Planimetria şi Stereometria – (*) Un ecou cu mulţumiri

Am redactat mega-eseul despre planimetrie şi stereometrie din noiembrie-decembrie 2020 cu gândul direct la studiul ariilor şi al volumelor corpurilor geometrice din clasa a 8-a, indignat fiind de excluderea acestora din materia de EN în contextul opririi şcolilor în primăvara acestui an bulversant 2020 (de care cu dreg ne-am bucurat cu toţii să scăpăm), dar mai ales speriat fiind de posibilitatea repetării scenariului pentru generaţia 2020-2021a claselor a 8-a. Am lucrat cu înverşunare, chiar aproape cu disperare, sperând din tot sufletul ca gândurile mele să fie auzite “acolo sus” (adică la cei decidenţi în ale matematicii şcolare româneşti).

Şi da, nu mică mi-a fost bucuria când am văzut de curând ordinul de ministru nr.3237/05.02.2021 cu programa pentru EN, în care apar următoarele lecţii: Arii şi volume ale unor corpuri geometrice: piramida regulată (cu baza triunghi echilateral sau pătrat), prisma dreaptă (cu baza triunghi echilateral sau pătrat), paralelipiped dreptunghic, cub. Nu pot decât să strig din tot sufletul: MULŢUMESC!!! Mulţumesc în numele elevilor de rând, adică în numele majorităţii elevilor, alţii decât cei de vârf, cei din elitele fiecărei şcoli, elevi care vor putea astfel da un examen de Evaluare Naţională cu demnitate, confruntându-se şi cu subiecte pe nivelul lor, atât provocatoare la nivelul lor, cât şi accesibile nivelului lor. MULŢUMESC!

O mică îndoială, un mic ghimpe de suspiciune îmi strică puţin bucuria şi mă ţine “cu picioarele pe pământ”, anume frica de faptul că Dl Ministru Sorin Cîmpeanu  vorbea într-o vreme (pe la începutul lunii ianuarie?) despre revizuirea definitivă a programei pentru examen după ce se vor fi dat simulările oficiale (care sunt planificate în finalul lunii martie) şi se vor fi făcut analizele corespunzătoare. Dar, dacă atunci se trezeşte totuşi cineva să scoată ariile şi volumele respective? CTG

Construcţii geometrice în clasa a 6-a – (1) Elemente de bază

MottoCu rigla, raportorul şi compasul spre înţelegere, gândire şi învăţare (adaptare după o vorbă nemţească: “mit Kleber und Schere, durch Forschung und Lehre”, pe româneşte: “cu foarfecă şi lipici spre cercetare şi învăţătură”).

În mega-eseul despre planimetrie şi stereometrie, în partea a 3-a, scriam despre un ciudat embargou “pus” asupra planimetriei în clasa a 6-a pentru că de fapt nu am avea ce să calculăm până nu cunoaştem figurile geometrice, în principal triunghiurile, patrulaterele sau cercurile. Am explicat deja că această impresie este una falsă, superficială, şi că de fapt în clasa a 6-a elevii ar trebui să parcurgă o primă fază a planimetriei, constând în lucru efectiv cu instrumentele geometrice pentru măsurări sau construcţii ale unor diferite structuri plane, pentru a conecta înţelegerea fenomenelor de către mintea elevilor cu realitatea despre care se va vorbi ulterior.

Astfel, am explicat că planimetria ar trebui să înceapă prin exerciţii simple de măsurare a unor “obiecte geometrice” deja existente cât şi de construcţii ale unor “obiecte geometrice” cu anumite dimensiuni cerute. Fără această fază iniţială există clar posibilitatea de apariţie la unii elevi a unor elemente de analfabetism funcţional matematic (AFM), chiar şi în acest domeniu deosebit de “aritmetic” al geometriei. Din păcate însă, chiar aşa, cine se mai gândeşte în zilele noastre “să piardă timp” cu astfel de banalităţi?, cum ar fi măsurarea sau cunstrucţia unor elemente de anumite dimensiuni (asta a fost o întrebare retorică). În acest context trebuie să scot în evidenţă gafa metodică uriaşă a multor colegi care susţin la clasă că, dimpotrivă, chiar “figura nu contează” într-o problemă.

Revenind la subiectul de bază, cu alte cuvinte, embargo-ul din clasa a 6-a poate exista doar în mintea celor care privesc geometria numai la nivelul demonstraţiilor şi a calculelor mult prea evoluate, în general a gândirii mult prea înalte pentru o mare parte a elevilor (chiar pentru cea mai mare parte a elevilor!). Trebuie să recunosc că şi eu m-am numărat uneori printre aceştia; şi pentru mine drumul şi paşii de coborâre de la gândirea de profesor experimentat spre nivelul de gândire al copiilor a fost şi este în continuare unul anevoios, şi asta datorită paradigmelor de predare preexistente desigur şi în mintea mea, paradigme pe care deşi le respect, ca dascăl responsabil înţeleg că trebuie să le dau uneori de-o parte pentru a-mi deschide “ochii minţii” şi “a vedea” nevoile reale ale elevilor mei (nu doar nevoile matematicii mele înalte).

În această luptă, eu cu mine însumi, în urma articolului mai sus amintit (mega-eseul despre planimetrie şi stereometrie), dar şi în urma unor ciudate cercetări din timpul primului lockdown (aprilie 2020) în domeniul problemelor de aritmetică, s-a intărit ideea că în clasa a 6-a nu există un embargou asupra planimetriei, ci că la această etapă este vremea unei perioade clare de practică în domeniul măsurărilor şi ale construcţiilor geometrice, începând chiar de la primele elemente. Astfel, eu nu am voie să las însuşirea acestor elemente doar pe seama “învăţării definiţiilor”, ci trebuie să-i ofer elevului începător imediat şi ocazia învăţării acestora în mod practic, această cale susţinând evident şi însuşirea, dar şi fixarea teoretică a noţiunii respective.

După cum am spus deja, demult făceam asta la capitolul de triunghiuri (cu cele două fişe din postarea precedentă), dar acum, în acest început de 2021, mi-am dat seama că trebuie să-mi organizez un material de lucru corespunzător şi pentru primele cunoştinţe de bază ale geometriei: puncte şi drepte, segmente şi semidrepte, colinearitate şi concurenţă, unghiuri, ideea de congruenţă, paralelism şi perpendicularitate, mediatoare şi bisectoare etc. Spun că trebuie să-mi organizez un material de lucru corespunzător şi pentru primele cunoştinţe de bază ale geometriei, pentru că un astfel de material nu există de fapt; în nici o carte, fie ea manual sau auxiloiar, nu am găsit materiale de lucru pentru cunoaşterea elementelor de bază din geometrie prin măsurare şi construcţie, adică având ca obiectiv aceste două acţiuni. În cărţi vechi există probleme de construcţii geometrice, dar acestea sunt mult prea înalte din punct de vedere intelectual.

Noutatea este că acum am reuşit să cobor mult ştacheta gândirii mele, şi mai multca în trecut, spre nivelul minţii copiilor de rând, cât şi spre ideea de cunoaştere a materiei dinaintea triunghiurilor prin munca concretă cu instrumentele geometrice. Astfel, am reuşit să organizez un material cu sarcini absolut elementare, fără a fi plictisitor (sper!), cu sarcini la care trebuie folosite instrumentele geometrice de bază în orice trusă: ideea de riglă negradată pentru simpla trasare a dreptelor (la întâmplare sau cu exactitate prin anumite puncte), dar şi liniarul gradat pentru măsurarea diferitelor lungimi (în mod mai “neortodox” chiar şi liniarul ca instrument de trasare a două drepte paralele, de o parte şi de alta a acestuia); compasul ca instrument pentru trasarea de cercuri, dar şi ca instrument pentru “luarea unei distanţe” între două puncte (inclusiv ideea de congruenţă a unor segmente, mai presus de măsurarea lungimii acestora); raportorul ca instrument de măsurare, dar şi ca instrument de construcţie a unor unghiuri de o anumită măsură; echerul, atât ca instrument de verificare a perpendicularităţii, cât şi ca instrument de construcţie a acesteia, respectiv a unui unghi drept.

Elevii fac astfel cunoştinţă prin intermediul acestor patru instrumente geometrice cu “obiectele geometrice” studiate, măsurându-le sau construindu-le în diferite situaţii, adică lucrând practic cu acestea, nu doar învăţându-le definiţiile şi străduindu-se a le asimila ca noţiuni teoretice.

Problema este că noţiunile se învaţă mult mai bine prin folosirea lor practică (preferabil chiar în mod repetat) decât prin învăţarea unor definiţii teoretice în mod steril (chiar şi în mod repatat). De multe ori se poate observa că un elev care ştie să turuie definiţia, de fapt nu ştie deloc despre ce vorbeşte. Prin materialul din acest eseu încerc să readuc aplicarea acestui principiu natural de învăţare în viaţa elevilor noştri.

Astfel am organizat un set de exerciţii conţinând sarcini simple, cuprinse într-o fişă de lucru destul de generoasă, despre care însă nu am defel pretenţia de a fi perfectă (probabil că după primele folosiri la clasă voi avea tendinţa de a corecta sau completa diferite aspecte din aceasta). Cu alte cuvinte, nu am pretenţia de a vă prezenta un material deosebit de cizelat, dar în cazul de faţă ideea şi intenţia prevalează.

La fel ca în postarea precedentă, şi aici trebuie să fac observaţia asupra faptului că problemele de construcţie sunt poziţionate conform ordinii parcurgerii lecţiilor de către mine (conform principiilor pedagogiei Waldorf). Nu are rost să prezint toată această ordine, dar trebuie să precizez că eu parcurg destul de repede (mai exact în a doua lecţie) o prezentare a poziţiilor relative a două drepte, unde apar deja noţiunile de drepte paralele sau drepte perpendiculare, cu referire la poziţionările orizontale sau verticale şi analogii cu acestea. Cu alte cuvinte, noi învăţăm despre drepte perpendiculare înaintea studiului despre unghiuri; unghiurile apar în a doua jumătate a studiului elementelor de bază. Rog în acest context cititorii să treacă peste acest inconvenient şi să înţeleagă tema principală a prezentării de faţă; oricine poate apoi să-şi redacteze o fişă de lucru conform nevoilor personale.

Acest inconvenient dispare însă dacă fişa este folosită ulterior lecţiilor, ca material recapitulativ. Ca o observaţie personală, trebuie să precizez că această bruscă “iluminare” a mea pe subiectul de faţă are loc prea târziu chiar şi pentru actuala mea clasă a 6-a, astfel încât şi aceştia au primit-o în ultima săptămână a semestrului I ca temă recapitulativă, înaintea orelor despre triunghi. Cred că nu-i rău nici aşa, pe această cale putând merge şi alţi colegi, folosind fişa respectivă ca material suplimentar (după parcurgerea noţiunii de perpendicularitate, după unghiuri, conform ordinii oficiale din programă).

Un aspect colateral important al acestui prim set de exerciţii este şi formarea obişnuinţei elevilor cu textul (mai lung sau mai scurt) conţinând noţiuni geometrice, în general matematice, şi preîntâmpinarea astfel a apariţiei analfabetismului funcţional matematic, în acest domeniu, dar şi în general, deoarece majoritatea cerinţelor sunt la limita de jos a complexităţii. Anexez în final fişa de care am vorbit (patru coli A4). CTG

Fișă

Construcţii geometrice în clasa a 6-a – (2) Triunghiuri

Motto:  Cu rigla, raportorul şi compasul spre înţelegere, gândire şi învăţare (adaptare după o vorbă nemţească: “mit Kleber und Schere, durch Forschung und Lehre”, pe româneşte: “cu foarfecă şi lipici spre cercetare şi învăţătură”).

În mega-eseul despre planimetrie şi stereometrie, în partea a 3-a, scriam despre un ciudat embargou “pus” asupra planimetriei în clasa a 6-a pentru că de fapt nu am avea ce să calculăm până nu cunoaştem figurile geometrice, în principal triunghiurile, patrulaterele sau cercurile. Aşa-i: nu putem să ne ocupăm de perimetre şi de arii până nu cunoaştem serios figurile geometrice “închise”, cărora vrem să le calculăm perimetrele şi ariile (studiul ideii de perimetru sau arie pentru câteva figuri în clasa a 5-a implică o abordare extrem de intuitivă a acestora, abordare care însă este posibilă doar în cazul câtorva, în principal pătratul şi dreptunghiul). Există însă un mare DAR,… , anume că planimetria nu constă doar în calcule de perimetre şi arii.

Ariile reprezintă măsura suprafeţelor (pe germană Flächeninhalt, însemnând “conţinutul suprafeţei”) a unor figuri bidimensionale (2D) şi se calculează conform unor formule (reţete) complexe, ce au făcut obiectul unei “cercetări” preliminare (asta într-un caz normal, în care profesorul doreşte să-i înveţe pe elevi să şi gândească, nu doar să rezolve papagaliceşte nişte exerciţii; dacă însă profesorul sau un părinte îi dă elevului direct formula, atunci elevul va acumula şi cu această ocazie frustrare faţă de incapacitatea sa de gândire, făcând astfel încă un pas spre “analfabetismul funcţional” matematic).

