “unghi” şi Messer însemnând “măsurător”, adică “măsurător de unghiuri”. Vedem că nu le spune Bogenmesser însemnând măsurător de arce. Deci, cu tot respectul faţă de memoria profesorului Hollinger, în disputa noastră cred că totuşi câştigă unghiul în faţa arcului. (denumirea românească pentru acest instrument este oricum irelevantă din punct de vedere al înţelegerii copilului).

CTG, 18 sept. 2018

Introducerea noţiunii de grad pentru măsurarea unghiurilor şi a arcelor de cerc – (1)

De curând am primit o întrebare deosebit de clară despre acest subiect pe care de mult îmi doream să-l tratez. Îi mulţumesc pe această cale colegului (semnat Alex D.) pentru că „mi-a ridicat cum nu se putea mai bine le fileu” acest subiect. Iată întrebarea cu pricina:

Dacă introducem noţiunea de unghi mai întâi în forma unghiului la centru, ar fi de preferat să definim notiunea de grad întâi pentru arce de cerc şi să definim măsura unui unghi ca măsura arcului cuprins între laturi prin deschiderea unghiului, justificând astfel şi folosirea raportorului (studiind oarecum în paralel cercul şi unghiurile, cum am văzut în Manualul de a VI-a din ’69 de Rusu şi Hollinger)? Întrebarea apare în urma postării  părţii a 6-a a eseului despre folosirea intuiţiei în aranjarea materiei. Iată, pentru reamintire în următoarele două aliniate pasajul la care se referă probabil colegul.

Clasa a V-a, semestrul II: geometria poate fi începută în mod atractiv pentru micile minţi cu o serie de construcţii cu rigla şi compasul, pornind de la marea minune numită Floarea vieţii, o reprezentare cu tente profund artistice a împărţirii cercului în exact şase părţi egale cu compasul. Steaua lui David şi tot felul de combinaţii dintre acestea dau începutului de geometrie o tentă istorico mistică venită din vechime, oferind începutului de geometrie o atmosferă de poveste cu aspecte de manualitate şi multă înţelegere intuitivă într-o formă de gândire primitivă a fenomenului geometric. Acest capitol va conţine în continuare împărţirea cercului în 4 părţi egale, apoi în 8 şi în 12, toate realizate doar cu rigla şi compasul (…).

Pentru împărţirea cercului în cinci părţi egale se va introduce noţiunea de grad, plecând de la ideea împărţirii cercului în 360 de părţi (analogie cu anul de 365 de zile, idee apărută în vechime). Pe baza acestor gânduri se poate împărţi cercul cu raportorul centrat în centrul cercului (cel mai bine un raportor complet, de 360o). Cu această metodă se pot face împărţiri ale cercului şi în 10 sau 9 părţi egale. Astfel, noţiunea de unghi apare natural, iniţial în forma unghiului la centrul cercului. În finalul acestui prim capitol se vor construi diferite stelări, elevii primind să măsoare şi unghiurile din vârful stelărilor, trebuind să caute diferite “legităţi” ce apar în aceste situaţii. Astfel unghiurile se eliberează de centrul cercului, elevul formând astfel în mintea sa această noţiune dificilă într-un mod natural, distractiv, construindu-le cu singurul obiectiv de a face desene frumoase. Aspectele teoretice se vor lăsa pe anul viitor, în clasa a V-a apărând doar titluri şi mici comentarii pe lângă desene, eventuale descrieri ale metodelor de realizare a construcţiilor. În această parte va fi introdus şi echerul, însă doar ca instrument de verificare a unghiului drept. Subunităţile gradului merită introduse aici imediat după lecţia despre unităţile şi subunităţile pentru măsurarea timpului. (…)

Primul lucru care îmi vine în minte legat de acest subiect este o întrebare al cărei răspuns îi dă un iz de banc, întrebare cu care-i surprind pe colegi de aproape 20 de ani: ce măsurăm în primul rând cu gradele? Unghiurile sau arcele de cerc? După părerea mea răspunsul este cât se poate de simplu şi totuşi surprinzător: Nici una, nici cealaltă! La origine, gradele măsoară rotaţia!

Permiteţi-mi să argumentez acest răspuns. Fizica se ocupă cu două tipuri de mişcare: mişcarea rectilinie şi rotaţia. Exprimat în modul cel mai simplu, orice mişcare este de obicei compunerea celor două tipuri. Cu unităţile de lungime măsurăm iniţial distanţa parcursă de un punct material ce se deplasează rectiliniu (apoi o adaptăm noi şi la mişcarea pe alte traiectorii decât rectilinii). În mod corespunzător ne trebuie şi o unitate de măsură pentru rotaţie (iniţial cea plană), iar aceasta este în şcoala noastră gradul sexazecimal.

Cât este de mare gradul? Prin convenţie o rotaţie completă a fost împărţită în 360 de părţi, acest număr fiind ales ca aproximarea cea mai bună din punct de vedere al calculelor pentru numărul de zile dintr-un an, aproximare venită din vechime. Deci, o rotaţie completă are 360o. O jumătate de rotaţie are 180o iar un sfert de rotaţie 90o. Bine, veţi spune, şi dintre unghi şi arc, care are întâietate? Părerea mea este că nici unul nu este mai important. Diferă doar ordinea logică în care sunt folosite odată cu introducerea elementelor de materie şi parcurgerea claselor de studiu.

Astfel, paradigma în care actualmente „suntem acasă”, forma cu care suntem obişnuiţi, este următoarea: clasa a VI-a şi a VII-a (până spre final) sunt sub dominaţia totală a unghiului. În finalul clasei a VII-a apar pentru scurt timp arcele şi măsurile de arc, dar dispar apoi ca utilizare până prin liceu. Dar nici în liceu nu mai apar foarte clar, pentru că de 20 de ani a doua parcurgere, mai matură, a geometriei a fost scoasă (mă refer aici la marea învârtoşeală a patrulaterelor inscriptibile, a unghiurilor înscrise în cerc sau formate de o coardă cu o tangentă, a puterii punctului faţă de cerc etc.). Rămân doar vagi aplicaţii în zona trigonometrică, dar şi aici materia a fost algebrizată la maximum (mai nimeni nu mai predă cercul trigonometric şi justificările bazate pe geometrie ale respectivelor cunoştiinţe). Cine are nevoie de acestea la facultăţile tehnice – ghinion – să se descurce singur cum poate,  eventual în particular. Apropos cercul trigonometric: oare câţi ne gândim despre felul cum îi loveşte lipsa acestuia şi a justificărilor relaţiilor trigonometrice pe elevii cu o gândire bazată mai mult pe vizual şi pe raţionament spaţial? Vă zic eu: „ îi rupe”! Şi apoi ne plângem că n-a învăţat nimic copilul ăla. Ba nu! Noi nu i-am predat conform setării creierului său. Noi avem o materie prost concepută şi noi nu luăm măsuri de corectare minimală la clasă.. Noi suntem de vină, atât cei de la minister, cât şi cei de la clasă.

Deci, să ne lămurim, nu ia nimeni întâietatea unghiului (mă refer la întâietatea de preocupare prin ordinea materiei). Dar unghiul este o figură iniţial foarte abstractă. Una este să vorbeşti despre lungimea unui segment şi toţi copiii iau liniarul şi îl măsoară, şi alta este să le definim unghiul, iar apoi să le cerem imediat să-l măsoare. Gafa făcută în ultimii aproape 10 ani cu introducerea unghiului şi a măsurii sale în clasa a V-a prin mutarea simplă a lecţiei din clasa a VI-a este evidentă. Nu mă miră în acest context întrebarea unei colege în urmă cu mai mulţi ani: tu cum predai unghiurile? Că la mine elevii nu le înţeleg. (observase pe careva elevi de la mine din clase cu care se ocupase în particular, că ştiau unghiurile, le înţelegeau, le foloseau natural).

Această constatare ne duce tot mai aproape spre întrebarea: Bine, bine! Şi noi ce definim mai întâi? Arcul sau unghiul? Eu personal nici una nici cealaltă. În asta constă de fapt predarea intuitivă: să pleci de la ceva „intuitiv”, fără să defineşti acel ceva, să-l stabilizezi prin utilizare (ludică ar fi cel mai bine), iar apoi ulterior, cândva, la o viitoare abordare (predarea în spirală) să lămureşti lucrurile teoretic.