Dimpotrivă, deşi se referă la figuri bidimensionale, perimetrele reprezintă o mărime unidimensională (1D). Procedeul de calcul al perimetrelor este însă unul mult mai simplu, anume de însumare a lungimilor tuturor laturilor. O persoană cu un minim nivel de gândire nu are nevoie de reţetă în cazul unui perimetru (dacă un elev nu reuşeşte să gândească singur un perimetru, dă clare dovezi de “analfabetism funcţional” matematic; un adult care împinge elevul spre învăţarea pe de rost a unor reţete de perimetru la diferitele figuri geometrice, acesta dă dovadă de o inconştienţă crasă, în multe cazuri împingând de fapt elevul şi mai mult înspre mocirla nongândirii, numită “analfabetism funcţional” matematic-AFM; dimpotrivă, dacă un elev îşi deduce singur anumite formule de calcul a perimetrului, aceasta este o clară dovadă de gândire, dar numai dacă o face el, nu şi dacă i-o dă adultul de lângă el; de pildă, un elev care tot adună laturi şi la romb, fără să-şi dea seama că poate înmulţi latura cu 4, acesta are clar un început de AFM, adică de “analfabetism funcţional” matematic).

Încercând să facem un pas şi mai jos faţă de arii şi faţă de perimetre, vedem că înaintea acestora se află simpla preocupare pentru lungimea unor laturi, adică lungimea unor segmente. De aici începe de fapt planimetria, iar clasa a 6-a are din belşug ocazii de a exersa elemente de bază în planimetria iniţială, adică ocazii de lucrat cu măsurile elementelor unor figuri, segmente şi unghiuri.

Cu alte cuvinte, planimetria începe prin exerciţii simple de măsurare a unor “obiecte geometrice” deja existente, cât şi de construcţii ale unor “obiecte geometrice” cu anumite dimensiuni cerute, în principal segmente, adică lungimi, dar apoi repede fiind incluse în acest joc şi unghiurile. Aceste exerciţii existau în toate manualele vechi (ele dispăruseră direct, dar erau subînţelese chiar şi în vremea ultimelor manuale comuniste, cele din anii ’80-’90), dar au fost cu totul abandonate în forma manualelor alternative din 1997, deoarece acestea cât şi preocuparea profesorilor au ajuns să fie setate total spre matematica de performanţă; or, măsuratul cu liniarul şi alte activităţi de acest gen chiar nu fac parte din preocupările concursurilor de excelenţă.

Fără această fază iniţială a geometriei există însă clar posibilitatea ca unii elevi (şi nu puţini) nici măcar să nu priceapă despre ce este vorba în problemele cu arii şi perimetre, acestea prezentându-li-se din start deja mult prea sofisticat şi “teoreticist”. Înainte de a lucra “calculatorist” cu nişte dimensiuni, elevul trebuie să le fi folosit “măsurătorist”, altfel pot apărea disfuncţionalităţi puternice la copiii instabili din acest punct de vedere (AFM).

De pildă, există copii care nu ştiu ce şi cum se măsoară cu liniarul, existând unii care au impulsul să înceapă cu măsurătoarea de la 1, nu de la 0. Nici nu mai are rost în acest context să vorbim despre măsurarea unghiurilor cu raportorul. Acesta este oricum un instrument mult mai complicat decât liniarul, profesorul trebuind să petreacă cu elevii mult mai mult timp la măsurarea unghiurilor, dacât la lungimi. Procentul elevilor care nu pricep din prima ce se întâmplă cu raportorul este muuult mai mare decât în cazul liniarului, iar aceştia au nevoie să lucreze câteva zile pe acest subiect până se fixează şi în mintea lor “ce şi cum”.

Cu alte cuvinte, embargo-ul din clasa a 6-a împotriva planimetriei poate apărea doar în mintea profesorilor care gândesc numai la nivelul demonstraţiilor şi a calculelor sofisticate, în general a gândirii mult prea înalte pentru o mare parte a elevilor.

Ca o paranteză, desigur că cititorul va căuta partea întâi (1) a acestei serii, dar nu o va găsi. Motivul este următorul: am decis să expun acest subiect, al construcţiilor geometrice, în ordinea în care mintea mea l-a cucerit, nu în ordinea în care părţile acestui eseu apar în viaţa elevului. Numerotarea însă se referă la ordinea naturală în predare, iar onor cititorii vor trebui să-şi lămurească această dualitate de abordare (staţi liniştiţi: urmează cât de repede şi partea întâi). Să vedem deci cum am “cucerit” eu acest subiect în ultimul deceniu.

De mulţi ani în mintea mea a început să crească – încetu’ cu-ncetu’ – vechea temă din manuale de demult despre construcţii de triunghiuri cu instrumente geometrice (începând din secolul XIX şi până în anii ’90, când o făceau încă foarte mulţi profesori). În manualele vechi elementele erau desenate separat mai întâi; doar apoi erau desenate asamblat într-un triunghi.

Cu timpul mi-am dat seama că aceasta reprezintă o minunată oportunitate de cunoaştere practică a triunghiurilor, deosebit de bună de aplicat înaintea problemelor cu demonstraţii în triunghiuri; elevii sunt astfel îndrumaţi iniţial spre o cunoaştere practică a acestora, înaintea abordării problemelor “intelectuale”. Pe acest drum de refacere a căii vechi de cunoaştere, de la un an la altu’ fişa mea de lucru a crescut încet-încet; la început a fost scrisă de mână, apoi a ajuns redactată în calculator, evoluând în variante tot mai cizelate şi mai complete. La ora actuală acest material de lucru pentru elevii se prezintă sub forma a două fişe: Fişa 1) Construcţii de triunghiuri (generale sau speciale) şi Fişa 2) Construcţii de triunghiuri cu linii importante. Acestea pot fi imprimate faţă-verso pe o coală A4. Este evident că a doua fişă ajută şi la o primă cunoaştere practică a liniilor importante în triunghi.

Materialul este adaptat formei în care predau eu acest capitol, anume în ordinea următoare: Lecţia 1) Triunghiul (elemente), Suma unghiurilor, unghiul exterior; Lecţia 2) Construcţia triunghiurilor, cazurile de construcţie (renumitele LLL, LUL şi ULU abordate iniţial astfel); Lecţia 3) Clasificarea triunghiurilor (tipuri de triunghiuri); Lecţia 4) Liniile importante în triunghi; Lecţia 5) Triunghiul dreptunghic (tipuri, proprietăţi şi teoreme).

Consider că abia după o cunoaştere practică prin construcţie a triunghiurilor cu instrumentele geometrice, abia apoi se poate trece la nivelul superior, anume la demonstraţii cu acestea. Partea de cunoaştere practică şi intuitivă lipseşte din forma de predare a majorităţii profesorilor, iar acesta este unul din motivele de bază pentru care elevii din toată ţara merg atât de slab la geometrie.

Din păcate, geo-metria (măsurarea terenurilor, cum a fost aceasta denumită de către grecii antici, după vizitele “de studii” în Ţara Nilului) a ajuns în ciudata situaţie de a se dezice de denumirea sa: la ora actuală în geo-metria de mult nu mai măsoară! Prin iniţiativa mea, eu am încercat să repun geo-metria pe făgaşul normal, punându-i pe elevi la început “să măsoare”.

Nu vreau să susţin că geo-metria ar trebui să revină la practicile de măsurare a terenului (de pildă cum se făcea după retragerea apelor Nilului în Egiptul Antic), dar consider că orice elev ar trebui să fie introdus în acest domeniu începând printr-o cunoaştere practică a elementelor geometrice, o cunoaştere care să fie adaptată vârstei şi nivelului mediu de gândire, să fie accesibilă, chiar cu vagi accente ludice, dar în primul rând să fie făcută prin intermediul manualităţii. Această cunoaştere practică nu o exclude pe cea teoretică. Cunoaşterea teoretică trebuie doar domolită şi adaptată nevoilor şi posibilităţilor generale ale vârstei de clasa a 6-a, folosirea ei în probleme de demonstrat trebuind însă să vină întotdeauna după cunoaşterea practică.

În acest context trebuie să recizez că materialul din aceste fişe urcă până la nivelul de dificultate în care rezolvitorul trebuie de fapt, este chiar nevoit, împins să facă primii paşi de raţionamente specifice demonstraţiilor, raţionamente pe care trebuie desigur să le justifice (am făcut aşa pentru că …).

Este evident că după etapa de cunoaştere a triunghiurilor prin construcţie, pe baza “cazurilor de construcţie” (LLL, LUL, ULU, dar şi după o scurtă analiză LUU), se poate trece apoi la probleme teoretice, unde ar trebui parcursă lecţia despre “cazurile de congruenţă” a triunghiurilor (la început a triunghiurilor oarecare, iar apoi şi a triunghiurilor dreptunghice). Este evident că înţelegerea acestor lecţii va fi mult mai solidă, gândirea elevilor având acum formate rădăcini adânci într-o înţelegere practică a fenomenelor. Cu alte cuvinte, este evident că o lecţie ancorată în profunzimea experienţei practice personale are şansa să fie mult mai solidă decât o cunstrucţie superficială, fără o fundaţie solidă.

Anexez în final PDF-uri cu cele două fişe, cu observaţia că materialul conţine inclusiv aplicaţii ale teoremei triunghiului dreptunghic înscris în semicerc (“Cercul lui Thales”, cum este aceasta cunoscută de la graniţa cu Ungaria încolo, adică în toate ţările de cultură germană), teoremă folosibilă în cazul de construcţie IC, cu ipotenuza ca bază a triunghiului. CTG

2A5 Constructii linii imp in tri 35ex-converted.pdf şi
2A5 Constructii Triunghiuri 41ex-converted.pdf

Predarea prin imagini

Luni 18 ian 2021, la Europa fm, în emisiunea Piaţa Victoriei, d-na Adriana Nedelea şi dl. Cristian Tudor Popescu au vorbit printre altele despre imaginile din mass-media cu vaccinarea dl-ui Preşedinte Iohannis şi a d-lui Prim-ministru Cîţu, cât şi despre efectul  acestora asupra dorinţei de a se vaccina la români, ce a crescut spectaculos faţă de aşteptările iniţale (înregistrarea se poate urmării la adresa https://www.europafm.ro/reasculta-emisiuni/). Din această emisiune mi-a atras atenţia pasajul în care dl. Popescu vorbeşte despre  prezentarea prin imagini a unei idei, a unui gând, tehnică ce poate fi folosită cu deosebit succes şi în predare. În următorul text am ales pasajele edificatoare. Primul aliniat prezintă o selecţie a dialogului celor doi realizatori începând de la minutul 7:15 al înregistrării de pe PODCAST-ul Europa fm; al doilea aliniat reprezintă aproape tot discursul d-lui Popescu, de la minutul 16:45 până la momentul 19:20.

CTP: Ştiţi ce-i cu dl. Cîţu? Vă zic eu. L-aţi văzut la vaccinare? Eee, dl. Cîţu nu e chiar ca dl. Iohannis de “fitt”, aşa, la biceps şi triceps, dar nu e nici de lepădat! Surpriza a fost mai mare la Cîţu decât la Iohannis. După părerea mea, a avut un efect pozitiv forma fizică deosebită artătată de dl. Iohannis în momentul vaccinării, care a dus la creşterea numărului de persoane care au dorit să se vaccineze. AN: Ăsta e criteriul? Chiar credeţi? CTP: Da, da! Nu ce-a zis dl. Iohannis după aia, nu doare, n-a mai contat ce-a declarat, a contat numai “brandul”: când s-a văzut “aşa”, cred că mulţi au spus (…) că e de bine. În public aşa se produc circuitele aste mentale, nu pe cale raţională. Te chinui de multe ori să-i explici, cum am făcut şi eu, cu vaccinu cutare, cu ARN-ul, cu mesagerul, (…), şi vine dl. Preşedinte, “aşa” şi se vaccinează lumea. Dl. Cîţu în tricou arată mult mai bine decât în costumul ăla de premier. Surprinzător! Adică e lucrat bine şi asta spune într-un fel câte ceva şi despre el (…) După ce (…) a apărut Iohannis, cu “brandul”, s-au vaccinat mulţi, sunt deja sute de mii (…) Acum lumea o ia invers (…)E mai bine aşa. Mă bucur s-aud că nu mai sunt locuri la programare, că s-au umplut locurile în Bucureşti şi-n alte oraşe. Asta e bine. AN: Credeţi că ce s-a întâmplat în momentul vaccinării preşedintelui a fost un moment bine gândit, o mişcare de imagine bună, convingătoare?

CTP: Da, da, sigur că da. Este o imagine care rămâne. Rămâne imaginea. Vedeţi ce forţă are imaginea? Cuvintele …? Poţi să spui 1000 de cuvinte: “domne, nu e periculos, e o substanţă chimică, nu este o bucată de virus acolo, ca să vă temeţi că aţi putea să vă-mbolnăviţi ( …). Au fost tot felul de din-astea. Nu. O imagine! Imediat! Ai înfipt în (…) Oamenii, în general, acum gândesc în imagini şi când le spui cuvinte, trebuie să le transmiţi de fapt imagini, prin acele cuvinte. Dacă cuvintele nu poartă în ele, nu reuşesc să transmită o imagine, ai vorbit degeaba. Oricât de logic, oricât de corect gramatical şi de documentat ai vorbi, dacă nu transmiţi o imagine … . Tot aici în emisiune, în sezonul trecut, am fabricat o astfel de imagine, cea a momelii artificiale la pescuit (…). N-am mai insistat pe structura ARN-mesager, pe cum sunt în general vaccinurile, şi spuneam: peştele poate fi prins cu râmă, sau cu muscă, sau poate fi prins cu muscă de plastic; aceste două vaccinuri (…) sunt cu muscă de plastic. Nu au bucăţi de virus în vaccin. Prin urmare, nu aveţi a vă teme din punctul ăsta de vedere. Ele nu fac altceva, aceste vaccinuri, decât aidoma momelii artificiale de la pescuit, ele păcălesc organismul, astfel încât el să emită anticorpi, să aibă răspuns imunitar, până să vină Covidul. Când vine Covidul, el găseşte porţile închise, cu soldaţii cu arma în poziţie de tragere. Asta face acest vaccin. Deci trebuie să găseşti o imagine. Altfel, cu “cuvinte” e greu! Preşedintele Iohannis a găsit o imagine bună, şi repet, a contat mult surpriza aspectului fizic.

*

Procedeul prezentării prin imagine este folosit cu această ocazie în mod briliant de Dl. Preşedinte cu adresare directă la “subliminalul” diferitelor segmente de populaţie. Dl. Popescu scoate în evidenţă, în cuvântul său, mesajul la adresa părţii de populaţie care are muşchii drept una din principalele preocupări ale vieţii, atât cei fizici (în cazul de faţă), cât şi prin extensie cei “de sub capotă” (preferabil a unui BMW, chiar şi dacă acesta este eventual de mâna a doua). Imaginea vaccinării D-lui Preşedinte a avut un impact mult mai puternic în strădania de convingere a populaţiei să se vaccineze, mult mai puternic decât toate argumentele ştiinţifice, teoretice, prezentate în cuvinte.

În al doilea aliniat dl. Popescu avansează în subiect: Dl. Preşedinte Iohannis s-a prezentat în imagine pe toate ecranele televizoarelor, în imagine “fizică” vreau să zic. Oricine l-a putut vedea cum se vaccina. Apropos: eu am auzit doar la radio de întâmplare; după trei zile am căutat pe net şi m-am uitat şi eu la “marea minune” despre care se tot vorbea.

Pentru oamenii cu o minimă capacitate de imaginare există însă şi modalitatea aducerii “în faţa auditoriului” a unor “imagini prezentate în cuvinte” (de pildă la radio): Oamenii, în general, acum gândesc în imagini şi chiar şi când le spui cuvinte, trebuie de fapt să le transmiţi imagini, prin acele cuvinte.

Despre acest aspect aş dori să scriu în continuare. Este unul dintre cele mai fine subiecte ale artei predării în general; eu l-am întâlnit doar în discursurile docenţilor de la cursurile de pedagogie Waldorf, unde este numită generic “predare prin imagini“. În general l-am întâlnit la colegi germani, dar unul dintre cele mai fascinante exemple l-am auzit de la un profesor francez (ce-i drept, care predă în Germania). Ca atare m-am ferit a vorbi pe pentagonia.ro despre acesta, pentru că nu consideram că aş avea argumente solide în aducerea acestui subiect în faţa profesorilor din şcolile obişnuite. Cuvântul d-lui Popescu scoate însă respectiva tehnică din zona “subiectivităţii” unei pedagogii aparte, cum este Waldorf-ul, poziţionând astfel tehnica “predării prin imagini” în zona unei pedagogii obiective, pentru toată lumea (bazată pe psihologia naturală), în zona artei predării aplicabilă la nivelul oricărei şcoli şi deci a oricărui profesor, de orice materie. Haideţi să analizăm acest subiect din punct de vedere al predării matematicii.

Suntem obişnuiţi ca într-un manual, să zicem de geografie, să întâlnim o sumedenie de poze care sunt puse acolo ca bază de imaginare a elevilor. Acelaşi lucru îl întâlnim şi în manualele de geometrie: de obicei găsim o figură geometrică lângă orice definiţie, chiar şi lângă teoreme. Trebuie să citeşti textul şi să te uiţi la figura de alături ca să apară în mintea ta înţelegerea. Aşa merge învăţarea geometriei. Pentru început, elevii nu au capacităţi deosebite de a-şi imagina o figură sau de a construi o figură după un text de problemă sau de teoremă. Acest proces este unul anevoios şi trebuie să avem răbdare cu elevii să-şi formeze capacitatea de generare a figurii.

Legat de aceasta, am două exemple. În primul rând, eu le sugerez elevilor de clasele 6-7 să fie atenţi atunci când cer acasă ajutorul unei rude care ştie geometrie, să observe cum acesta se uită undeva “în gol”, atunci când citeşte o problemă de geometrie. Acesta se va uita spre o zonă de perete, tavan sau perdea, undeva unde nu sunt detalii perturbatoare, pentru a-şi imagina “cu ochii interiori” structura figurii acelei probleme. Ei, elevii încă nu au această capacitate, dar şi-o vor forma cu timpul, dar asta doanumair lucrând multe probleme şi făcând cât mai atent, de fiecare dată o figură corectă aferentă problemei.

Al doilea exemplu ţine de culegerea de geometrie ce am scris-o în 2005 (De la Cercul lui Thales la Moneda lui Ţiţeica; 2006, Ed. Humanitas Educaţional): cartea are cca. 550 de probleme şi cca. 450 de figuri geometrice alăturate textelor sau rezolvărilor. Practic, toate paginile culegerii sunt împărţite într-o bandă lată de 8 cm (la cotor) cu titluri şi texte, cât şi, în paralel cu aceasta, o bandă de 5 cm (la exteriorul paginii) cu figuri geometrice corespunzătoare. Intenţia a fost clară: să-i ajut pe elevi în faza iniţială, când încă nu au bine dezvoltată capacitatea de generare a unei figuri (şi a ttrebuit să mă lupt cu cei de la editură ca să accepte o astfel de aranjare nemaivăzută). Putem privi şi altfel: mulţi elevi ar fi abandonat o problemă, nefiind capabili să-şi imagineze ce le spune textul; aşa însă, cu figura alături, cresc puternic şansele ca elevul să înţeleagă despre ce este vorba şi poate chiar să rezolve problema respectivă.

Din păcate există şi contraexemple în acest sens, cazuri în care diferiţi profesori consideră că textul matematic este suficient ca elevul să înţeleagă despre ce este vorba. Vorbesc aici de situaţii de profesori, atât în cazul autorilor de manuale, cât şi în cazul predării la clasă. Mi-a fost dat să văd chiar cazul unei lecţii despre teorema lui Pitagora la clasa a 6-a, care nu avea deloc desenat un triunghi dreptunghic. Repet: întreaga lecţie (cât o fi ea de scurtă cu Pitagora în finalul clasei a 6-a) nu avea deloc desenat nici măcar un triunghi dreptunghic; lecţia consta doar în teorema scrisă şi în exemple în care apăreau situaţii exclusiv scrise şi cu calculele aferente. Lecţia întreagă, fără nici măcar un triunghi dreptunghic desenat, era tratată doar teoreticist aritmetico-algebric, adică fără nici cea mai mică imagine! GROAZNIC!

Nici nu mai are rost să intre aici în discuţie aspectul despre care am vorbit în trecut, anume faptul că mutarea accentului dintr-unul echilibrat “arie + puterea a doua” pentru cuvântul “pătrat din teorema lui Pitagora (abordare echilibrată geometrică şi algebrică), înspre abordarea unilaterală “doar puterea a doua” impusă odată cu reforma din 1980 şi prezentă în manuale de atunci, această mişcare impiedică prezentarea renumitei imagini cu pătratele construite pe laturile triunghiului dreptunghic, făcând astfel imposibilă vizualizarea într-o imagine a fenomenului unic din teorema lui Pitagora (pentru o reactualizare vezi postările mai vechi pe tema acestei imagini la adresele: http://pentagonia.ro/teorema-lui-pitagora-si-ciocolata-ritter-sport-in-clasa-a-6-a/, http://pentagonia.ro/teorema-lui-pitagora-si-patratele-acesteia-in-clasa-a-6-a/ şi http://pentagonia.ro/teorema-lui-pitagora-si-tripletele-de-numere-pitagoreice-in-clasa-a-6-a/ ).

Apropos: trebuie să recunosc că manualul folosit anul trecut la clasa a 7-a a reluat vechea imagine pentru teorema lui Pitagora, aducând-o chiar pe coperta principală. Nu ştiu însă cât de conştienţi au fost colegii profesori care au ales acel manual, încât să o şi folosească eficient.

Revenind la subiectul nostru, dl. Popescu “pune degetul” pe o rană adâncă a predării în şcolile româneşti, la toate materiile cu pretenţie ştiinţifică, predare ce se vrea de inspiraţie academică, în formă de prelegere, stil ce a coborât în ultima jumătate de secol, din facultăţi, tot mai jos faţă de nivelul vârstelor, mai întâi în licee, iar apoi – încet, dar sigur – şi la nivelul gimnazial. Faptul că mulţi profesori consideră că o predare ideală constă în turuirea lecţiei, cât mai corect teoretic şi doar în cuvinte şi limbaj de specialitate, aceasta este una dintre cele mai grave urmări ale goanei după excelenţă ştiinţifică înainte de nivelul universitar (curent de predare începând din anii ’80 şi atingând apogeul în anii ’90), ducând la scăderea masivă a înţelegerii materiei predate de către marea masă a elevilor, ducând în consecinţă inclusiv la nevoia uriaşă de ajutor prin ore particulare, ajungându-se chiar la considerarea acestei stări drept “normalitate”. Una din caracteristicile clare ale acestui stil de predare o reprezintă înclinaţia profesorilor spre neglijarea figurilor geometrice şi a imaginilor în general. Pentru mulţi profesori, imaginile în general, dar mai ales procuparea pentru exactitatea acestora, sunt considerate neimportante, puerile, triviale, dovezi ale unei gândiri şi abordări mediocre; dimpotrivă, definiţiile şi teoremele pline de cuvinte de specialitate sunt considerate adevăratele repere ale unei predări de nivel înalt.

Dar nu-i adevărat şi dl. Popescu ne precizează foarte clar: trebuie să găseşti o imagine. Altfel, cu “cuvinte” e greu! Cuvintele …? Poţi să spui 1000 de cuvinte… Oamenii, în general, acum gândesc în imagini şi când le spui cuvinte, trebuie să le transmiţi de fapt imagini, prin acele cuvinte. Dacă cuvintele nu poartă în ele, nu reuşesc să transmită o imagine, ai vorbit degeaba. Oricât de logic, oricât de corect gramatical şi de documentat ai vorbi, dacă nu transmiţi o imagine … . (vezi o scurtă observaţie în P.S)

Doar învăţătoarele sunt imune la acest “curent de predare” şi nu se “infectează cu acest virus al prelegerilor”. Prin comparaţie cu dânsele, odată cu predarea specializată doar pe o materie, începând din clasa a 5-a, cadrele didactice se numesc – cu îngâmfată mândrie – “Profesori”, dorind astfel să sublinieze cât sunt de superiori faţă de “amărâtele de învăţătoare”. În marea majoritate a ţărilor însă, de la începutul şcolii şi până în finalul liceului cadrele didactice se numesc Teacher (zona engleză), Lehrer (ţările germane) etc.; chiar şi în Republica Moldova toţi se numesc învăţători. Cam peste tot, doar profesorii universitari se numesc profesori.

Revenind la matematică, este vident faptul că geometria are avantajul de a putea oferi imagini pentru teoriile sale, imagini ce pot astfel sprijini înţelegerea fenomenelor studiate, cu condiţia de a fi folosite corect şi eficient. Abordând astfel subiectul nostru, putem deduce în mod simplist că algebra nu are acest avantaj şi că “asta e!”, elevii trebuind să se descurce fără imagini în înţelegerea fenomenelor studiate la algebră. Nimic mai greşit!

Profesorul are datoria de a căuta şi în cazul fenomenelor aritmetico-algebrice imagini potrivite care să susţină înţelegerea respectivelor lecţii. Acestea pot să apară sub forma unor figuri geometrice sau sub forma unor scheme evolutive ale numerelor; important este să se creeze o imagine care să sprijine înţelegerea pe cât mai multe canale mentale, nu doar pe cel teoretic oral. În nici un caz nu mi-am propus să prezint acum şi aici astfel de exemple (materialul de faţă ar scăpa total de sub control, ca dimensiuni vorbind), dar merită să atenţionez asupra acestui aspect: şi fenomenele aritmetico-algebrice se pot prezenta în imagini, iar asta chiar de la început, adică mult înaintea reprezentării grafice a funcţiilor.

Încercând să avansez, pot doar să recomand colegilor mei profesori: luaţi în gând această idee şi căutaţi cu timpul căi şi exemple de predare prin imagini. Şi nu vorbesc doar de predare folosind imagini concrete, din manual sau puse pe tablă în timpul lecţiei, ci şi “imagini” transmise elevilor, pe care aceştia să le creeze în imaginaţia lor. Dau aici un singur exemplu, anume prezentarea şi discutarea proprietăţilor geometrice pe “figuri în aer“.

Să explic ce vreau să spun: în engleză există o expresie, care tradusă s-ar numi “chitară de aer” (air-guitar; am întâlnit-o şi în germană ca Luftgitarre), care desemnează gesturile făcute de o persoană ce mimează cântatul la chitară, de obicei rock, “acompaniind” o melodie ce sună din difuzoare, deşi acesta nu are deloc o chitară în mâini. Cunoaştem aceste gesturi de la Freddie Mercury, ţinând în mâini renumitul său microfon, dar puteţi vedea şi un exemplu în filmuleţul de la adresa https://www.youtube.com/watch?v=R1dW8M4EqYY , un exemplu magistral cu Bradley Cooper (am dat căutare pe net şi am ales primul exemplu gasit pe youtube).

În mod similar, putem să vorbim despre o figură geometrică “de aer”, pe perimetrul căreia noi gesticulăm în timp ce explicăm ceva legat de aceasta. Apar aici două etape clar distincte. În primul rând elevii trebuie obişnuiţi cu aceasta şi cu faptul că atunci când profesorul “arată” pe o astfel de “figură de aer” (de fapt inexistentă, doar mimată), ei, elevii trebuie să şi-o imagineze. Elevii trebuie să înveţe să-şi imagineze figuri geometrice, iar această tehnică îi ajută foarte mult, forţându-le imaginaţia. Această fază se poate face desigur cel mai bine pe figuri plane clare, cum ar fi patrulaterele sau triunghiurile. Uneori eu mimez triunghiurile, isoscele sau scalene, cu braţele. Desigur că am doar două braţe, aşa că acestea vor arăta principalele două laturi, în funcţie de ce doresc să arăt. Dacă doresc să arăt isoscelitatea sau ne-isoscelitatea unui triunghi, atunci voi mima cu mâinile laturile oblice; alteori poate voi sugera cu o mână baza şi cu cealaltă una dintre laturile care urcă. Paralelogramele sau dreptunghiurile se mimează foarte uşor cu ajutorul palmelor sau a braţelor.