Ca să clarificăm această brambureală (nici un apropos, d-na Abramburica, subiectul acesta nu vă priveşte), să ne imaginăm cele două noţiuni în dispută, unghiurile şi arcele, poziţionate alături, fiecare cu pretenţiile sale de definire ca obiect şi ca unitate de măsură, iar undeva deasupra lor, dominându-le prin întâietate absolută: rotaţia. Elevul trebuie să primească în primul rând rotaţia, iar apoi imediat, dacă se poate chiar în paralel, cele două manifestări ale acesteia în fizic, unghiurile şi arcele. Înainte ca cel două noţiuni să se despartă, ele sunt încă împreună „în casa părintească”. Dar care este „casa părintească”? Pentru că rotaţia nu se poate reprezenta bine pe tablă ca o figură statică. Păi figura geometrică fizică în care se manifestă rotaţia este cercul, anume cercul trasat şi privit din centrul său (deci, nu un cerc desenat în jurul unei farfurioare). Rotaţia are un centru de rotaţie, iar manifestarea în planul fizic a rotaţiei o reprezintă cercul, instrumentul pentru vizualizarea acesteia fiind compasul. Iar dacă ne poziţionăm în centrul cercului şi ne rotim un pic, vom vedea că privirea noastră parcurge un unghi plecând de la poziţia iniţială şi până la noua poziţia, vorbesc de unghiul la centru, iar dacă întind mâna în faţă (ca o rază), vârful degetelor parcurg un arc de cerc, arcul subântins de acest unghi la centru. În timp ce mă rotesc, privirea mea parcurge un unghi, în timp ce capătul mâinii întinse parcurge un arc. Sper că aţi înţeles: eu fac aceste mişcări în faţa clasei cu mâna întinsă în faţă, întâi cele cu 360o, 180o şi 90o, apoi ultima cu măsura oarecare, pe care apoi o desenez şi pe cercul de pe tablă.

După ce completez pe tablă ce am arătat prin mişcare fizică, le mai arăt încă o dată cu ajutorul compasului de tablă văzut ca o bună imagine pentru un unghi (am un compas vechi din lemn cu braţele drepte şi care se deschide până peste 270o). Ţin compasul închis orizontal cu acul şi creta către stânga (elevii văd către dreapta) şi încep să-l deschid până la un moment când mă opresc şi îi privesc mândru: “acesta este un unghi, iar creta care se mişcă prin aer, dacă ar fi pe tablă ar descrie cercul respectiv”. Voi reveni la această exemplificare pentru vizualizarea unghiului, deschizând compasul ca pe un unghi, în clasa a VI-a când voi face clasificarea unghiurilor. Acolo eu fac o primă clasificare mai simplă (unghi ascuţit, drept şi obtuz), iar apoi una completă (unghi nul, ascuţit, drept, obtuz, alungit, supraobtuz şi unghi plin), ambele desenate pe tablă, dar şi arătate în aer prin deschiderea compasului privit ca un unghi.

Aşadar, mai întâi iau cercul ca manifestare a mişcării de rotaţie în planul tablei sau al caietului (se pot folosi chiar săgetuţe pe cerc care să arate mişcarea de rotaţie), iar apoi, din acesta, prin analiză a fenomenului, deduc unghiul la centru şi arcul de cerc, folosind ambele aceeaşi unitate de măsură: gradul ca măsură a rotaţiei. Aici se pot chiar introduce acele mici arce de cerc, uneori dublate sau chiar triplate, ce le punem în interiorul unghiului, aproape de vârful său, pentru a evidenţia unul sau altul dintre unghiuri. Sfatul meu este însă ca la primele utilizări să nu punem un simplu arc, ci de fapt un arc cu săgeată care să scoată în evidenţă rotaţia. Nu există un principiu „bătut în cuie”, dar eu pornesc în primele exemple de la poziţia cunoscută ca „originea cercului trigonometric”, adică punctul din partea dreaptă a cercului (îl putem denumi şi Est, prin analogie cu poziţia respectivă pe hărţile geografice), iar apoi rotaţia o pornesc în sens trigonometric, adică deschid unghiul sau arcul în sus. Desigur că elevilor nu le spun nimic din toate această ciudată „sădire a unor seminţe trigonometrice” (voi reveni din nou la poziţia specifică din cercul trigonometric, atunci când le voi explica apariţia raportului sinus dintre catetă şi ipotenuză într-un triunghi dreptunghic, în semestrul II din clasa a VII-a).

Măsurile le voi trece la început în paralel şi în vârful unghiului la centru şi pe arcul parte a cercului, la început deduse prin gândire, prin împărţirea cercului în părţi egale (cuvântul congruent îl introduc de-abia în clasa a VI-a). Concret, în primul rând voi lua un cerc împărţit în patru felii, ca la o pizza mică (noţiunea de sector de cerc poate şi aceasta să vină mai târziu), având trecut 90o în fiecare colţ. Aici putem aduce pentru prima dată atât raportorul poziţionat cu centrul în centrul cercului, şi copiii să vadă că acolo sus scrie 90o, dar şi echerul, copiii văzând cum echerul intră perfect în „unghiul drept”.

Suma unghiurilor exterioare

În prima postare despre Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat, publicată la începutul lui 2018, vorbeam despre Suma unghiurilor exterioare ale unui triunghi sau ale unui patrulater. Această serie de teoreme neinclusă în programa oficială este surprinzătoare prin faptul că rezultatul este întotdeauna 360o (se păstrează şi la orice alt poligon), pe când suma unghiurilor interioare variază, adăugând câte 180o la fiecare latură în plus.

Teoremele pot fi prezentate “pentru pretenţioşi” şi într-una singură, dar eu recomand eşalonarea acestora în trei etape, în paralel cu evoluţia gândirii elevului, mizând în fiecare pas pe surprinderea elevului, dar şi pe faptul că de la un moment la celălalt aceştia evoluează iar subconştientul lor lucrează. Prezentarea unei singure teoreme la lecţia despre poligoane în clasa a VII-a ar dezvălui întregul fenomen de-o dată, eliminând factorul temporal şi evoluţia gândirii copilului din discuţie. Aceasta ar fi o predare curat matematică, pe când eu pledez pentru o predare mai artistică, ca într-un film ce nu-ţi dezvăluie dintr-o mişcare totul, ci îţi eşalonează informaţiile până spre final, personajele evoluând cu timpul (la fel şi în forma propusă de mine, unde informaţiile evoluează).

Concret, eu nu am făcut la clasă suma unghiurilor exterioare, ci am dat-o ca temă, discutând-o apoi la începutul orei următoare. Din temele elevilor am ales o serie de imagini care arată şi diferitele tipuri de gândire, conform nivelului de evoluţie al gândirii elevului. Astfel, Elevul 1 are clar o gândire concretă, o gândire în stadiul operaţional concret (gândire specifică copiilor): el a măsurat cele trei unghiuri exterioare şi a calculat suma. Evident că a înţeles ce sunt acelea unghiuri exterioare şi mânuieşte corect şi exact raportorul.

Elevul 2 s-a gândit că ar trebui să aplice teorema învăţată la clasă, dar gândirea sa este încă concretă la bază. Elevul 3 este trecut de mult într-o etapă nouă de gândire, cea specifică stadiului operaţional formal (nivelul adult de gândire) El nu a mai măsurat nimic, ci doar a aplicat sec teoremele învăţate înainte, dovedind că stăpâneşte inclusiv gândirea algebrică necesară unui astfel de calcul. Se vede că elevul 2 este situat în procesul evoluţiei gândirii într-o poziţie intermediară, de tranziţie, între gândirea concretă şi cea formală (trecerea de la o fază la cealaltă a gândirii se face – teoretic – undeva între 11 şi 12 ani, existând însă şi excepţii în ambele sensuri). După verificarea temei le-am arătat elevilor şi o demonstraţie de tipul celei cunoscute de la suma unghiurilor interioare în triunghi.

Când am trecut la patrulatere, după prima lecţie unde studiasem suma unghiurilor (interioare), le-am dat din nou ca temă găsirea sumei unghiurilor exterioare. Elevii tocmai au văzut că suma unghiurilor interioare s-a dublat (aşa văd elevii în acel moment; că se adaugă de fapt încă 180o odată cu adăugarea unei laturi, asta vor descoperii de-abia la studiul poligoanelor cu mai multe laturi). De vreme ce suma unghiurilor interioare s-a dublat, este de aşteptat să se modifice rezultatul şi la suma unghiurilor exterioare, dar, surpriză (acasă, la făcutul temei, pentru cei care au forţa), suma unghiurilor exterioare se păstrează la fel ca la triunghiuri. Între timp tehnica de calcul a mai evoluat, există şi ştersături, poate a mai ajutat şi o verişoară dintr-o clasă mai mare (?), dar oricum, iată că răspunsul este tot 360o (ultima imagine).

La poligoanele regulate voi da din nou această temă şi ne putem închipui cum vor fi rezolvările şi discuţiile de la clasă (poate vor fi elevi care vor zice direct la datul temei că rezultatul trebuie să fie tot 360o). ctg

Didactica matematicii 2018

Profesorii Facultății de matematică de la Universitatea Babeș-Bolyai din Cluj organizează din anii ’80 o sesiune de comunicări știintifice sub titlul Didactica matematicii. Manifestarea are loc de obicei în perioda de primăvară târzie și este găzduită în fiecare an în altă locație din Cluj sau din Ardeal. Anul acesta Didactica matematicii are loc la Cavnic în data de 19 mai: http://www.math.ubbcluj.ro/~didactica/.