O a doua fază o reprezintă folosirea tehnicii respective la corpurile geometrice din clasa a 8-a. Rog cititorii să înceapă exerciţiile de imaginare a felului cum se poate descrie în aer un corp geometric, prin mişcări potrivite pe “suprafaţa” acestuia, acompaniate de o descriere verbală: un cub sau o piramidă (toţi copii au văzut poze făcute din aer cu piramidele din Egipt), un cilindru sau o sferă; o prismă dreaptă sau o prismă oblică etc. Eu folosesc această tehnică mai întâi pe corpuri presupus cunoscute dinainte, eventual deja şi desenate pe tablă. De-abia după ce elevii s-au obişnuit cu această tehnică îmi permit să o folosesc şi la corpuri necunoscute, dar întotdeauna cu referire la un alt corp cunoscut şi evidenţiind deosebirile.

Credeam că eu sunt un ciudat că procedez în acest fel, că folosesc o astfel de “metodă”, dar anul trecut, (februarie 2020, deci exact pe vremea asta) am primit la Cluj vizita unei doamne din conducerea sistemului Waldorf mondial, d-na Constanza Kaliks (de origine din Brasilia) care ne-a ţinut o conferinţă la începutul căreia a vorbit despre un octaedru regulat. Conferinţa a fost fără tablă sau planşă de vizualizare, marea majoritate a auditoriului fiind în plus şi nematematicieni (mai exact, doar eu eram matematician pe acolo, dar mai auziseră vreo trei persoane de octaedru), aşa încât dinsa a prezentat pentru început corpul respectiv descriindu-l oral şi sugerându-l în mod mimat cu mâinile: o piramidă cu vârful în sus şi încă una la fel cu vârful în jos, cele două cu aceeaşi bază, astfel încât toate cele opt triunghiuri să fie echilaterale. La fel a condus mai departe şi toată discuţia cu întrebările de rigoare, însoţind totul cu mişcări ale mâinilor, mimând acest corp, parcă mângâind un octaedru regulat “de aer”, astfel încât toată lumea putea vizualiza acel corp, cât şi aspectele şi întrebările puse, fără să fi cunoscut dinainte noţiunea de octaedru (fiind astfel într-o poziţie similară cu elevii la clasă) şi fără să vadă fizic o imagine cu acesta.

Pentru mine întâmplarea a adus revelaţia faptului că nu sunt eu “un ciudat”, ci că metoda este una obiectivă şi că aceasta are rădăcini mult mai adânci într-o psihologie a capacităţii de imaginare necesară unei înţelegeri bune a lumii înconjurătoare. Sper ca prin prezenta postare să fi reuşit a trezi interesul unor colegi pentru căutări în acest sens. Deşi nu ştiu dacă va ajunge să citească şi dânsul aceste rânduri, îi mulţumesc din suflet d-lui Cristian Tudor Popescu pentru imboldul oferit prin discursul respectiv din 18 ianuarie 2021. CTG

P.S. O singură observaţie aş avea la ce a spus dl. Popescu în pasajul evidenţiat: Oamenii, în general, acum gândesc în imagini şi când le spui cuvinte, trebuie să le transmiţi de fapt imagini, prin acele cuvinte. Dacă cuvintele nu poartă în ele, nu reuşesc să transmită o imagine, ai vorbit degeaba.

Vreau să precizez că nu doar acum, ci dintotdeauna a fost aşa. Nu doar acum au ajuns oamenii să gândească în imagini. Gândirea în imagini este o caracteristică profundă a oamenilor şi aceasta a existat la om dintotdeauna. Pot interpreta acest cuvânt al d-lui Popescu doar în sensul că populaţia care se implica în discuţii înalte “pe vremuri” era mai restrânsă, marea masă a “plebei” stând de-o parte la “problemele înalte” ale comunităţii; cei implicaţi, având o cultură mai ridicată, puteau dezbate diversele decizii “în cuvinte”, neavând nevoie de “imagini”. Acum, dimpotrivă, prin accesul nelimitat la mass-media (televiziune pentru cei vârstnici sau internet pentru cei care-l folosesc, şi unii şi ceilalţi având însă posibilitatea să-şi aleagă sursa în mod subiectiv, în funcţie de părerile proprii), acum se implică în “dezbaterea publică” toată lumea, toţi îşi dau cu părerea şi se pricep nevoie mare, inclusiv cei care nu sunt obişnuiţi a prelua un mesaj “prin cuvinte, prin text”.

Apropos, mai apare din păcate – încet, dar sigur – încă o categorie de cetăţeni care au nevoie de imagine, anume cei foarte tineri, cei crescuţi deja doar cu ecran în faţa lor, cei cărora nu li s-au spus poveşti când erau copii, poveşti la care să fi fost obligaţi să-şi imagineze şirul întâmplărilor, ci au fost puşi de mici la televizor. Ulterior, de multe ori aceştia nici nu au ajuns să savureze cititul, aşa încât nici nu sunt obişnuiţi să preia un mesaj cu o profundă încărcătură logico-argumentativă, într-un discurs prea lung (prea lung pentru ei). Aceştia sunt însă obişnuiţi să preia în mod superficial mesaje primite prin imagini ale ecranului, de la televizor până la deşteptofon. Cu elevii dintr-o veche clasă (Bac în 2008) aveam o replică: Ai citit cărţile cu Harry Potter? Nu, dar am văzut filmele!

Consider că aceştia sunt cei mai vulnerabili, pentru că nu au deloc capacitatea de imaginare, capacitatea de a prelua o “imagine adusă prin cuvinte”, ei fiind total dependenţi de imaginile fizice oferite, prin intermediul ecranelor în viaţa de zi cu zi, sau prin intermediul tablei în timpul lecţiilor, eventual prin folosirea imaginilor din manual sau din alte surse bibliografice, inclusiv internetul. Pentru aceştia a fost deosebit de bună imaginea cu muşchii lui Iohannis în timp ce se vaccina.

Obligativitatea meditaţiilor pentru EN şi proiectul matex.xyz

Prin vara lui 2020, curând după examenul de Evaluare Naţională, printre multe altele, am avut şi următorul scandal: Luminiţa Barcari, la acea vreme secretar de stat responsabil cu învăţământul preuniversitar, vorbind despre subiectele la proba de matematică de la EN, spunea: După părerea specialiştilor, au fost probleme normale. Mă uitam chiar pe reţelele de socializare: un copil care învaţă la şcoală, nu neapărat cu meditaţii, ar fi putut să ia 5-6.

Cu alte cuvinte, un copil obişnuit, cu o inteligenţă OK, dar care nu primeşte meditaţii, ci merge doar cuminte la şcoală, cu cât primeşte de la profesorul său, prin manualele publice şi conform programei oficiale, cam la 5-6 se poate ridica la examen. Uau!!! Minunat de-a dreptul! Luminiţa Barcari a fost taxată aspru pentru aprecierea pe care a făcut-o, dar situaţia a rămas la fel. Nimic nu s-a schimbat pentru că nu s-au luat măsuri pentru a se schimba situaţia. Măsuri nu s-au luat pentru că nimeni nu ştie ce măsuri să ia, sau poate că situaţia este atât de complicată şi îmbârligată încât nimeni nu ştie cum s-o descâlcească. Eu cred că nimeni nu a luat măsuri din simplul motiv că fiecare avea alte lucruri mai importante de făcut. După părerea mea, singurii care ar putea duce la schimbări reale sunt oamenii de presă, dacă ar insista constant pe aceste subiecte (dl. Moise Guran îşi luase într-o vreme această sarcină şi o făcea remarcabil de bine), dar presa a avut şi ea multe alte subiecte care au urcat în topul importanţei cotidiene, aşa încât de-abia prin decembrie subiectul meditaţiilor a apărut din nou la radio, şi iată cum.

Duminică, 13 dec. 2020, la emisiunea LUMEA EUROPA FM, Iulia Verbancu ne prezenta reportajul făcut de către Viorica Ştefan despre iniţiativa unor elevi de clasa a 10-a de a-şi ajuta colegii de clasa a 8-a din ţară, mai exact colegii fără posibilităţi de meditaţii la mate. Este vorba de şase elevi olimpici la matematică, care prin intermediul proiectul matex.xyz şi-au oferit ajutorul pe internet doritorilor care vor să înveţe matematica pentru examenul de EN. Lecţiile deja ţinute prin proiectul respectiv pot fi vizionate accesând arhiva site-ului de la butonul de “Orar” din partea dreaptă a paginii de prezentare a site-ului matex.xyz.

Puteţi asculta întregul material din reportajul Europa FM, cât timp va mai fi disponibil, la adresa https://www.europafm.ro/reasculta-emisiuni/, dând cursorul la minutul 12:20; întregul reportaj are aproape 12:30 minute. Iată câteva pasaje scurte din această emisiune.

Peste 6 luni elevii de clasa a 8-a vor da piept cu primul examen important din viaţa lor, Evaloarea Naţională. Nu ar trebui să fie un capăt de ţară, ci ar trebui să arate nivelul de pregătire al elevilor şi să-i ajute să se orienteze către un anumit profil la liceu. Dar de fapt pentru mulţi copii Evaluarea Naţională chiar e o încercare grea, atât de dificilă încât unii nici nu se mai înscriu la examen. Astă vară aproape 40% dintre elevii de a 8-a nu au dat evaluarea sau nu au luat media de trecere 5.

Pentru următorul examen naţional şase elevi de liceu, olimpici la matematică, au hotărât să dea o mână de ajutor: meditaţii gratuite. Au început pe 5 decembrie. Viorica Ştefan aduce în lumea Europa FM povestea marii lor pasiuni pentru matematică:

… El este Darius V., elev în clasa a 10-a: … ne-am bazat că o să le putem să le predăm într-un “alt fel” faţă de profesorifac mai mult demonstraţii şi exemple şi mai puţin teorieAlexandra P. a fost printre primii elevi ai lui Darius …: Ei sunt olimpici, ştiu cum să explice mai pe înţelesul nostru; ….

Alexandra nu-şi permite să facă meditaţii pentru probele de la Evaluarea Naţională, lucru care ar fi condamnat-o la un rezultat slab, dacă ar fi să ne luăm după declaraţia făcută vara trecută de fostul secretar de stat Luminiţa Barcari (vezi pasajul de la început). Aceasta a fost taxată aspru pentru aprecierea pe care a făcut-o, iar consiliul naţional al elevilor a cerut Ministerului Educaţiei o reformă a sistemului de evaluare la examenele naţionale. Alexandra nu a auzit declaraţia fostului secretar de stat, dar e hotărâtă să arate că se poate şi fără meditaţii, cu ajutorul proiectului matex.xyz.

Toate bune şi frumoase (chiar am savurat reportajul respectiv, atunci într-o duminică dimineaţa însorită de decembrie: nu auzi prea des vorbindu-se la un post de aşa o anvergură despre explicitarea modulului), dar ceva nu se leagă în ultima frază întărită (unii ar spune că sunt cârcotaş, dar ceva tot nu înţeleg, stimaţi cu adevărat prieteni de la Europa fm, doamnelor realizatoare): pentru că sunt ţinute de elevii respectivi olimpici, aceste ore nu se numesc tot meditaţii? Adică, se numesc meditaţii numai dacă sunt ţinute de către un profesor şi dai bani pe ele?

Ce vreau să zic? Păi simplu, aceasta nu este de fapt o rezolvare reală la “buba” cea mai dureroasă a matematicii şcolare româneşti, servită cu atâta stângăcie prin vară de către d-na Barcari. Această iniţiativă absolut lăudabilă a celor şase elevi reprezintă totuşi doar o nouă formă de meditaţii, adică o nouă peteceală a sistemului – ce-i drept una foarte eficientă din mai multe puncte de vedere (inclusiv datorită faptului că acţionează de la elev la elev) – dar totuşi este tot o peteceală, la fel ca toate miile de peteceli reprezentate de meditaţiile la matematică de-a lungul şi de-a latul ţării, fiind necesară datorită faptului că activitatea de la clasă nu este eficientă pentru majoritatea copiilor.

Da, matematica şcolară, cu care obişnuiam să ne mândrim peste tot, mai funcţionează onorabil, acolo unde treaba merge cât de cât, doar datorită zecilor de mii de petece lipite peste tot prin sistemul de meditaţii. Acolo unde nu se pot da meditaţii, matematica şcolară este “pe jeantă”, şi nimeni de la Minister nu ştie (sau nu vrea) să rezolve această “pană” cu care ne chinuim de zeci de ani, dar care – ce-i drept – doar în ultima vreme a început să fie scoasă în evidenţă de mass-media mioritică.

Ca o paranteză, uneori întâlnesc situaţii în care s-ar putea chiar susţiune că profesorii de la clasă cauzează această “pană” continuă (fie datorită faptului că sunt cu capul în norii înalţi ai viselor olimpice locale, fie pentru că îşi alimentează prin asta o aură de “profesor bun”, de “mic baron local” în ale matematicii, datorită căreia are asigurată şi o bună piaţă de meditaţii locale).

Întreg ansamblu al matematicii gimnaziale, format din programă (una destul de nouă şi reformată), manuale (şi acestea noi) şi profesori, acest ansamblu nu funcţionează mai sus de nota 5-6 (chiar cu cerinţe scăzând constant de la un an la altul), prin cele patru ore de matematică săptămânale, având nevoie de ajutor extern (adică de meditaţii!) pentru a trece de acest prag (prag cunoscut pe vremuri ca notă de trecere). Jalnic!

Aici am ajuns după 40 de ani de învăţământ orientat în principal înspre rezultate la concursuri şi olimpiade (introdus iniţial la ordinele lui Ceauşescu, păstrat însă apoi ca sursă de alimentare a orgoliului naţional, dar şi pentru păstrarea artificială a supremaţiei unor profesori). În afara celor puţini elevi care reprezintă elitele şcolare (şi care oricum lucrează mult suplimentar!), în afara acestora avem doar două categorii de elevi: cei care iau note bune, pentru că lucrează suplimentar cu cineva acasă (profesori sau colegi), de obicei pe bani, şi cei care nu iau ore suplimentare de nici un fel, dar care se pot ridica cel mult la 5-6 la EN, având astfel tăiate orice şanse pentru un viitor mai bun prin învăţătură. Într-adevăr jalnic! CTG

P.S. Chiar şi elevii de clasa a 10-a, cum este acest Darius Vulturu, simt că este nevoie “să le predea într-un alt fel” colegilor, pentru ca aceştia să înţeleagă ceva, poate cu “mai puţină teorie“. Cum spune Alexandra Panait: “ei ştiu să ne explice mai pe înţelesul nostru“. Oare, profesorii de ce nu simt astfel de aspecte? Oare, cei de la Minister de ce nu studiază să le transmită profesorilor din toată ţara metode “mai pe înţelesul majorităţii elevilor”? Penibil!

Scrisoare către părinţii clasei a 8-a în urma unei simulări pe clasă a EN

Înainte de vacanţa de iarnă le-am dat elevilor clasei a 8-a o simulare online sincron, încercând prin această să le impulsionez procesul de învăţare. Toată procedura nu ar fi fost completă în situaţia de faţă fără o scrisoare dataliată adresată părinţilor, mai ales că în multe cazuri notele obţinute au fost clar mai bune decât au arătat elevii respectiv în ultima vreme. Cred că poate fi de interes pentru unii cititori lecturarea acestor rânduri. Iată scrisoarea de miercuri 23 dec., aproape întreagă (din care am scos câteva pasaje irelevante pt dvs., cca. 10%).

Stimaţi părinţi ai clasei a 8-a,

Nu pot să-mi iau cu adevărat vacanţă până nu vă scriu o epistolă cât de cât detaliată despre “starea clasei” la matematică, aşa încât se pare că şi azi am o scurtă “zi de lucru”. Acest aspect este rău la online-ul acesta, că îţi umple şi timpul de acasă.

Sper că aţi aflat că am dat până la urmă simularea promisă, vineri 18 dec. Copiii au primit notele pe Classroom duminică seara la ora 23, iar lucrările scanate luni după amiaza. În acest context trebuie să vă explic situaţia în care a avut loc respectivul test.

Elevii au avut de lucrat toate testele de antrenament date de minister pentru cei de anul trecut. Aceste teste au marele avantaj că sunt compuse din materia pentru clasele 5-7 şi doar sem. I din a 8-a. Au fost 35 de astfel de teste pe care elevii le-au primit începând din vară până la sfârşitul lui oct. Ultimele lecţii din materia pentru acestea (geometrie) au fost terminate cândva la începutul lui dec., deşi de fapt în simulare cea mai nouă lecţie era de la începutul lui noiembrie.

Subiectul dat la simulare a fost cca. 60% format din subiectul dat la examen azi vară, la care am mai adăugat diferite exerciţii sau probleme din testele de antrenament. (…)

Analizând rezultatele putem spune că notele au fost în general bune până la foarte bune (desigur interpretate ca atare din punctul de vedere al fiecăruia în parte). Ideea este că vă revine dvs. sarcina de a trage analiza acestui test din zona unei bucurii exagerate şi mult prea liniştitoare într-o zonă mai realistă, plecând de la premisa că orice rezultat prea bun poate acţiona spre delăsare. Ca urmare, în această perioadă, în care elevii trebuie să lucreze intens, cel mai rău lucru ce se poate întâmpla este să ia o notă prea mare, pe baza căreia “să se culce pe-o ureche” şi să nu mai înveţe. Am avut în aceşti 30 de ani de activitate o serie de exemple spectaculoase de situaţii în care diferiţi elevi şi-au distrus viitorul pe baza unei note prea bune (obţinută la şcoală, sau chiar şi în privat). Tehnic, ca profesor, eu trebuie să am mare grijă ca elevii să nu ia cumva o notă prea mare. Or, în cazul acestui al doilea “Hausarrest” (lockdown-ul şcolar de toamnă) , după “simularea” parţial ratată din 21 oct., în cazul simulării de faţă mi-a fost imposibil să preîntâmpin acest aspect. Mai mult, în cazul acestei clase, a acestor elevi şi a acestei situaţii, pentru mine a fost important şi aspectul opus, anume de a le da o doză bună de încredere pentru perioada următoare.

Cu alte cuvinte, vă rămâne dvs. sarcina unei analize cât mai exacte a rezultatelor în fiecare caz în parte, deoarece eu nu le ştiu multora  evoluţia în ultima perioadă. Vorbesc aici de toţi acei elevi care în mod normal nu au impulsul de a răspunde din proprie iniţiativă, iar când îi pune profesorul să răspundă afişează din oficiu o atitudine “de victimă”, sub motto-ul “ce-ai cu mine? de ce eu?”. Cei mai mulţi dintre aceştia au luat note mai bune decât eram obişnuiţi, iar dvs. trebuie să analizaţi contextul în care s-a întâmplat aceasta. Anume, trebuie să studiaţi cu tact, dar şi cu multă circumspecţie, care sunt factorii care au dus la acest rezultat bun. Pentru o impresie cât mai obiectivă, trebuie să analizaţi concret toţi factorii posibili şi mai ales să nu vă lăsaţi fraieriţi de către copilul personal. De multe ori părinţii sunt foarte “fraieribili”, naivi am putea spune, iar dvs. cei mai mulţi sunteţi la primul copil şi nu aveţi experienţă cu aceste aspecte (în clasa aceasta avem foarte puţini părinţi care nu sunt la primul copil).

În primul rând trebuie să vedeţi dacă copilul dvs. nu a copiat. Cei mai atenţi la acest aspect trebuie să fiţi cei care aveţi experienţa că în trecut copilul dvs. a avut tentative de a vă fenta cu diferite ocazii (în trecutul mai apropiat sau mai îndepărtat). În afară de vreo două cazuri, eu nu am văzut dovezi clare de copiere, dar în condiţiile date copierea putea fi foarte bine camuflată.

Există câteva forme de fraudare la care ar fi putut apela elevii, pe langă deschiderea caietului de mate undeva pe masă. În primul rând, puteau să-şi transmită pe diferite canale alternative răspunsurile de la unul la altul, acolo unde se cerea doar răspunsul (toate cele 6 întrebări de la subiectul I), sau acolo unde exista o rezolvare scurtă. La subiectul I trebuie să fiţi deosebit de suspicioşi: de când mă ştiu nu am avut o situaţie “atât de bună” ca acum. Nu pot susţine că sigur s-a copiat, poate chiar au ştiut, ţinând cont că au avut clar posibilitatea de a se pregăti în acest sens, iar întrebările de la examen, sau cele înlocuite, au fost chiar uşoare, iar unii şi aşa tot au greşit. O altă formă de copiere ar fi fost de a fi ajutaţi de altcineva. Aici nu mă pot exprima. Există şi aplicaţii care-ţi rezolvă anumite tipuri de exerciţii (eu am văzut cum funcţionează pe sisteme de ecuaţii). Cea mai eficientă situaţie ar fi fost desigur ca cineva să se fi prins că este vorba în mare despre subiectele de la examen, să fi descărcat baremele – care sunt desigur şi pe net – şi să-şi fi ales de acolo rezolvările corespunzătoare (nici aici nu am suspiciuni clare, dar merită să fiţi cu “urechile-n patru”).

Marea majoritate a elevilor au stat cu video conectat şi îi cam puteam vedea clar cum lucrează. Pe lângă cei 2-3 care erau prezenţi doar cu bulină (din motive obiective), au mai fost însă unii care stăteau aplecaţi de nu le vedeam decât freza sau stăteau lateral, sau stăteau în semiîntuneric (oare cum scriau aceştia?), sau etc. Cu alte cuvinte, dacă cineva dorea să fraudeze, o putea face liniştit fără ca eu să bag de seamă clar.

Pentru a preîntâmpina din start posibilitatea unor fraudări, profesorii din celelalte şcolii dau teste foarte grele sau într-un timp foarte scurt, presându-i pe elevi printr-un stres excesiv. Eu nu am vrut să aleg nici una din aceste două variante, ci am vrut să le ofer timp cinstit şi o dificultate moderată, ţinând cont că aceşti copii sunt oricum oropsiţi datorită situaţiei actuale. Nu avea rost să-i pedepsesc apriori pe toţi, adică şi pe cei cinstiţi (din care avem foarte mulţi în această clasă, majoritatea aş putea spune), doar pentru că experienţa, atât cea generală, cât şi cea cu unii dintre ei, îmi spune că există pericolul ca unii să fraudeze. Cu alte cuvinte, dacă există cazuri de copiere de orice fel, este sarcina dvs. să aflaţi şi stă tot în puterea dvs. să rezolvaţi situaţia.

Presupunând însă că nu vorbim de astfel de situaţii, putem trece la lucruri ceva mai cinstite. Eu nu le-am trimis dinainte elevilor şi testul dat la examen (normal!!!), nici nu le-am spus nimic despre acesta (normaaal), dar există clar posibilitatea ca unii dintre ei să-l fi văzut sau chiar să-l fi făcut dinainte, fie că s-au gândit ei să-l caute, fie că v-aţi gândit dvs. ca părinţi să-l daţi. Părinţii mai fac faze din acestea, ca să se implice şi ei în pregătire, dând fără să vrea “spoil” la planul de lucru al profesorului (avem astfel de cazuri în clasă legat de anumite filme). Există desigur şi posibilitatea ca să se fi ocupat de aceasta profesorul din privat (poate chiar l-au făcut împreună). Dvs. trebuie să vedeţi dacă copilul dvs. este într-unul din aceste cazuri, astfel încât să priviţi rezultatul de la simulare şi prin prisma acestui aspect, deci cu bucurie reţinută.

Un al treilea aspect îl reprezintă stresul unei astfel de simulări, care trebuie să acţioneze ca antrenament la stresul din timpul examenului. Este foarte posibil ca acest stres să fi fost puternic diminuat datorită faptului că copilul era acasă, singur în mediul lui, total neperturbat de către ceilalţi colegi (oricum, mult mai puţin perturbat). Dacă simţiţi la copilul dvs. o astfel de situaţie (subliniată de o creştere puternică a rezultatului faţă de precedentele cu care eram obişnuiţi), atunci bucuraţi-vă pe de o parte pentru succes, dar făceţi-vă gânduri despre cât de vulnerabil este copilul la stresul colectivului, dar şi cum ar trebui procedat pentru rezolvarea situaţiei până la vară.

Este evident că va trebui să verificaţi dacă elevul proprietate personală şi-a făcut ulterior corectura testului cap-coadă şi şi-a lămurit toate aspectele ratate la simulare. Eu le-am trimis în acest sens foaia după care am facut eu corectura, cât şi rezolvarea problemei III-1-b (pagina cu rezolvarea respectivă din lucrarea unei colege). Desigur că se poate descărca şi de pe net baremul subiectelor date la examen, unde se găsesc rezolvările la unele probleme din această simulare.

Toate aceste teste de antrenament cât şi simularea dată au fost pe modelul, pe forma date la examen până în vara lui 2020. Generaţia actuală nu va mai da examenul pe această formă, dar nu avea rost să ratăm ocazia: cele 35 de teste plus cel dat la examen erau din programa de pandemie din aprilie 2020, fiind de fapt din materia până la vacanţa de iarnă a clasi a 8-a, astfel fiind deosebit de potrivite pornirii pregătirii direct pe teste încă din semestrul I. Am folosit aceste teste, deşi nu sunt pe forma ce o vor da ei, pe baza următoarelor argumente. În primul rând, matematica din acestea oricum era de învăţat, formatul în care se prezentau întrebările fiind de importanţă secundară. Apoi, este clar că acestea fiind redactate de către minister, sunt mai accesibile elevilor de rând, pentru că erau redactate sub presiunea politicului (în vederea alegerilor) “pentru toţi”, nu doar pentru cei buni (aşa cum se întâmplă la marea majoritate a testelor din culegerile editurilor). Da, şi cum am mai spus, aceste teste reprezentau un pacheţel de bun simţ numeric (35 de teste), cuprinzând din clasa a 8-a doar materia de sem. I, fiind astfel mult mai potrivite decât testele din toată materia de examen, cele care conţin de pildă şi funcţiile sau fracţiile algebrice (nu se potriveau perfect pe materia parcursă de noi, dar am rezolvat şi problema asta). Cu această simulare ne despărţim însă de formatul vechi şi vom trece pe forma nouă de subiecte, pe care vor da elevii examenul.