Personal, am participat pentru prima dată la această sesiune de comunicări stiințifice în anul 1992, iar de atunci de mai multe ori, pierzând numărătoarea participărilor. Lucrarea mea pentru această ediție a Didacticii matematicii are titlul Criteriul psihologic al intuiției în selectarea teoremelor de demonstrat în gimnaziu, fiind un subiect la care am lucrat începând din ianuarie. Pentru cei care n-au citit părtile acestui eseu la momentul apariției vă ofer un scurt rezumat al principalelor aspecte analizate:

Constantin Titus Grigorovici, profesor Liceul Waldorf Cluj-Napoca

Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat – (PS)

S-ar putea crede că un eseu atât de lung ar fi trebuit să epuizeze definitiv subiectul propus (PS-ul de faţă a fost redactat după partea a III-a a eseului, fiind un scurt apendice al acesteia; scuze pentru întârzierea publicării). Aplecându-ne cu răbdare şi meticulozitate asupra subiectului, stârnit de gândurile cu tâlc expuse de profesorului Eugen Rusu în lucrarea sa De la Tales la Einstein (Lyceum, ed. Albatros,1971), am găsit o sumedenie de idei legate de nivelul evidenţei drept un criteriu psihologic legat de folosirea intuiţiei în selectarea itemilor de parcurs la geometria gimnazială. Totuşi, odată ce am părăsit redactarea textului şi subiectul în sine, luând distanţă şi admirând întregul de la depărtare, se pot vedea şi alte aspecte ce nu au fost atinse.

De pildă, se poate pune în discuţie diferenţa dintre nivelele evidenţei la fenomenele geometrice faţă de fenomenele numerice. Am atins scurt acest subiect atunci când am afirmat că demonstraţiile pe bază de arii ale teoremei lui Pitagora au un nivel de evidenţă net superior demonstraţiei pe bază de rapoarte, demonstraţie ce are un profund caracter algebric. Asfel, demonstraţia tradiţională din manuale, pe baza teoremei catetei, are un ciudat caracter de “Hocus-Pocus!”: majoritatea elevilor nici nu prind clar ce s-a întâmplat, şi nici nu înţeleg clar rezultatul la care s-a ajuns. Ei pricep că s-a ajuns la faimoasa teoremă a lui Pitagora, dar rămân doar cu o stare dilematică generală: “totuşi, despre ce-i vorba aici?”. Iar această stare este foarte îngrijorătoare pentru că prin ea elevul se învaţă să nu gândească, situaţia fiind generalizată atât la mulţi elevi inteligenţi în ceea ce priveşte majoritatea lecţiilor, cât şi generalizată în sensul unei majorităţi a elevilor, având deja un caracter de pandemie.

Revenind la compararea nivelelor de evidenţă a diferitelor demonstraţii, a diferitelor căi de a explica un anumit rezultat matematic, trebuie conştientizat clar că există căi mai vizuale şi căi bazate mai mult pe tehnicile de calcul. Un bun exemplu în acest sens îl reprezintă formula numită pătratul sumei, (a + b)2 = a2 + 2ab + b2, la care avem cele două căi cunoscute de obţinere, de justificare: calea tradiţională prin calcul algebric, care oarcum justifică supratitlul de formule de calcul prescurtat, şi calea geometrică la fel de cunoscută, dar deseori neglijată, în care formula respectivă este privită drept aria unui pătrat mare descompusă într-o sumă de două arii de pătrate diferite şi două arii de dreptunghiuri congruente. De obicei profesorii fac la clasă prima rezolvare în urma căreia elevii văd că iarăşi profesorul se agită şi înrămează ceva ca fiind foarte important, dar la care ei rămân cu un mare semn de întrebare, asemănător cu o stare de “ceaţă pe creier”. Dacă imediat după aceasta profesorul aduce şi a doua justificare, cea geometrică cu arii, atunci aceasta are de obicei efectul unui vânticel proaspăt de primăvară care alungă ceaţa de pe gândirea elevilor: “Aha, este evident. Da, aşa-i! Se vede.”

Aici nu putem spune însă că una dintre rezolvări ar fi mai importantă decât cealaltă, dându-i căştig de cauză şi întâietate, eliminând-o pe cea mai puţin importantă, şi asta dintr-un motiv foarte simplu: există copii de diferite feluri, unii având o gândire cu afinităţi mai apropiate de lumea numerelor, alţii cu o gândire mai abilă în lumea imaginilor, potrivită mai degrabă căilor geometrice. Cum am mai spus: poziţionarea unor itemi pe treptele scării evidenţei are un profund caracter subiectiv din punct de vedere psihologic. Alăturarea celor două căi de obţinere a formulei oferă siguranţa unui rezultat mai bun al înţelegerii, atât la nivelul clasei, cât şi la nivelul fiecărui individ. Altfel, o predare unilaterală are mari şanse de a-i neglija pe unii dintre elevii, care sunt capabili şi inteligenţi, dar dotaţi cu gândirea unilaterală mai potrivită celeilalte dintre cele două direcţii.

Aceste idei sunt susţinute şi de către gândurile din lucrarea profesorului Eugen Rusu, combinând cele două pasaje deja cunoscute: Întrucît grecii nu erau familiarizaţi cu calculul algebric, ei vedeau în a2 o arie, nu un număr-măsură ridicat la pătrat (privit ca operaţie de ordinul III; pag.38) şi: evoluţia matematică a unui individ este, cu prescurtări, asemănătoare cu evoluţia istorică a umanităţii (pag.4). Cu alte cuvinte: la fel ca la primii învăţaţi greci, gândirea algebrică în curs de formare s-ar putea să nu-i ofere elevului încă o siguranţă deplină, pe când raţionamentele legate de arii (măsura suprafeţei) să-i asigure o claritate şi o certitudine mai evidentă, cu acestea elevul ocupându-se deja aritmetic şi geometric încă din clasa a V-a

CTG 01.02.2018

Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat – (VI)

Eseul de faţă a pornit ca o analiză a modului de predare a geometriei, plecând de la noua programă de matematică pentru clasele gimnaziale, unde la sugestiile metodologice de la pagina 30 citim: Programele de matematică pentru clasele a V-a şi a VI-a se axează pe introducerea intuitivă a conceptelor matematice, fără utilizarea excesivă a formalismului specific matematicii (notaţii, teorie prezentată in extenso, demonstraţii exhaustive)… Programele şcolare de matematică pentru clasele a VII-a şi a VIII-a realizează trecerea de la modelele predominant intuitive, abordate în clasele anterioare, la definirea unor noi concepte, demonstrarea unor proprietăţi …La pagina 32 găsim următoarele sfaturi: …Caracteristicile şi proprietăţile configuraţiilor geometrice vor fi evidenţiate prin observare directă, experiment, măsurare, în sensul unei abordări cât mai naturale şi intuitive. … La tema Triunghiul, caracteristicile şi proprietăţile configuraţiilor geometrice se vor evidenţia prin observare directă, experiment, măsurare, urmând ca după formarea deprinderilor de bază să se utilizeze raţionamente simple şi instrumente geometrice pentru realizarea desenelor specifice. …

Legat de formalismului specific matematicii, la pagina 9 a programei, la finalul clasei a V-a, autorii chiar au avut curajul să cuprindă următoarea observaţie: 2Notaţia ∢AOB reprezintă atât unghiul AOB, cât şi măsura unghiului AOB, în funcţie de context. Şi când mă gândesc că eu am auzit de măsura unghiului, adică de scrierea m(∢AOB) deabia în clasa a IX-a!

În paralel cu analiza diferitelor citate din programă, am apelat la o lectură atentă, chiar meticulos de atentă, “printre rânduri” a lucrării profesorului Eugen Rusu, De la Tales la Einstein (Lyceum, ed. Albatros,1971), cu accent pe primele capitole corespunzătoare geometriei Greciei antice. Iată, în acest sens, un ultim citat legat de perceperea acestei moşteniri de către urmaşii lor. Astfel, în Capitolul V al cărţii, Între matematica antică şi cea din epoca modernă, Eugen Rusu face o analiză a trecerii cunoaşterii prin evul mediu. În al doilea subtitlu Se păstrează Elementele lui Euclid aflăm că se păstrează cartea de geometrie, dar se pierde spiritul geometric. În general, în această perioadă, cultura înseamnă mai mult prosternare în faţa unor texte considerate ca autoritate în materie, cel mult comentarea literei lor, cu efortul de a le înţelege, şi mai puţin sau de loc activitatea axată pe descoperirea adevărului. Atitudinea faţă de Cartea sfîntă – pentru unii Biblia, pentru alţii Coranul sau Talmudul – în esenţă, axată pe crede şi nu cerceta şi pe veneraţia faţă de autori, Carte care dă învăţături, nu invitaţii la gîndire, este imitată, de la sine, şi faţă de cărţi “profane”. Biserica, începînd din secolul al XIII-lea, îl recunoaşte pe Aristot, şi-l apropie. De ce? (…) tocmai adoptînd pe Aristot ca autoritate indiscutabilă, Biserica înăbuşea spiritul cercetării libere.