În acest sens, ca temă de vacanţă le-am propus elevilor primele 10 teste din culegerea achiziţionată de către dvs., care sunt în noul format şi pe care le vom discuta când se termină vacanţa. Vă rog frumos să vă ocupaţi să le şi lucreze, pentru că eu nu-mi mai pot asuma repede presiunea lucratului printr-o nouă simulare. Simularea dată în acest fel, “la distanţă” este enormă consumatoare de timp (cam o zi de lucru cumulat, până când am avut lucrările pe hârtie, cât şi procesul final de scanare a lucrărilor corectate tradiţional şi trimiterea lor individual către fiecare elev în parte), având în paralel o eficienţă mult scăzută faţă de varianta dată fizic în clasă. (…)

În speranţa că vom putea face faţă cât mai bine provocărilor acestor vremuri, vă doresc toate cele bune şi sănătate. În cazul când aveţi nelămuriri punctuale mă puteţi suna, iar dacă vă pot şi răspunde atunci discutăm şi rezolvăm situaţia. Cu stimă, Moş Crăciun CTG, 23 dec. 2020

P.S. Iată şi un răspuns civilizat în urma acestei scrisori:

Bună seara, După ce am citit “epistola Dl. Diriginte către părinți” , îmi zisei (vorba olteanului), să vă urez sănătate și bucurii (…)!! O vacanță binecuvântată pentru întreaga familie! Cu drag, (…)

Planimetria şi Stereometria – (8) O privire mai profundă asupra ariilor din clasa a 7-a

Cred că onor cititorii şi-au dat seama că am redactat acest mega-eseu cu gândul direct la studiul ariilor şi al volumelor corpurilor geometrice din clasa a 8-a, indignat fiind de excluderea acestora din materia de EN în contextul opririi şcolilor în primăvara acestui an bulversant 2020, dar şi speriat fiind de posibilitatea repetării scenariului pentru următoarea generaţie. Dacă în anul şcolar 2019-2020 decizia se mai justifică cumva, pentru anul şcolar 2020-2021 nu mai există nici cea mai mică justificare, datorită faptului că lucrurile puteau fi pregătite din timp (adică din vara anului 2020).

Unul din motivrele plauzibile pentru care nu a fost pregătită, respectiv prevenită repetarea unei astfel de situaţii, este faptul că probabil în Minister atenţia majorităţii este îndreptată cu predilecţie spre vârfuri, spre matematica “de performanţă”; ori, mişcarea de excludere a stereometriei de la EN nu i-a afectat prea mult pe elevii de vârf (cei mai buni dintre ei au primit însă o lovitură “sub centură” prin toamnă, când d-na Ministru filolog a decis să elimine toate olimpiadele din activitatea acestui an, deci inclusiv “sfintele” olimpiade de matematică).

Se pare însă că pe diriguitorii matematicii româneşti nu-i prea interesează ce se întâmplă cu marea masă a celor “slabi la matematică”. Lor le-au dat câteva întrebări tălâmb de banale, astfel încât să nu existe proteste din partea acestora, dar şi pentru ca promovabilitatea pe ţară să fie OK din punct de vedere politic, astfel încât guvernanţii să aibă linişte măcar din acest punct de vedere într-un an electoral agitat cum nu a mai fost altul.

Aşadar, aceasta a fost motivaţia mea principală, pentru redactarea ideilor exprimate, cea din punct de vedere a afectării stereometriei. În cadrul acestui mega-eseu am folosit însă ocazia pentru a atinge şi alte aspecte colaterale, care însă sunt înrudite ca fenomenologie, respectiv ca atitudine a organizatorilor din Minister, a autorilor de manuale sau a marii majorităţi a profesorilor, care însă toate afectează la diferite vârste învăţarea matematicii şi formarea gândirii la marea masă a elevilor.

Unul din “punctele” respective îl reprezintă planimetria, mai ales studiul ariilor în clasa a 7-a, despre care am vorbit în diferite rânduri. În contextul studiului ariilor există multe aspecte implicate. Haideţi să analizăm mai atent două dintre acestea şi felul în care ele interacţionează. Precizez că este vorba de aspecte ale predării noastre ca profesori în România acestor ani, aspecte care însă nu sunt defel şi niciunde discutate: nici în materialul însoţitor al programei noi din 2017, nici în cursurile de formare, nici în manuale, niciunde!

Un prim aspect la care mă gândesc este faptul că planimetria capătă un sens evoluat, un sens cu adevărat matematic, doar odată cu posibilitatea calculului unor lungimi prin teorema lui Pitagora. Fără teorema lui Pitagora calculul ariilor şi a perimetrelor se rezumă la aplicarea unor reţete, adică a unor formule anterior dobândite (deduse prin gândire sau primite “de-a moaca”), şi a finalizării corecte a calculului din acestea (care se rezumă de obicei la aritmetică de clasa a 5-a, eventual la calcule cu proaspăt învăţatele numere iraţionale). De-abia prin teorema lui Pitagora calculul de arii şi perimetre devine MATEMATICĂ, devenind adică o situaţia de gândire, de forţare a individului în a decide singur ce paşi trebuie să facă, de a alege şi a combina diferite procedee anterior învăţate într-un întreg, care să parcurgă în mod coerent drumul de la ce se dă la ce se cere. De abia prin posibilitatea folosirii teoremei lui Pitagora planimetria urcă de la nivelul unui calcul banal la nivelul superior al problemelor de matematică. Cu alte cuvinte, folosirea teoremei lui Pitagora îl obligă pe elev să urce de la aplicarea “contabilicească” a unei formule, a unei reţete, la un nivel elevat în care el, elevul, trebuie să gândească, adică să ia decizii despre ce procedeu să aplice în fiecare moment.

De abia prin integrarea teoremei lui Pitagora în probleme planimetria urcă la un nivel de complexitate comparabil cu cealaltă mare parte a geometriei, anume cu demonstraţia geometrică. Totuşi, chiar dacă urcă de la nivelul de “exerciţii” (aplicarea şi exersarea unei simple reţete individuale) la nivelul de “problemă” (combinarea mai multor reţete individuale într-un întreg mai complex, combinare ce are loc, cum spuneam, în urma unor decizii ale rezolvitorului, ce reprezintă deja un proces de gândire), planimetria rămâne oricum la un nivel mai accesibil majorităţii elevilor pentru că răspunde la mult mai obişnuita întrebare “CÂT?”, pe când necesitatea demonstraţiei apare în urma întrebării “DE CE?”. Or, întrebarea “CÂT?” este mult mai prezentă în cotidianul majorităţii oamenilor, inclusiv a celor mai mulţi elevi, fiind ca atare mult mai accesibilă majorităţii indivizilor, decât întrebarea “DE CE?”, care este evident o întrebare mai profundă (vedeţi, asta numesc eu o adevărată psiho-pedagogie; şi când mă gândesc câţi ani m-am uitat cu dispreţ la cartea prof. Eugen Rusu despre Psihologia activităţii matematice).

Cu întrebarea “CÂT?” elevul se confruntă din clasele primare, aceasta reprezentând deci parte a zonei sale de confort intelectual matematic, chiar şi măcar datorită faptului că s-a confruntat cu astfel de situaţii de multe ori. Această întrebare este specifică gândirii infantile, anume a stadiului operaţional concret, aşa cum îl denumea Piaget, deşi problemele de calcul a ariilor şi a perimetrelor încep să folosească elemente ale gândirii adulte, din stadiul operaţional formal. Dimpotrivă, problemele de demonstraţie, cele care răspund la întrebarea “DE CE?”, lucrează predominant la nivelul gândirii adulte, adică în stadiul operaţional formal al raţionamentelor.

Vreau să spun aici că problemele de planimetrie reprezintă o cale de formare şi de exersare a gândirii mult mai accesibilă marii majorităţi a elevilor decât problemele de demonstraţie. Mai mult, toate problemele de demonstrat (inclusiv cele de calcul, dar care folosesc artificii algebrice sau de demonstraţie geometrică) reprezintă perioade ale orei de adresare şi educare exclusivă a elitelor, a elevilor de vârf (de obicei 2-3 în clasă). Dimpotrivă, problemele de calcul reprezintă perioade de adresare generală a întregii clase, adică şi a marii majorităţi a elevilor, din care însă înţeleg şi cei buni (şi, să ştiţi că nu li se usucă creierul de puţină “artimetică”).

Mai mult, în aceste perioade, elevii de vârf au ocazia să exerseze EMPATIA, dar şi o stare de respect plină de îngăduinţă faţă cei care le sunt inferiori din punct de vedere al gândirii. Dimpotrivă, toate acele perioade ale orei când se lucrează doar pentru vârfurile clasei, îi educă pe aceştia înspre o stare îngâmfată egoist-egocentristă, ce nu are nimic în comun cu educarea respectului mutual ce ar trebui să existe între membrii unei societăţi civilizate.

Cu alte cuvinte, prin problemele de planimetrie şi stereometrie profesorul de matematică are o ocazie mult mai accesibilă de a deveni un formator de gândire, decât prin intermediul demonstraţiilor geometrice. Marea majoritate a elevilor, cei cca. 70-80% care formează corpul de bază al “clopotului lui Gauss”, vor putea face pasul spre gândire prin intermediul problemelor de calcul de perimetre, arii sau volume, pe când în cazul problemelor de demonstrat aceştia vor fi tentaţi să înveţe pe de rost, mimând că gândesc, gândirea adevărată rămânând “de căruţă” (vezi şi P.S. din final, cu alte aspecte legate de acest important gând).

Până la programa din 2017 acest pas (introducerea teorema lui Pitagora în calculul ariilor) nu era posibil în cadrul capitolului din toamna clasei a 7-a, evident pentru că elevii încă nu aveau parcursă teorema lui Pitagora, aceasta fiind poziţionată în programă de abia în semestrul al II-lea, fixată fiind acolo de acceptarea doar a demonstraţei prin teorema catetei, care la rândul ei trebuia în prealabil demonstrată prin asemănarea triunghiurilor. Ca o paranteză fie spus, atenţionez că există şi demonstraţii prin arii la teorema lui Pitagora (încă multe chiar), demonstraţii ce ar permite includerea acestei teoreme în capitolul de arii (eu am ales una dintre ele, incluzând-o astfel de 20 de ani în studiul ariilor din toamna clasei a 7-a), dar acesta este un alt subiect şi nu vreau să intru în el acum.

Dimpotrivă, după programa din 2017, programă ce implică predarea “în gol”, adică fără demonstraţie, a teoremei lui Pitagora în finalul clasei a 6-a, n-ar mai trebui să ne împiedice nimic în integrarea acestei teoreme în studiul ariilor din toamna clasei a 7-a. Orice demonstraţie la teorema lui Pitagora implică parcurgerea unor elemente dificile, din categoria demonstraţiilor, înainte de aplicarea banală a calculului în probleme de planimetrie (absolut ciudat, dar acest fenomen nu apare şi în stereometrie, unde se poate intra în mod intuitiv direct în calcule, fără a fi nevoie de demonstraţii prealabile). Dimpotrivă, situaţia ciudată creată de programa din 2017 ne scuteşte de acest aspect al rigurozităţii, dând “mână liberă” profesorului de a folosi din start teorema lui Pitagora la calculul de arii şi perimetre. Şi totuşi, în aceste condiţii “ideale” pentru profesor de a face un pas clar în favoarea majorităţii elevilor, cei mai mulţi profesori se fac că nu văd, ratând această oportunitate, unii chiar luptându-se împotriva acesteia.

În acest sens, poate fiecare să studieze cum arată situaţia în manualele sau în culegerile auxiliare însoţitoare alese; unii le-au integrat timid, alţii dimpotrivă nu s-au gândit la această posibilitate (eu personal nu am făcut un astfel de studiu cât de cât vast; vorbesc doar în urma întâlnirii unor câteva exemple din ambele categorii). Care este însă situaţia de la clasă în acest context? Păi, cam aceeaşi: profesorii nu se bagă, nu văd oportunitatea, le este “nu ştiu cum” să iasă din zona de confort a predării din ultimii zece ani.

În acest sens vreau să prezint un singur exemplu: chiar zilele acestea, după publicarea părţii (4) a acestui mega-eseu, m-am întâlnit din nou cu o situaţie absurdă şi am promis că o voi prezenta. Este vorba despre situaţia unei probleme din capitolul de arii din clasa a 7-a, în care, la propunerea unui elev de a rezolva cu teorema lui Pitagora, profesorul spune ad-literam: încercăm să evităm folosirea lui Pitagora (aproape că ai impresia că-l vezi pe acel profesor “scrâşnind printre dinţi” o înjurătură la adresa cui o fi decis introducerea acelei lecţii în finalul clasei a 6-a). Este NOAPTEA MINŢII să lucrezi întreg acest capitol fără teorema lui Pitagora, deşi de data asta elevii o cunosc, doar aşa, pentru că tu te-ai obişnuit să predai acele lecţii fără Pitagora şi îţi este greu să te schimbi. Analizând situaţia concret am putut vedea gândul mai profund al respectivului profesor, anume că el pregătise problema pentru o anumită rezolvare, care era mai scurtă, dar mai “algebrică” decât cea prin folosirea teoremei lui Pitagora (aceasta fiind însă din punct de vedere al elevilor mai accesibilă pentru că era mai “aritmetică”, chiar şi prin prisma celui mai bun elev din clasă, cel care venise cu propunerea). Da, “stimaţi” colegi, dar într-o astfel de situaţie suntem obligaţi să explicăm situaţia elevilor, nu doar să le refuzăm soluţia în mod schizofrenic, pentru că altfel lucrurile rămân în mentalul întregii clase la un nivel inerxplicabil mustind de subiectivitate: de ce să evităm folosirea lui Pitagora de vreme ce o cunoaştem? Vedeţi cum situaţia capătă aspecte conflictuale prin impulsul unei astfel de contra-întrebări retorice.

Cum s-ar fi putut evita astfel de situaţii? Păi simplu, dacă în textele însoţitoare ale programei din 2017 ar fi fost prevăzute şi incluse aceste aspecte, dacă ar fi fost clar precizate, atunci autorii de manuale le-ar fi integrat clar şi vizibil, iar profesorii s-ar fi adaptat evident. Aşa, după cum am mai spus, fiecare ocazie de reformă adevărată şi profundă este ratată în România cu mare stil şi eleganţă balcanică, astfel încât cei de la baza învăţământului, profesorii de rând şi orele lor în nici un caz nu au cum să evolueze în favoarea marii majorităţi a populaţiei şcolare.

Am precizat, mai ales la geometria în spaţiu din clasa a 8-a, că avem de fapt o formă de predare orientată după criteriile rigurozităţii matematicii, dar care sfidează criteriile pedagogice (înţelegeţi ce am vrut cu axele acelea ciudate din prima parte a eseului). Această formă este accesibilă vârfurilor populaţiei şcolare, dar se desfăşoară mult prea sus din punct de vedere intelectual pentru cea mai mare parte a elevilor. Probabil că mulţi dintre matematicieni nu înţeleg de ce “prostimea” nu face faţă geometriei, pentru că doar, măcar ariile şi volumele din clasa a 8-a “sunt simple”. Acelaşi fenomen se întâmplă însă şi cu un an înainte, în clasa a 7-a la studiul ariilor, din cauza a două aspecte, unul dintre ele fiind cel discutat mai sus.

Un al doilea aspect de analizat ar fi următorul: studiul ariilor are două părţi destul de bine delimitate, cu adresabilitate destul de diferită la nivelul elevilor. Pe de o parte avem calculul concret ar ariilor, ce se face cu diferite formule (majoritatea figurilor au mai multe formule, în funcţie de situaţia datelor, şî acestea cu adresabilitate diferită la nivelul elevilor, dar nu mai pornesc şi în acest sens o analiză specială). Pe de altă parte, avem studiul proprietăţilor ariilor, cu figuri echivalente (de obicei necongruente, dar cu aceeaşi arie), rapoarte de arii sau diferite relaţii între elementele unor figuri, relaţii demonstrabile cu ajutorul ariilor. De obicei, în această parte nu se cere calculul unei arii. Prin excelenţă, apogeul acestui domeniu matematic îl reprezintă chiar teorema lui Pitagora, anume că aria pătratului construit pe ipotenuză este egală cu suma ariilor pătratelor construite pe catete (deşi în mentalul multor profesori din România pare că este prohibită).

Din a doua parte, cea mai accesibilă şi cunoscută este proprietatea de arie a medianei, anume că mediana împarte triunghiul în două triunghiuleţe cu ariile egale, deşi de obicei acestea nu sunt congruente. Şi lungimea înălţimii pe ipotenuza unui triunghi dreptunghic poate fi demonstrată aici foarte uşor, prin egalarea a două formule de arie a acestuia. Anexez aici două din problemele mele preferate în această parte de geometrie.

Eu am scos în evidenţă existenţa celor două părţi destul de diferite încă din 2005, la redactarea culegerii de geometrie publicată în 2006 împreună cu soţia mea (De la Cercul lui Thales la Moneda lui Ţiţeica, Probleme elementare de geometrie plană, Ed. Humanitas Educaţional). În această lucrare am cuprins două capitole separate cu arii: Cap. V – Calcule de arii şi perimetre, respectiv Cap. VI – Proprietăţile ariei (problemele de mai sus sunt primele două din acest capitol). Cap. V este adresat, cel puţin în prima sa parte, elevilor de rând, cuprinzând multe probleme de calcul elementar de arii şi perimetre ale figurilor de bază, pe când Cap.VI se adresează prin excelenţă doar elevilor buni la matematică.

Problemele de felul celor două (mai sus prezentate) sunt destul de şocante pentru cei mai mulţi elevi, pur şi simplu pentru faptul că sunt probleme de arii, dar în care elevul nu primeşte nici un număr cu care să calculeze. Arii, dar fără numere, cum vine asta??? Chiar şi cel mai bun elev este bulversat de această situaţie. Diferenţa dintre elevii de vârf şi cei de rând este că cei buni reuşesc să-şi revină din această bulversare, pe când cei de rând nu. Există desigur şi probleme “parşive” în acest sens, probleme în care rezolvitorul primeşte numere (de obicei un număr), dar problema nu este una tradiţională “de calculat”, ci una de comparare de arii. Iată un exemplu la repezeală în acest sens: Considerăm un triunghi oarecare ABC de arie 234 cm2 şi notăm cu M, N şi P mijloacele laturilor sale. Demonstraţi că patrulaterul AMNP este un paralelogram şi determinaţi aria acestuia. Problema are un număr, dar nu ai ce să calculezi mare lucru cu acesta. Putem explica şi astfel: la acel paralelogram, nu-i poţi calcula nici o latură, nici o înălţime (aşa cum art cere formula de bază).

Rezumând, putem spune că neconştientizarea existenţei acestei delimitări destul de clare între cele două domenii, alături de neimplicarea teoremei lui Pitagora în capitolul de arii din semestri I al clasei a 7-a, contribuie împreună la ratarea momentului acestui capitol înspre atragerea elevilor de rând către fenomenul matematic. Mulţi profesori bombardează clasele cu probleme din partea de proprietăţi a ariilor, accesibile doar vârfurilor, astfel încât toţi elevii de rând din aceste clase ratează oportunitatea conectării cu gândirea, chinuindu-se în cel mai bun caz să înveţe pe de rost rezolvările respectivelor probleme. Aceasta, împreună cu faptul că elevii nu primesc dreptul de a folosi teorema lui Pitagora în calcule, îi menţine pe cei mai mulţi într-o stare de profundă prostie matematică, tăindu-le posibilitatea accesării gândirii prin fereastra de oportunitate numită “arii”.

Avem şi aici un bun exemplu prin care profesorimea împinge elevii spre analfabetism funcţional matematic, aspect ce iese apoi la iveală în mod dureros la examenul de EN sau la studiile PISA, dar şi cu alte ocazii. Degeaba avem câteva vârfuri cu care ne tot mândrim, când în paralel avem o politică aparent gândită doar spre îndobitocirea maselor.

Dar nici măcar această parte despre proprietăţile ariilor nu este predată corect. De multe ori elevii primesc probleme din această parte, fără să aibă predate înainte elementele necesare (profesorul de mai sus s-a trezit după o săptămână că nu le-a dat proprietatea de arie a medianei, necesară într-o problemă de la temă). Eu văd însă un aspect negativ mult mai profund. Această parte de proprietăţi a ariilor se împarte şi ea în două subpărţi. Există aici foarte multe aplicaţii care sunt exprimabile uşor în limbaj algebric, spre care tind cei mai mulţi profesori, dar există aici şi aplicaţii cu un profund caracter vizual grafic. Cele cu caracter algebric sunt mai statice (de pildă faptul că produsul dintre o latură a unui triunghi şi înălţimnea corespunzătoare este acelaşi, indiferent de latura aleasă ca bază), pe când cele cu caracter mai vizual grafic sunt oarecum “în mişcare” (de pildă faptul că aria unui triunghi nu se modifică dacă “plimbăm” un vârf al acestuia paralel cu latura opusă). Această a doua parte, care dezvoltă o mobilitate mai bună în gândire, este cu totul neglijată în România, fiind abandonată total după reforma din 1997.

*

Încerc să mă opresc aici, deşi este evident pentru orice cititor că aş putea continua cu alte şi alte aspecte “mult şi bine”. Sunt sigur că acest mega-eseu are clar un aer destul de haotic, trecând uneori neaşteptat “de la una la alta”. Este evident că la o a doua reluare lucrurile ar fi mult mai ordonate, dar acest eseu a fost publicat în “timp real”. Iniţial am gândit 4, ba nu 5 părţi (una introductivă şi câte una pentru fiecare clasă gimnazială), iar apoi am spus că mai adaug şi una de concluzii, deci 6, pentru ca în final să ajung la 8 părţi.

Nutresc însă speranţa, că cititorul de bună credinţă a putut căpăta o idee solidă despre cum ar trebui integrate elementele de planimetrie şi de stereometrie în materia de gimnaziu, într-un mod cât mai just relativ la cele trei axe de referinţă prezentate iniţial: 1) axa calcule – demonstraţii; 2) axa 2D – 3D; 3) axa pedagogie – ştiinţă. Nutresc speranţa că am reuşit să atrag atenţia cititorilor asupra acestei problematici importante şi că aceştia şi-au făcut o idee cât mai sănătoasă despre “traseul” pe care noi profesorii ar trebui să-i conducem pe elevi prin “meandrele octantelor” apărute între aceste trei axe de referinţă ale predării geometriei gimnaziale (octantele reprezintă “optimile” în care este împărţit spaţiul de către trei axe de coordonate; octantele sunt similarele cadranelor în sistemul de două axe; cadranele reprezintă “colţuri 2D”, pe când octantele “colţuri 3D”; m-am referit aici la imaginea cu cele trei axe din prima parte a eseului).

Mai sunt doar câteva aspecte pe care nu le-am putut integra fluent în începutul acestui episod, aşa încât le-am păstrat pentru final, în următorul Post Scriptum. Sper să mă pot limita la 8 părţi pentru acest mega-eseu (8 este un număr foarte favorabil din punct de vedere Feng Shui), dar nu pot “băga mâna-n foc” că nu mă va mai apuca din nou scrisul pe acest subiect. Constantin Titus Grigorovici

P.S. Spuneam mai sus că prin problemele de planimetrie şi stereometrie profesorul de matematică are o ocazie mult mai accesibilă de a deveni un formator de gândire pentru marea masă a elevilor, decât prin intermediul demonstraţiilor geometrice. Marea majoritate a elevilor, cei cca. 70-80% care formează corpul de bază al “clopotului lui Gauss”, vor putea face pasul spre gândire mult mai lesne prin intermediul problemelor de calcul de perimetre, arii sau volume, pe când în cazul problemelor de demonstrat aceştia vor fi tentaţi să înveţe pe de rost, gândirea adevărată rămânând “de căruţă”.

Acest aspect este susţinut şi de faptul că în calculul de arii şi perimetre elevul are de combinat calculele teoremei lui Pitagora cu formulele de arie specifice figurii respective, adică are de ales dintre decizia de aplicare între puţini “paşi logici” (la care se adaugă situaţiile banale din cazul perimetrelor), pe când în cazul demonstraţiilor elevul are de ales dintre mult mai mulţi paşi logici posibili (deja învăţaţi), pentru combinarea într-o demonstraţie corectă. Cu alte cuvinte, combinarea unei rezolvări de planimetrie este mult mai simplă decât majoritatea situaţiilor de combinare a unei probleme de demonstraţie.

Ca o scurtă paranteză, precizez că în nici un caz nu ar trebui să le dăm elevilor de învăţat “formule pentru perimetre”. Fenomenul perimetrelor este atât de simplu, încât profesorul ar trebui să le pună din start la baza ideii de gândire. Acolo unde profesorul observă că elevul are tendinţa să înveţe pe de rost “o formulă de perimetru”, acolo trebuie intervenit de urgenţă pentru a atrage mintea elevului înapoi pe linia de gândire. Una este ca elevul să fi dedus singur şi să ştie că perimetrul unui romb este 4a (de 4 ori latura) şi să o poată explica de unde vine,  iar alta este să vedem că elevul nu ştie de unde vine această “formulă”, dar a învăţat-o pe de rost, eventual şi-a şi notat-o într-o listă după care o repetă şi este ascultat acasă, de către un părinte binevoitor, dacă “o ştie”.

Merită făcută aici şi o altă scurtă observaţie metodică, în vederea oportunităţii de formare a gândirii, în sensul de antrenare a minţii elevului în a lua deciziile juste în fiecare caz în parte (vorbesc aici de situaţii din planimetrie, unde, cum am spus, procesul decizional este la un nivel mult mai accesibil). În general există două tipuri de rezolvări prin teorema lui Pitagora. Există pe de o parte cei care scriu relaţia întotdeauna în formă de sumă, urmând ca în cazul când necunoscuta este o catetă, aceasta să fie calculată în final prin procedee specifice ecuaţiilor (trecut în membrul celălalt cu semnul schimbat. Această rezolvare se bazează pe faptul că elevul ştie foarte bine să rezolve ecuaţii, dar în cazul unui elev care a cam ocolit învăţatul în ultimii ani, sau nu poate face lesne transferul de cunoştinţe dintr-un capitol în celălalt, învăţarea problemelor cu teorema lui Pitagora este subminată.

Dimpotrivă, există şi cei care aplică teorema lui Pitagora în două forme, de sumă, dacă ştim ambele catete şi avem de calculat ipotenuza, respectiv de diferenţă, dacă nu cunoaştem o catetă, pornind de fiecare dată cu latura necunoscută. Aparent, aici elevul are de învăţat două rezolvări în paralel (în loc de una) şi mai are de luat şi o decizie în plus, anume pe care dintre cele două să o folosească în fiecare caz. În această rezolvare, însă, elevul nu este dependent de abilităţile dintr-un capitol precedent de algebră, ci rezolvarea se resrânge doar la aplicaţii aritmetice. Apoi, această a doua rezolvare îl antrenează pe elev de a lua decizii încă într-un loc. Pe lângă faptul că-l învăţăm pe elev să aplice anumite reţete, anumiţi algoritmi, ca profesori, noi trebuie să-l învăţăm să şi gândească, măcar câtuşi de puţin şi pe elevul cel mai slab la matematică. Mie personal, această a doua variantă de rezolvare prin Pitagora îmi oferă o astfel de ocazie de formare a gândirii şi la cei mai “începători” la matematică.