Într-un astfel de climat, la ce serveşte Euclid? Cel mult să-l înveţi, respectîndu-l. Un fapt semnificativ: încă de la începutul secolului al VI-lea, Boetius dă o carte de geometrie, în care sînt puse numai enunţuri de teoreme din Euclid. Demonstraţii dă numai la primele trei teoreme, în anexă, ca să vadă cititorul că poate avea încredere în autor. Pentru ei enunţul – un fel de “învăţătură” – e important. O carte de geometrie fără demonstraţii! Bazată pe “încredere”, pe prestigiul autorului! (pag 99-100)

Dacă pe vremea respectivă oamenii erau ţinuţi departe de procesul gândirii în acest fel, dimpotrivă, în ultimii peste 30 de ani majoritatea elevilor, toţi cei care nu reprezentau chiar vârfurile claselor, adică “ne-olimpicii”, au fost ţinuţi departe de procesul gândirii printr-un nivel prohibitiv al rigurozităţii şi formalismului matematicii, combinat cu un nivel foarte ridicat de dificultate al aplicaţiilor parcurse la clasă sau oferite ca temă, un nivel la fel de prohibitiv pentru majoritatea elevilor.

Totuşi, chiar dacă sistemul s-a prezentat în faţa elevilor ca având pretenţia să se demonstreze TOTUL, de fapt a ajuns a decide că unele lucruri nu trebuie demonstrate, iar lista acestor teoremelor care nu se demonstrează a crescut de la un an la altul pentru a face loc în ora de matematică cât mai multor aplicaţii.

În această ultimă parte a eseului de faţă doresc să trag anumite concluzii, despre cum ar trebui abordată geometria din punct de vedere a folosirii intuiţiei. Oricum, este de apreciat apariţia cuvântului intuiţie în noua programă de matematică valabilă începând din 2017 (cuvântul respectiv apare în diferite forme de peste 20 de ori în această programă). Din păcate, impresia lăsată este că se cere o predare intuitivă doar în clasele a V-a şi a VI-a, după care “GATA!”, din a VII-a o luăm din nou aşa cum ne pricepem mai bine. Analizând toate cele spuse şi scrise în primele cinci părţi ale acestui eseu, putem trage însă câteva concluzii destul de diferite de impresia respectivă.

Folosirea intuiţiei în înţelegerea şi justificarea afirmaţiilor geometrice porneşte de la un nivel ridicat şi coboară cu timpul la nivele tot mai scăzute, fără însă să dispară total nici în clasele mari. Dimpotrivă, demonstrarea riguroasă porneşte cu paşi timizi în clasa a VI-a şi doar la afirmaţiile cu un nivel al evidenţei scăzut. Acest criteriu rămâne valabil de-a lungul întregului ciclu gimnazial, dar creşte numărul de situaţii care primesc demonstraţie. Un exemplu ar fi Teorema lui Thales care nu prea se demonstrează. În schimb, teorema bisectoarei permite demonstraţii foarte frumoase ce se pot face ca exemple de rezolvări. Este păcat a da această teoremă şi a sări direct la aplicaţii, fără a-i prezenta o demonstraţie (nivelul de evidenţă al acestei teoreme este foarte neclar). O situaţie similară avem la teorema despre poziţia centrului de greutate al unui triunghi, la care merită prezentate chiar două demonstraţii (cu linie mijlocie, respectiv cu teorema fundamentală a asemănării).

Un alt exemplu ciudat se găseşte în finalul clasei a VII-a unde, la capitolul despre cerc se fac câteva teoreme plictisitoare (coarde congruente la arce congruente; arce congruente între coarde paralele etc.), al căror singur obiectiv real ar fi să ducă spre teorema “tangenta perpendiculară pe raza în punctul de contact”, teoremă care însă nu se mai demonstrează. Atunci, pentru ce s-au făcut primele, care sunt destul de evidente şi nu sunt folositoare în probleme?

Revenind la folosirea intuiţiei vizuale în comparaţie cu folosirea demonstraţiilor teoretice pentru justificarea afirmaţiilor din cadrul lecţiilor, consider că cele două fenomene ar putea fi reprezentate grafic oarecum similar cu cele două curbe ale funcţiilor exponenţiale (1/2)x şi 2x, una descrescătoare dar nedispărând oricât de mult am merge la dreapta, cealaltă crescătoare, ele intersectându-se undeva la trecerea din clasa a VI-a în a VII-a.

Faptul că, aplicând aceste principii, în clasa a VI-a nu ar trebui să ne propunem a demonstra afirmaţii evidente, acest fapt ne conduce la următorul gând: în clasa a VI-a, în procesul de cunoaştere al figurilor geometrice studiate, ar trebui să ne concentrăm mai degrabă pe procesul de construire al acestor figuri decât pe demonstrarea unor proprietăţi evidente ale acestora. Aici există o lume nebănuit de bogată din care elevii pot cunoaşte mult mai bine şi mai profund spiritul fiecărei figuri şi toate secretele sale, într-o formă mai potrivită vârstei. Astfel, pe lângă exemplele de bază pentru construirea triunghiurilor, elevii pot primii şi sarcini la care sunt nevoiţi să facă anumite calcule şi explicaţii preliminare. Iată câteva exemple în acest sens (preluate din ultima lucrare de control dată la clasa a VI-a la sfârşitul lui martie):

Ex.1) Construiţi triunghiul GHI dreptunghic în ∢H, cu HI = 6 cm şi m(∢G) = 70o. (stabilind mai întâi măsura unghiului I, complementul lui G, putem construi triunghiul pe baza cazului de construcţie ULU)

Ex. 2) Construiţi triunghiul isoscel ABC cu [AB] ≡ [AC], având baza BC = 4 cm şi m(∢A) = 50o, iar apoi trasaţi şi bisectoarea unghiului ∢B. (trebuie să stabilim mai întâi măsurile unghiurilor B şi C prin raţionament logic, scăzând din 180o şi împărţind la 2)

Ex. 3) Construiţi triunghiul DEF dreptunghic în ∢D cu cateta DE = 3 cm şi mediana DM = 4 cm. (informaţia despre lungimea medianei pe ipotenuză trebuie mai întâi transformată în lungimea ipotenuzei; apoi se construieşte triunghiul cu baza cateta DE şi verticala ridicată în D)

Se vede clar pe aceste probleme cum elevul este împins să gândească în paşi mici accesibili momentului său de dezvoltare, nefiind dresat să înveţe nişte demonstraţii pe de rost. Astfel, mai logic ar fi ca elevul să înveţe în clasa a VI-a “Cazurile de construcţie a triunghiurilor” (renumitele LLL, LUL, ULU) şi doar în clasa a VII-a la o reluare a materiei să privească fenomenul drept “Cazurile de congruenţă a triunghiurilor” folosibile în demonstrarea unor afirmaţii mai puţin evidente.

În altă ordine de idei, fenomenul intuiţiei poate avea o importanţă deosebită chiar şi în ordinea parcurgerii unui set de lecţii. Să luăm spre exemplificare setul de trei lecţii compus din “Teorema lui Thales”, “Asemănarea triunghiurilor” şi respectiv “Teorema fundamentală a asemănării”. Astfel, în lecţia introductivă la capitolul despre proporţionalitate, eu le prezint un “drum de transformare intuitivă” a cunoştinţelor din clasa a VI-a de la regula de trei simplă spre triunghiuri asemenea, TFA cu final la Teorema lui Thales (pentru detalii sau reamintire vezi postarea http://pentagonia.ro/proportionalitate-si-asemanare-prima-lectie/ ). Ordinea teoretic corectă ar fi însă “Teorema lui Thales”, “Asemănarea triunghiurilor” şi în final “Teorema fundamentală a asemănării”. Din punct de vedere al elevului şi al parcursului său prin exerciţii şi probleme, ordinea pedagogic corectă ar fi însă: “Teorema lui Thales”, “Teorema fundamentală a asemănării”, ambele având puternice exerciţii cu aplicaţii numerice (ambele pe aceeaşi figură tip), şi doar apoi “Asemănarea triunghiurilor” cu diferitele probleme la cazurile de asemănare.

În finalul acestui mega-eseu permiteţi-mi o încercare de caracterizare a acestui drum de la justificarea intuitivă la demonstraţia riguroasă, organizată pe semestre, începând de la primii paşi prin construcţii geometrice cu instrumente şi mergând până la nivelul de abordare axiomatică cu demonstrarea prin reducere la absurd a punctelor cele mai nevralgice din materie. Astfel:

Clasa a V-a, semestrul II: geometria poate fi începută în mod atractiv pentru micile minţi cu o serie de construcţii cu rigla şi compasul, pornind de la marea minune numită Floarea vieţii, o reprezentare cu tente profund artistice a împărţirii cercului în exact şase părţi egale cu compasul. Steaua lui David şi tot felul de combinaţii dintre acestea dau începutului de geometrie o tentă istorico mistică venită din vechime, oferind începutului de geometrie o atmosferă de poveste cu aspecte de manualitate şi multă înţelegere intuitivă într-o formă de gândire primitivă a fenomenului geometric. Acest capitol va conţine în continuare împărţirea cercului în 4 părţi egale, apoi în 8 şi în 12, toate realizate doar cu rigla şi compasul. La împărţirea cercului în patru părţi apare metoda ce va sta ulterior la baza trasării mediatoarei unui segment; acum vrem doar să trasăm o verticală perfectă pe un diametru. În mod similar, la împărţirea cercului în opt părţi vom avea nevoie de mişcarea ce se va dovedi ulterior baza pentru construcţia bisectoarei unui unghi. Acestea vor veni doar în clasa a VI-a, dar acum apar doar ca “şmecherii” interesante, apărute în urma problematizării, fie din imaginaţia intuitivă a unui elev, fie arătate de profesor.

Pentru împărţirea cercului în cinci părţi egale se va introduce noţiunea de grad, plecând de la ideea împărţirii cercului în 360 de părţi (analogie cu anul de 365 de zile, idee apărută în vechime). Pe baza acestor gânduri se poate împărţi cercul cu raportorul centrat în centrul cercului (cel mai bine un raportor complet, de 360o). Cu această metodă se pot face împărţiri ale cercului şi în 10 sau 9 părţi egale. Astfel, noţiunea de unghi apare natural, iniţial în forma unghiului la centrul cercului. În finalul acestui prim capitol se vor construi diferite stelări, elevii primind să măsoare şi unghiurile din vârful stelărilor, trebuind să caute diferite “legităţi” ce apar în aceste situaţii. Astfel unghiurile se eliberează de centrul cercului, elevul formând astfel în mintea sa această noţiune dificilă într-un mod natural, distractiv, construindu-le cu singurul obiectiv de a face desene frumoase. Aspectele teoretice se vor lăsa pe anul viitor, în clasa a V-a apărând doar titluri şi mici comentarii pe lângă desene, eventuale descrieri ale metodelor de realizare a construcţiilor. În această parte va fi introdus şi echerul, însă doar ca instrument de verificare a unghiului drept. Subunităţile gradului merită introduse aici imediat după lecţia despre unităţile şi subunităţile pentru măsurarea timpului.

Aceste construcţii au rolul de a familiariza elevii cu folosirea cât mai exactă a instrumentelor geometrice în forma lor practică, constituind un fundament solid pe care se vor aşeza ulterior noţiunile geometrice şi apoi, la un nivel superior, demonstraţiile. Obiectivul structural al acestei abordări îl reprezintă însuşirea folosirii şi formarea abilităţilor de lucru exact, cu ajutorul instrumentelor geometrice (dintr-un punct exact în celălalt punct, nu la 1-2 mm pe lângă acesta) şi concentrarea elevilor asupra acestora. Astfel, elevii nu sunt puşi în clasa a VI-a a se concentra asupra folosirii unor instrumente necunoscute în acelaşi timp cu însuşirea multor noţiuni noi, fiecare foarte importantă. Se evită astfel introducerea simultană la clasă a mai mulţi itemi noi pe diferite paliere de gândire şi abilităţi.

Clasa a VI-a, semestrul I: După un semestru de introducere ludică a primelor elemente de geometrie prin intermediul construcţiilor geometrice, a venit vremea unei sistematizări a noţiunilor de bază: dreaptă, segment, semidreaptă, lungimea unui segment, paralelism şi perpendicularitate, congruenţă, mijloc, mediatoare, unghi, măsura unghiului, clasificarea unghiurilor, bisectoare, unghiuri opuse la vârf, unghiuri formate de două paralele cu o secantă, simetria axială, unghiuri complementare sau suplementare etc. Toate acestea se vor introduce într-o formă mai riguroasă, dar totuşi pe baza unor observaţii intuitive, nefiind demonstrat nimic. În schimb se va cere elevilor să facă toate construcţiile posibile exacte la fiecare lecţie studiată. De pildă, la mediatoarea unui segment, se vor face atât construcţia cu rigla gradată şi echerul, cât şi construcţia cu rigla negradată şi compasul. La aceasta din urmă elevii îşi vor aduce aminte de “mişcarea” cunoscută în clasa a V-a la împărţirea cercului în patru părţi egale. Tot aici elevii vor primi sarcina construirii perpendicularei pe o dreaptă, atât: a) dintr-un punct exterior dreptei (coborârea perpendicularei dintr-un punct pe o dreaptă), cât şi: b) într-un punct al dreptei (ridicarea perpendicularei într-un punct pe o dreaptă).

Clasa a VI-a, semestrul II: După ce am construit un vocabular consistent de noţiuni cu care să putem lucra, a venit vremea să studiem principalele figuri geometrice închise, anume triunghiurile şi patrulaterele (cercul apare în această formă de predare de la început, alături de dreaptă, ca una din cele două figuri de bază ale geometriei).

În cele două capitole, triunghiurile şi respectiv patrulaterele se vor studia într-o formă intuitivă, pe baza observaţiilor evidente pentru elevul de clasa a VI-a. Aici vor apărea însă primele demonstraţii în situaţiile neevidente legate de unghiurile acestora (suma unghiurilor, unghiurile exterioare, triunghiul dreptunghic înscris în semicerc). Majoritatea proprietăţilor, fiind însă de natură evidentă, vor fi doar evidenţiate şi contabilizate pentru a fi pregătite la îndemână în vederea unei viitoare utilizări.

Preocuparea principală rămâne însă construcţia figurilor geometrice cu diferitele instrumente, construcţii realizate în toate formele posibile. De pildă, la capitolul despre triunghiuri elevii vor studia Cazurile de construcţie a triunghiurilor (renumitele LLL, LUL, ULU etc.). Acestea vor deveni baza unei transformări ulterioare în Metoda de demonstrare pe baza cazurilor de congruenţă a triunghiurilor. Şi la patrulatere se vor face cât mai multe construcţii concrete pe diferite situaţii. În cadrul acestei etape apar la diferite probleme de construcţie primele elemente de aplicaţii a teoremelor studiate în vederea găsirii elementelor necesare pentru realizarea construcţiei.

În finalul clasei a VI-a elevii vor parcurge o zonă aplicativă de geometrie în spaţiu, trebuind să construiască singuri cu instrumentele geometrice desfăşurarea unor prime corpuri, să le decupeze, să le plieze corect şi să le asambleze din hârtie mai groasă, lipindu-le pentru a obţine un cub, o prismă (de preferinţă triunghiulară), o piramidă patrulateră (de preferat cu feţele laterale triunghiuri echilaterale), un tetraedru regulat etc. Acestea se prezintă ca o primă vizită în zona geometriei 3D, ca o primă trecere în cadrul predării în spirală pentru geometria în spaţiu.

Obiectivul structural principal, alături de însuşirea tuturor noilor noţiuni de geometrie, îl reprezintă formarea simţului pentru exactitatea în geometrie prin construirea cât mai exactă a figurilor geometrice. Gândirea elevilor este încă într-o fază incipientă, concentrarea fiind pe o figură cât mai corectă.

Clasa a VII-a, semestrul I: Întreaga noastră atenţie se îndreaptă acum asupra gândirii (adică a demonstraţiilor), făcând aceasta în două direcţii. Prima ar fi problemele de demonstrat şi în acest sens cea mai bună pornire ar fi problemele având ca “personaje principale” unghiurile. Apoi se pot studia probleme în care apar mai mult relaţii legate de segmente: linia mijlocie, mediana pe ipotenuză etc. În acest moment elevii au ajuns la o maturitate de gândire suficientă încât să se poată confrunta cu succes cu problemele de congruenţa triunghiurilor, care sunt de multe ori cele mai complexe.

Legat de figurile geometrice, acestea se vor face exact mai ales atunci când cerinţa problemei nu este evidentă; dimpotrivă, în cazul unor cerinţe evidente, putem apela la schiţe făcute cu mâna liberă care nu vor mai fi exacte, fiind astfel contestabile, abordând problema sub argumentul: demonstraţi că, în cazul unei figuri corecte, următoarele segmente sunt congruente.

A doua direcţie de lucru ar fi poligoanele cu mai multe laturi (continuare evidentă a parcurgerii în anul precedent a triunghiurilor şi a patrulaterelor), atât în forma oarecare (suma unghiurilor), cât şi în forma regulată (măsurii unui unghi). Elevilor le place foarte mult această parte, fiind în directă conexiune cu singurele demonstraţii parcurse în clasa a VI-a. Văzând pentagonul sau octogonul regulat etc., elevii vor înţelege acum argumentaţia situaţiei particulare de la Floarea vieţii, anume de ce se întâmplă că acolo hexagonul regulat este compus exact din triunghiuri echilaterale. O astfel de abordare ne va permite în capitolul despre arii o apropiere de situaţia cercului (aria dodecagonului regulat – 12 laturi – este egală cu 3 r2, apoi aria cercului în format aproximativ etc.).

Pe lângă studiul ariilor triunghiurilor (exceptându-l pentru moment pe cel echilateral) şi a patrulaterelor particulare, la capitolul despre arii se poate demonstra şi teorema lui Pitagora (prin arii), având astfel din semestrul I material de lucru mult şi în domeniul calculelor (atât pentru elevii slabi, cât şi pentru olimpicii de fizică care au nevoie repede de această teoremă).

O observaţie este necesară aici în legătură cu organizarea algebrei: cel mai folositor este dacă elevii nu învaţă în semestru I numerele iraţionale, ci aplică în geometrie doar forma aproximativă a rezultatelor, atât în cazul celor din teorema lui Pitagora, cât şi în cazul celor de la aria şi lungimea cercului. Calculele aproximative oferă elevilor rezultate mult mai palpabile, mai pe înţelesul omului de rând. În semestrul II se poate trece apoi la scrierea iraţională a unor segmente date sau a rezultatelor.

Clasa a VII-a, semestrul II: Pe lângă schimbarea de paradigmă în privinţa scrierii lungimilor iraţionale, în semestrul II se vor studia (cu o aparentă întârziere) şi elementele de geometrie a proporţionalităţii: teorema lui Thales, triunghiurile asemenea, teoremele lui Euclid (a catetei şi a înălţimii) şi rapoartele trigonometrice. Tot aici se vor parcurge şi alte demonstraţii pentru teorema lui Pitagora (cel puţin cea cu teorema catetei, dar şi una pe baza formulelor de calcul prescurtat).

Clasa a VII-a se poate termina cu o nouă revenire prin zona cercului, cu teorema despre tangenta perpendiculară pe raza în punctul de contact şi cu un minim studiu al patrulaterelor inscriptibile sau circumscriptibile.

Clasa a VIII-a, semestrul I: Pornirea din zona intuitivă a materiei şi mersul în ritm accesibil către zonele mai dificile, această abordare trebuie respectată şi în cazul geometriei în spaţiu (3D sau stereometrie). Din punct de vedere al folosirii intuiţiei este evident că e mai sănătos să pornim cu studiul unui prim set de corpuri (cubul şi cuboidul – paralelipipedul dreptunghic, prismele, piramidele şi tetraedrul regulat) ce vor fi cunoscute din punct de vedere al trasării figurilor, al construcţiei desfăşurărilor şi al calculelor ariilor şi volumelor: nu doar o prezentare scurtă a acestora într-o lecţie iniţială, ci fiecare cu o lecţie completă cu probleme aplicative de calcul. Corpurile respective acţionează astfel ca veritabile “schele intuitive” pentru susţinerea sănătoasă a gândirii elevilor în timpul primilor paşi în geometria 3D.

Elevii ajută chiar şi la formarea lecţiei: fiecare formulă de arie poate fi dată prin judecată proprie de către elevi. După înţelegerea principiilor de bază la volum, elevii vor începe să dea şi formulele de volum.

Abia apoi merită abordate toate situaţiile de paralelism, perpendicularitate sau determinare de unghiuri între drepte şi/sau plane (“drumul” până la teorema celor trei perpendiculare şi unghiul diedru).

Clasa a VIII-a, semestrul II: Acesta va fi un semestru scurt, lăsând loc suficient parcurgerii testelor în vederea pregătirii examenului. Elevii mai au de studiat doar trunchiurile de piramidă şi corpurile rotunde. Aici se va atinge apogeul nivelului de complicaţie a demonstraţiilor unor teoreme, prin demonstrarea la clasă a formulelor de volum la trunchiul de piramidă (trebuie să fi fost parcursă la algebră măcar informativ formula diferenţei cuburilor), aria laterală a conului şi a trunchiului de con, cât şi formula de volum a sferei, inclusiv transformarea acesteia în formula de arie a sferei.

Nu poate lipsi din această abordare ce foloseşte intuiţia elevilor lecţia recapitulativă despre corpuri de rotaţie, lecţie ce se bazează în mod evident pe impulsul natural al omului pentru mişcare (când vedem pentru prima dată un obiect nou, îl luăm în mână şi îl studiem, adică îl rotim pe toate părţile).

Clasele de liceu: orice persoană cu un bun simţ legat de geometrie a ajuns în ultimii 20 de ani să simtă lipsa geometriei sintetice din clasele liceale. Aceste aspecte şi felul în care s-ar putea lua măsuri reparatorii reprezintă un subiect vast, pentru care acum ar merita trasate doar câteva direcţii de preocupare şi cugetare.

Există cel puţin două situaţii majore unde lipsesc elementele de geometrie: la clasele de ştiinţele naturii şi mate-info, respectiv la clasele cu profil tehnologic. Să le analizăm pe rând. Actualmente elevii de la primele categorii de clase amintite, adică în principiu elita matematică a ţării, aceştia nu mai apucă la ora actuală să facă pasul spre o cât-de-cât ordonată tratare axiomatică a geometriei, fascinantă prin îngrădirile ce apar la tot pasul în strădania de a demonstra cât de mult posibil (demonstraţiile prin reducere la absurd şi-ar găsi foarte bine locul aici). Pasul spre abandonarea aproape completă a gândirii intuitive şi exersarea profundă a gândirii raţionale pe bază de reguli, acestui pas i-ar veni vremea în clasele de după examenul de Evaluare naţională, în urma căruia elevii au fost selectaţi. Acest pas nu este pentru toţi; de-abia acum îi vine vremea şi este un mare păcat că elevii talentaţi la matematică nu mai au ocazia să îl cunoască.

Totodată, aceştia nu apucă să mai facă toţi paşii formatori de gândire complexă prezenţi în situaţiile dificile, abandonate în ultimii ani din clasele gimnaziale, dar şi pe cele ce combină elemente de geometrie cu elemente din alte capitole noi în liceu (trigonometria superioară, funcţia de gradul II etc.). La reforma din 1997 au fost abandonate toate aceste elemente de gândire pură, vie, în detrimentul elementelor reţetabile specifice gândirii algebrice (includ aici şi geometria vectorilor, care oricum vine mult prea repede în clasa a IX-a). Organizatorii programelor ar trebui să ia în seamă şi aceste aspecte la vremea redactării viitoarelor programe pentru liceu. Reamintesc în acest sens expresiile profasorului Eugen Rusu, care vorbea despre geometria în prima etapă de studiu, adică în gimnaziu, şi geometria în etapa a doua de studiu, adică de reluarea acesteia în liceu.

Pe de altă parte, elevii claselor cu profil tehnologic sunt cei care ar avea cea mai mare nevoie de elementele de calcul a corpurilor (stereometria), şi asta din motive pur practice. Aceştia sunt însă cei care – în general – au luat note mai mici la examenul din finalul clasei a VIII-a, putând presupune că mare parte dintre ei încă nu stăpânesc încă zona respectivă. O continuare a preocupărilor pe baze intuitive în direcţia calculelor, cu extinderi chiar şi în domeniul corpurilor neregulate, ar fi de mare folos pentru viitorul lor profesional practic. Amintesc în această direcţie doar un exemplu: proprietarul unei firme de măsurători cadastrale care se plângea că studenţii, ce urmau să fie absolvenţi în domeniu, habar nu aveau despre formula de arie a lui Heron, în general de nici un fel de elemente matematice necesare în domeniu (chiar dacă la ora actuală teodolitele oricum lucrează prin GPS).

CTG, la finalul lunii aprilie 2018

Problema care a împărţit România în două

În postarea Ordinea operaţiilor în clasele primare din februarie 2016 am discutat despre cum este înţeleasă sau nu ordinea operaţiilor în ciclul primar. Problemele mari sunt legate de ordinea efectuării între operaţia de adunare şi cea de scădere, şi se pare că problemele sunt de fapt la nivelul unor învăţătoare, care apoi îi învaţă greşit pe copii. În acest sens, când simt că „miroase” în clasă a o astfel de greşeală, eu îi întreb pe elevi: între adunare şi scădere, care operaţie se face prima?. Vă daţi seama ce distractiv-bulversantă devine ora dacă primesc un răspuns de tipul: adunarea!, la care dau din cap că-i greşit; apoi, repede careva are impulsul de a da celălalt răspuns posibil, după mintea lor: scăderea!, la care eu iarăşi răspund că NU!. După o clipă de linişte bulversată, careva răspunde sigur pe el: prima care-i scrisă!, iar eu în sfârşit mă arăt mulţumit. Uneori mai pun şi a doua întrebare: între înmulţire şi împărţire, care operaţie se face prima?, iar elevii ştiu de data asta răspunsul corect din prima.

La adresa Ordinea operaţiilor pe internet (august 2016) am tratat exemplul unei situaţii de ordinea operaţiilor propuse “internauţilor” străini, care scotea în evidenţă faptul că unele astfel de exerciţii nu se pot rezolva cu “calculatorul de buzunar”, fie el chiar şi din “deşteptofon” sau de pe laptop. În momentul acela mândria noastră de mari olimpici ne făcea să pufnim de râs profund dispreţuitor.

Iată, însă, cum arată o astfel de situaţie pe plaiurile mioritice ale internetului. Este vorba de banala “problemă” 7 – 5 + 2 = ?, despre care puteţi lectura prezentarea de la adresa Problema ASTA a impartit Romania in doua!. Dacă nu doriţi, iată aici materialul respectiv în variantă prescurtată (corectat şi cu diacritice).

*

Sunt de-a dreptul şocat. O problemă de clasa pregatitoare a reuşit să divizeze poporul român consumator de internet. Studiu de caz pentru ce se întâmplă acum în România. Se dă problema:

Şi mi-am zis că e o glumă proastă. Că nimeni nu va comenta la prostia asta şi că toată lumea ştie rezultatul. Greşit! E momentul în care îmi dau seama că trăiesc într-o mare bulă şi că realitatea doare. 52 de oameni au apreciat părerea lui Andrei. 52 DE OAMENI! Nu numai că Andrei şi Matematica sunt paraleli, dar oamenii au aprecit şi faptul că el îi face idioţi pe toţi ceilalţi. Cum nu se poate mai bine! Apoi vine rândul „idioţilor”:

De aici, cele două tabere, „idioţii care cred că e 0” şi „idioţii care cred că rezultatul e 4”, încep să se certe şi să îşi arunce jigniri despre mamele şi rudele celorlalţi, (…), despre „scoala care au facuto”. Te doare mintea!  86 de oameni au apreciat explicaţia lui Mihai, dar şi faptul ca el i-a numit „cretini”:

Iată concluziile lui Silviu Iliuţă, autorul acestui eseu publicat pe Cronici pe bune:

  1. O problemă simplă  a reuşit să creeze pe net două tabere care se jignesc, se acuză, aruncă cu rahat. incredibil! Vă daţi seama ce se întamplă la problemele adevărate şi cât de uşor e să divizezi românii, aruncându-le o simplă prostie pe net?
  2. Cu riscul de a părea extremist sau orice „-ist”, eu cred că cei din tabăra celor cu răspunsul 0 nu ar trebui să voteze. Trebuie să li se explice frumos care e treaba cu ordinea operaţiilor. Dacă insistă în răspunsul lor, cred că nu ar trebui să meargă la vot (…) Pentru că nu ai cum să votezi, dacă Olguţa îţi promite că îţi creşte salariul cu 0 lei, iar tu te bucuri şi îi dai votul. Nu ai cum să ai drept de vot, dacă Liviuţ îţi spune că ţi se înmulţesc veniturile cu 1, iar tu îi dai votul pentru asta.(…) Pur şi simplu ţi-e mai bine dacă votează alţii pentru tine! Eşti mult mai în siguranţă. (…)
  3. Oricât de prost pregătit e un om, nu trebuie să îl jigneşti! Nu eşti DELOC mai presus decât el dacă îl faci „idiot”! Încearcă să îi explici frumos, chiar dacă el este agresiv. Este foarte important să avem înţelegere. (…)
  4. Daca aţi citit acest articol şi încă vă întrebaţi care e răspunsul corect, vă rog frumos, în genunchi, să nu mergeţi la vot! Din spirit civic. Nu este nicio problemă că nu ştiţi, ar fi de apreciat dacă aveţi deschidere să învăţaţi, dar chiar este o problemă dacă votaţi.

*

Da, să revenim la partea de matematică, oricât de minimalistă ar fi aceasta în subiectul de faţă. Oricum, putem sta liniştiţi: în meciul „celor cu 4” în confruntare cu „cei cu 0”, scorul final pare să fie undeva la 86-52, raportul fiind cam de 3 la 2. Lăsând gluma de-o parte, ar trebui să vedem de unde vine o astfel de minunăţie; de ce totuşi „doi din cinci români” cred în a doua variantă? La începutul prezentului articol am amintit bănuiala că unele învăţătoare traduc simpla enumerare a operaţiilor de ordinul I într-o ordine obligatorie. De pildă, în citatul: Într-un exerciţiu în care apar operaţii de adunare, scădere şi înmuţire se rezolvă întâi înmulţirea, apoi adunarea şi scăderea (Matematică şi explorarea mediului, manual pentru clasa a II-a, Didactica Publishing House), diferite persoane cu o structurare mai filologică a creierului vor înţelege regula astfel: Într-un exerciţiu în care apar operaţii de adunare, scădere şi înmuţire se rezolvă întâi înmulţirea, apoi adunarea şi doar apoi scăderea.

Nu vreau să discut despre cine este responsabil pentru această greşeală din mintea acestor doamne învăţătoare; mai mult mă interesează despre cine este în măsură să corecteze respectivul aspect. În acest sens cred că noi, profesorii de matematică ar trebui să ne propunem să abordăm cu tact şi cu respect faţă de colegele noastre acest subiect şi să încercăm să eradicăm defectul din gândirea lor în discuţii calme şi civilizate cu dânsele. Nu e simplu, dar cred că se poate.

Putem privi lucrurile şi altfel: se prea poate ca învăţătoarea să fi predat bine, dar această confuzie să apară în mintea micuţului, neatent, neconcentrat, nepasionat de fenomenul matematic, poate şi alţi de ne-…, în mintea sa rămânând peste ani doar vocea stridentă a doamnei învăţătoare care striga la el: CARE-I ORDINEA OPERAŢIILOR? CE OPERAŢIE TREBUIE FĂCUTĂ AICI PRIMA, COPILE?, astfel încât atunci când a văzut ca adult scrierea 7 – 5 + 2 să se fi declanşat doar amintirile spaimelor din copilărie, gândind cu o voce interioară tremurândă: Oare aici pe care trebuia să o fac prima? Probabil că adunarea, că ştiu eu că în copilărie tot urla aia la mine dacă le făceam în ordinea în care erau scrise. Astfel, cred că este foarte posibil că şi aspectele psihologice să influenţeze situaţia acestui 7 – 5 + 2, cel puţin în unele cazuri.

Evident că persoanele care susţin că se face adunarea înaintea scăderii nu şi-au însuşit cum trebuie principiul conform căruia semnele de + şi – dintre numere pot fi privite atât ca semne de operaţie, cât şi ca semne ale unor numere pozitive sau negative. Aici trebuie atrasă atenţia şi asupra unei alte situaţii care este cu totul nouă pentru noi. În scrierea 7 – 5, al cui este semnul minus? Deci, cum se citeşte o scădere? Se citeşte 7 – … 5 sau se citeşte 7 … – 5? (cele trei punctuleţe mimează o pauză) Obişnuinţa la baza învăţământului românesc, încă de la începuturi este că minusul aparţine lui 7. De unde ştiu asta? Păi uitaţi-vă unde pune învăţătoarea semnul de scădere la o scădere cu numerele unul deasupra celuilalt: după numărul descăzut, în dreapta sa. Acolo îl punem şi noi profesorii! Forma corectă ştiinţific este însă că minusul este al lui 5. Aşadar semnul de scădere ar trebui pus lângă scăzător, la stânga sa, adică în faţa sa. De ce să-l punem acolo?, veţi întreba. Pentru că aşa e corect, iar asta ar preîntâmpina multe neînţelegeri. Nu mă credeţi, aşa că scot „artileria grea” a argumentelor: aşa fac şi nemţii, dar şi alţi vestici! Uitaţi în următoarea poză:
Aţi văzut unde este poziţionat semnul de scădere, sau v-aţi uitat doar la mitraliera învăţătoarei? Amândouă se potrivesc în oarecare măsură discuţiei noastre. Revenind la semnul minus din scădere, acesta poate fi pus şi la scăderile din cadrul împărţirii. Nu înţelegeţi cum? Ia aduceţi-vă aminte cum se face chestia asta în algoritmul de împărţire a polinoamelor: este acelaşi lucru, doar că nemţii o fac de la început în forma corectă. De ce? Că-s nemţi şi aşa fac ei lucrurile, corect din prima. De ce nu le facem şi noi aşa? Cred că intuiţi răspunsul.

Revenind la dificila noastră problemă cu ordinea operaţiilor, cred că am fost un pic cam necinstit la începutul acestei postări, în sensul că nu cred că doar învăţătoarele sunt de vină. Mai exact, dacă noi suntem atât de buni pe lângă dânsele, de ce nu remediem noi problema? Din clasa a 5-a toţi elevii ajung pe mâna unui profesor de matematică şi totuşi 2 din 5 internauţi au dat-o în bară cu banala secvenţă 7 – 5 + 2. Oare de ce? Cum se poate întâmpla aşa ceva? Păi, să vă prezint bănuiala mea: cu o programă atât de încărcată şi cu atâta preocupare pentru olimpiade încă din clasa a 5-a, cine mai are timp să se ocupe de ordinea operaţiilor din capul „elevilor slabi”? Pentru că da, profesorul de matematică visează numai la chestiile grele. Să corectezi astfel de gafe din gândirea elevilor trebuie să te ocupi măcar o oră, poate chiar două, cu astfel de banalităţi, iar apoi, ulterior să mai reiei subiectul de câteva ori ca să-l fixezi definitiv. Pentru asta trebuie să faci tu personal multe fişe, pentru că în culegeri nimeni nu pune „exerciţii pentru proşti”; toţi vrem să ajungem cât mai repede în zona „de excelenţă”. E greu, ştiu, să te cobori la nivelul „celor slabi” şi să te preocupi şi cu ei, dar dacă noi n-o facem, n-o va face nimeni. Ştiu, veţi răspunde că nu e vina noastră, a profesorilor de la clasă; s-o remedieze familia, direct sau prin intermediul meditatorul particular! Ce mă interesează pe mine chestia asta? Înspectorul de mate îmi cere şi mă laudă pentru rezultate la olimpiadă, nu pentru „looseri” recuperaţi. Un profesor bun se adresează în lecţii elevilor buni, nu codaşilor clasei.

Exagerez? Poate. Pentru o impresie artistică mai bună am dat un pic drumul unui ton mai agresiv, dar realitatea nu este deloc departe de prezentarea mea. Haideţi să dau câteva exemple culese de curând (adică în luna martie 2018), care ne arată cum materia este îngreunată artificial de către profesori şi dusă uneori departe de orice posibilitate de înţelegere de către elevi, potrivită vârstei şi cunoştinţelor acestora. Materia „zboară peste elevi” atât de sus încât de multe ori rezultatul mult lăudatului învăţământ românesc este cel văzut în exemplul de mai sus cu 7 – 5 + 2.

Trigonometria în clasa a 7-a se face în triunghiul dreptunghic, aplicându-se unghiurilor ascuţite din acesta. În clasa a 7-a nu se învaţă funcţii trigonometrice, pur şi simplu pentru că elevii încă nu au învăţat noţiunea de funcţie. În clasa a 7-a profesorul trebuie să aleagă titlul lecţiei undeva între Trigonometrie, Elemente introductive de trigonometrie sau poate Rapoartele trigonometrice. În clasa a 7-a sinus nu este funcţie ci este raportul dintre cateta opusă unui unghi ascuţit şi ipotenuză. Şi dacă tot am ajuns la unghiurile ascuţite pentru care calculăm rapoartele respective, aceste unghiuri particulare sunt 30o, 45o şi 60o. În nici un caz nu le putem da elevilor un tabel extins cu valorile 0o şi 90o, pentru că elevii nu-şi pot imagina cum este acela un triunghi dreptunghic cu un unghi de 0o sau cu încă un unghi de 90o. La fel de absurd ar fi dacă elevul s-ar poziţiona în unghiul drept încercând apoi să caute cateta opusă.

Acestea sunt gafele de predare cu care mă întâlnesc din când în când. Acum însă mi-a fost sesizat cazul unui coleg care a tratat aproape o oră întreagă funcţile trigonometrice fără să vorbească despre triunghiul dreptunghic, deci nici despre laturile sale. În schimb, pe lângă diferitele „formule fundamentale”, aflăm că dacă unghiul x este obtuz atunci cos x < 0 (!!!). Urmează multe exerciţii în care pornind de la o valoare a unei funcţii trigonometrice se calculează celelalte trei. Apoi, de niciunde apare brusc sin30o = ½ din care sunt deduse în continuare celelalte – da, aţi ghicit – pe baza formulelor fundamentale. Abia acum, spre sfârşitul orei, apare un nou titlu: Triunghiul dreptunghic Funcţii trigonometrice în care vedem în sfârşit un triunghi dreptunghic şi găsim rapoartele cunoscute sin = cateta opusă/ipotenuză etc. Aici elevii sunt informaţi că dacă cunoaştem un unghi (30o, 45o sau 60o) şi o latură, aplicăm funcţiile trigonometrice şi aflăm TOT. În sfârşit ajungem la primul exemplu folositor elevului de clasa a 7-a, dar după prima latură calculată s-a sunat, deci s-a dat tema şi gata ora. (din nou: !!!)

Descompunerea în factori a expresiilor de tipul x2 + bx + c în clasa a 7-a este un titlu destul de general şi se face mai mult pe cazul formulelor de pătrat a binomului. De abia în semestrul I al clasei a 8-a se cere mai serios să descompună toată lumea expresii de tipul x2 + 3x – 10 etc. Ecuaţia de gradul II vine în clasa a 8-a semestrul II, deşi la examen nu s-a dat în ultimii ani deloc. Elevii încep de abia în clasa a 9-a să se întâlnească puternic cu formulele generale ax2 + bx + c = 0, Δ = b2 – 4ac şi x1,2 =  –b ± radical Δ supra 2a (scuze de scriere, ca să nu aveţi probleme la citire) şi respectiv ax2 + bx + c = a(x – x1)(x – x2). A da elevilor în clasa a 7-a forma generală a rezolvării ecuaţiei de gradul II pentru a avea o formă generală de descompunere, înaintea oricărei variante particulare, este pur şi simplu bătaie de joc la adresa gândirii elevilor. Iată doar un argument în acest sens: elevii tocmai ce au învăţat formulele binomiale în care literele reprezintă numere doar în valoarea lor absolută, nu şi cu semnul lor. Astfel, de exemplu în cazul (x – 3 )2, unde a = x şi b = 3, aplicăm formula pătratul unei diferenţe. Atenţionez că în mintea elevilor din aceast moment b nu este – 3, aşa că nu aplicăm formula pătratul unei sume, după modelul [x + (– 3)]2 (acest pas, includerea semnului în literă, acesta apare doar la formula pătratul unui trinom; la aceasta nu se mai dau toate variantele de formule, în toate combinaţiile de semne + sau –, elevul fiind forţat aici să vadă numărul împreună cu semnul său). Ca urmare, în calculele de la formulele generale pentru ecuaţia de gradul II elevii vor greşi masiv la semne. Sigur, putem striga la ei, îi putem ameninţa cu lucrare de control, dar cu ce preţ, mai ales că oricum ei încă nu au văzut nici măcar o singură ecuaţie particulară de gradul II. Las cititorului „bucuria” de a găsi şi alte contra-argumente. Precizez doar că acest exemplu apare destul de des în ultima vreme, tot mai mulţi profesori preferând să „scurtcircuiteze” drumul greu de formare a gândirii algebrice a elevilor de clasa a VII-a, dându-le o reţetă general valabilă cu care să-i terorizeze. Şi asta în condiţiile în care mare parte din elevii claselor nu stăpânesc formele elementare de descompunere în factori.

Desigur că acestea nu sunt exemple izolate. Ce părere aveţi de un profesor de liceu care-i explică unui elev de clasa a VIII-a rezolvări prin radiani? Iar copilul docil stă să treacă urgia peste el, încercând să înţeleagă cumva chestia asta prin regula de trei simplă. Sunt de acord că-i va folosi pe viitor, dar atunci hai să punem învăţătoarele să facă radicali cu ei, iar în clasa a V-a, imediat după operaţia de putere am putea face şi logaritmii, că „ce-are?”, le va folosi mai târziu.

Să mă opresc? Veţi spune că exagerez, aşa că haideţi să mai dăm două exemple, ca să ne convingem de magnitudinea fenomenului. Ce spuneţi de titlurile următoare la clasa a VII-a (acum, în aprilie) şi, mai ales, ce părere aveţi despre efectul acestor lecţii într-o clasă de nivel mediu fără participanţi la olimpiada judeţeană? Iată: Valoarea minimă şi valoarea maximă a unui polinom de gradul II; sau, lecţia următoare: Ecuaţii de gradul II cu mai multe necunoscute, în condiţiile în care elevii clasei respective încă nu reuşesc clar să facă ecuaţii particulare sau generale de gradul II cu o necunoscută (toate acestea la titlul oficial Ecuaţii de forma x2 = a). Ar trebui să mulţumesc colegului respectiv pentru aceste exemple (vreau să spun: contra-exemple), dar sunt doar scârbit de situaţia respectivă.

Oare cum se simte un profesor care face aşa ceva elevilor, fără nici un dram de empatie faţă de fiinţa şi gândirea elevului, a elevului disperat că nu pricepe nimic sau mai nimic? Sunt sigur că mulţi elevi sunt leneşi şi nu au nici un chef să înveţe. Sunt sigur că mulţi nu au dotarea necesară pentru a înţelege matematica în general. Dar tot aşa de sigur sunt că mulţi dintre adulţii avariaţi matematic reprezintă victime rămase în urma activităţii unor învăţătoare incompetente sau a unor profesori exagerat de ambiţioşi (frustraţi?), care fac lecţii mult prea grele şi mult prea devreme, fiind total lipsiţi de orice urmă de tact pedagogic. Cu astfel de contraexemple de lecţii ale unor colegi, îmi vine greu să mă semnez ca profesor. CTG