Merită să adaug aici încă un aspect ciudat legat de învăţarea matematicii. În general, lumea trăieşte cu impresia că învăţatul matematicii este ca un tren al cărui traseu trebuie să îl parcurgi neapărat pornind de la prima staţie, pe rând prin toate celelalte. Eu sunt însă de altă părere, anume că pe lungul traseu al acestui tren există anumite staţii în care un elev se poate urca cu succes, fără însă să fi parcurs în prealabil toate celelalte dinainte. De ce nu le-ar fi parcurs? Păi, din lene, sau poate datorită unei predări mult prea elevate din partea profesorului, căreia elevul pur şi simplu nu i-a făcut faţă, sau din cine ştie ce alte motive.

Pentru astfel de elevi (care nu sunt deloc puţini), calculul de arii şi perimetre din clasa a 7-a, cu aplicarea teoremei lui Pitagora, reprezintă o astfel de oportunitate rară de a se urca în “trenul gândirii matematice” cu multă eficienţă şi succes, crescând puternic moralul şi dispoziţia unui astfel de elev în a învăţa matematica (creierul său crează cu această ocazie sinapse de gândire şi învaţă să le folosească, urmând ca aceste conexiuni să fie utilizate ulterior şi în alte situaţii). Apoi, odată pornită gândirea matematică, un astfel de elev reuşeşte cu timpul să recupereze şi multe alte elemente dintre cele pierdute înainte. Uneori o astfel de recuperare poate fi absolut spectaculoasă, ridicând elevul de la nivelul unui analfabetism funcţional matematic extrem (la începutul clasei a 7-a) până la nivelul de intrare la liceu într-o clasă de ştiinţe.

Planimetria şi Stereometria – (7) Scurt istoric al studiului despre drepte şi plane

Am văzut în acest eseu-serial cum la geometria în spaţiu din clasa a 8-a avem de fapt o formă de predare orientată după criteriile rigurozităţii matematicii, dar care sfidează criteriile pedagogice. Această formă poate fi înţeleasă de către vârfurile populaţiei şcolare, dar se desfăşoară mult prea sus din punct de vedere intelectual pentru cea mai mare parte a populaţiei şcolare. Probabil că mulţi dintre matematicieni nu înţeleg de ce “prostimea” nu face faţă geometriei, pentru că doar, măcar ariile şi volumele “sunt simple”. Păi, DAAAA!, chiar şi lucrurile simple devin de neînţeles pentru mulţi dacă sunt prezentate în context complicat sau într-o formă fără sens! Iar după o vreme apare atât negarea şi refuzul, din punct de vedere psihologic, cât şi incapacitatea pură de a urmări şî a înţelege un conţinut, chiar dacă acesta este prezentat evident simplu, din punct de vedere al capacităţii intelectuale. Cu alte cuvinte, o predare mult prea elevată duce la îndobitocirea maselor!

Haideţi să vă prezint ce amintiri am eu despre clasa a 8-a în legătură cu acest subiect, al studiului poziţiei relative a dreptelor şi planelor şi a demonstraţiilor cu acestea înaintea elementelor de stereometrie. Nu ţin minte mai nimic, în afara faptului că după o anumită oră din clasa a 8-a m-am dus acasă şi mi-am construit o mică machetă pentru teorema celor trei perpendiculare (o machetă foarte mică, la care “planul” era reprezentat de un dreptunghi de la o cutie de chibrituri, care la vremea respectivă încă erau făcutedin plăcuţe foarte subţiri de lemn lipite împreună cu hârtie). Singura datare clară a momentului respectiv este că a fost cândva înainte de Crăciun, pentru că respectiva machetă a ajuns atârnată în bradul împodobit, şi a rămas mulţi ani printre podoabele pentru pom (chiar şi când eram prin facultate o mai găseam acasă la părinţii mei în bradul de Crăciun).

Nu am amintiri de geometrie în spaţiu dinaintea acestui moment, dar bănuiesc ca ceva am înţeles din acele ore, de vreme ce am priceput teorema respectivă, despre care ţin minte o stare de relativ entuziasm, după care am putut să fac corect macheta respectivă când am ajuns acasă. Precizez că am făcut-o din proprie iniţiativă; nu a fost temă. Următoarele amintiri le am despre formulele de arii şi volume, undeva prin primăvară.

Cu alte cuvinte, şi atunci, pe forma de manuale ale lui Hollinger, în ultimul an de valabilitate al acestora (1980-1981), toamna era ocupată de studiul relativ detaliat al dreptelor şi planelor, un studiu greu şi pentru elevii cu o vedere geometrică bună (nu am nici cea mai mică amintire despre probleme sau teste, dar probabil că nici nu făceam mare lucru; problemele adevărate în acest sens au venit la a doua trecere, în clasa a 10-a). Cât era acest studiu de detaliat, dar totuşi prezentat pe baze intuitive, se poate vedea din oricare manual din anii ’60-’70. Nu mi-am propus acum să vă prezint această formă într-un studiu detaliat (cea din timpul şcolii mele), dar este evident că respectivele manuale ar trebui studiate şi actualmente, atât de către autorii de programe, cât şi mai ales de către autorii de manuale.

Mai am însă o relatare despre acest subiect, una profund diferită şi totuşi pe aceeaşi linie, anume de la mama mea. Zilele acestea (după publicarea primelor patru părţi ale prezentului eseu) îi povesteam mamei mele despre acest subiect şi iată ce mi-a povestit (la telefon). Partea de studiu a dreptelor şi planelor i-a fost una dintre cele mai urâte părţi din matematică, vorbind aici cu referire la clasa a 10-a (Mama a predat toată cariera ei în liceu). De abia după ce apăreau corpurile şi apăreau cerinţe pe corpuri, de abia atunci simţea că elevii încep să înţeleagă respectivele situaţii (nu vorbea aici de arii şi volume, ci doar de studiul comportamental al dreptelor şi planelor în spaţiu). Cu alte cuvinte, nici măcar în clasa a 10-a, la o a doua trecere prin subiect) elevilor nu le erau accesibile problemele cu demonstraţii în spaţiu dar fără corpuri (vorbim aici de liceul din Or. Victoria, ca un eşantion destul de reprezentativ pentru toată ţara: cu reprezentanţi ai elevilor din toate nivelele, de la cei ce urmai să ajungă muncitori de rând, apoi mulţii viitori intelectuali, până la cei ce urmau să ajungă în cele mai înalte poziţii universitare, la nivel naţional sau internaţional, şi până la locul I la Olimpiadele naţionale de matematică).

Traduc eu: problemele pe structuri artificiale, de tipul celei date azi vară la EN-8, sunt mult mai greu de înţeles pentru elevi decât situaţiile prezentate în corpuri, care sunt nişte structuri mai uşor de înţeles. Corpurile acţionează aici ca un fel de “schelă” suport pentru înţelegerea şi gândirea elevului, pentru capacitatea sa de imaginaţie în spaţiu; desigur că în lipsa acestei schele elevul se descurcă mult mai greu. Acest aspect a fost recunoscut pe la sfârşitul anilor 2000, când s-a decis introducerea rapidă a corpurilor la începutul clasei a 8-a, într-o formă descriptiv intuitivă, astfel încât să se poată parcurge din start în mod echilibrat şi probleme “în corpuri”, nu doar pe structuri artificiale. Din păcate “onor ministerul” nu a explicat niciodată aceste aspecte, lăsând totul la bunil simţ al profesorilor.

Ordinea naturală ar fi dimpotrivă următoarea: De la început probleme cu drepte şi plane doar pe corpurile deja studiate, iar doar de la un anumit moment probleme pe structuri artificiale. Eu, de pildă, studiez mai întâi toate prismele şi piramidele; apoi studiez lecţiile uşoare despre drepte şi plane doar pe corpuri (unghiul dintre două drepte necoplanare, drepte necoplanare perpendiculare, dreaptă perpendiculară pe plan, plane perpendiculare, drepte paralele, dreaptă paralelă cu un plan, cât şi planele paralele). La acestea elevii primesc o structură artificială teoretică urmată imediat de aplicaţii pe corpuri, transferul fiind ajutat de către folosirea cretelor colorate (întotdeauna aceleaşi culori şi pe structura teoretică şi în mod corespunzător pe corpul geometric din problemă). Structurile artificiale le introduc abia la teorema celor trei perpendiculare. Din acest moment apar apoi şi aplicaţii ale celorlalte în structuri artificiale.

Pentru cei care au uitat problema de azi vară şi nu înţeleg la ce mă refer când vorbesc de probleme pe structuri artificiale, o reiau pe scurt: În Figura 3 este reprezentat un dreptunghi ABCD cu AB = 24 cm şi BC = 10 cm. Punctul O este intersecţia dreptelor AC şi BD, iar dreapta EO este perpendiculară pe planul (ABC). Punctele M, N şi P sunt mijloacele segmentelor AB, AD, respectiv AE etc.

Mama vorbea de elevii de a 10-a, la o a doua parcurgere; la cei de a 8-a, la primul contact cu situaţia respectivă, fenomenul este desigur şi mai dur. Atât de dur încât mulţi dintre elevii care poate ar învăţa geometria în spaţiu, după un astfel de prim contact se sperie atât de tare, încât cu greu mai pot fi recuperaţi. Iar după reforma din 1997, când s-a scos geometria sintetică din liceu, elevii nu mai au oricum o a doua şansă de a înţelege acest studiu.

Apare aici o situaţie de ordin filozofic: dacă studiul dreptelor şi planelor este atât de important din punct de vedere al matematicii, atunci de ce nu este reluat în liceu? Dimpotrivă, dacă acest studiu nu este totuşi atât de important, atunci de ce se insistă cu introducerea acestuia înainte de elementele de stereometrie, care sunt evident mult mai accesibile marii majorităţi a elevilor? Păi, sunt sau nu importante?

Revenind la amintirile mele, trebuie să precizez accentuat că efectiv nu am amintiri din clasa a 8-a înaintea teoremei celor trei perpendiculare. Din clasa a 10-a, când am reluat această materie, nu am astfel de “lipsusuri”, dar trebuie înţeles că eu am avut dintotdeauna o foarte bună vedere geometrică. Dimpotrivă, mulţi elevi nu au nativ o vedere geometrică bună. La aceştia profesorul trebuie să aibă mult tact pedagogic pentru a-i ajuta să-şi formeze minime capacităţi în acest sens (voi reveni cu o altă ocazie asupra acestui subiect).

Rezumând cele două amintiri, ale mele din clasa a 8-a, cât şi ale mamei mele de profesoară în liceu, putem spune că elevul obişnuit trăia o stare bulversantă în care reacţia naturală era cea de “ghiocel”: să stai cuminte, cu capul aplecat şi să speri că “azi nu o să te pună pe tine”. La aceste lecţii elevul de rând trăieşte o frică profundă, refugiindu-se în copierea lecţiei cuminte, iar apoi acasă, în copierea temei de la cineva care o ştie sau de la un coleg care o are (de la altcineva care o ştie) aceasta este o situaţie specifică sistemelor autoritare. Creştinismul Evului mediu a inventat-o prin vânătoarea de vrăjitoare, dar şi comunismul a practicat-o intens: să te simţi vinovat că nu îndeplineşti cerinţele cerute (renumitul plan de producţie), ca să stai “ghiocel” şi să nu emiţi pretenţii. Din păcate, această stare se păstrează în continuare şi azi (decembrie 2020), când la radio se aud evocări cu ocazia împlinirii a 31 de ani de la Revoluţia din decembrie 1989. Şi acum elevii trăiesc impulsul de a se refugia în această “stare de ghiocel” ca să nu atragă atenţia asupra lor iar profesorul să-i întrebe ceva din lecţie (la multe lecţii se întâmplă aste, chiar la multe materii, dar acesta este un alt subiect).

Haideţi să schimbăm punctul de vedere din cel particular într-unul cât mai general. Haideţi să aruncăm o privire în trecut, asupra respectivei părţi a geometriei în spaţiu, să vedem cum stăteau lucrurile la nivel naţional într-un trecut cât mai îndepărtat, cât mai “istoric” posibil. Ar fi minunat să putem afla de unde vine această ordonare a materiei. Sursele mele de informare sunt în acest punct deosebit de limitate, dar câte ceva tot am găsit (oare nu se apucă nimeni de o cercetare mai profundă a acestui subiect?).

În perioada interbelică şcoala (cât de cât) obligatorie era de 4 ani. Doar cei aleşi de soartă mergeau mai departe la liceu. Pentru aceste elite exista o materie mult mai intelectuală decât ar fi fost normal în cazul unei şcoli de masă. Odată cu extinderea învăţământului de masă de către autorităţile comuniste, mai întâi la 7 clase, apoi la 8, a fost nevoie de adaptarea materiei obişnuite din primele clase de liceu (actualele clase 5-8) la o formă cât de cât accesibilă întregii populaţii şcolare. Aici autorii de manuale s-au confruntat cu o mare dilemă, anume cum să adapteze o materie setată de ani buni doar pentru elite într-o formă folosibilă pentru “tot poporul”, cerută de către noile autorităţi, care puneau populaţia muncitoare deasupra elitelor intelectuale.

Mergând în urmă pe această “linie de studiu”, am avut norocul să-mi parvină un manual semnat A. Hollinger din 1957: GEOMETRIA Manual pentru clasa a VII-a, Ed. de Stat didactică şi pedagogică. Cartea este împărţită în două părţi: GEOMETRIE PLANĂ şi GEOMETRIE ÎN SPAŢIU. Prima parte are şase capitole: I. Figuri asemenea; II. Relaţii metrice într-un triunghi dreptunghic; III. Elemente de trigonometrie; IV. Poligoane regulate; V. Ariile poligoanelor; VI. Lungimea şi aria cercului. A doua parte are două capitole: VII. Introducere; VIII. Arii şi volume. Iată în detaliu cuprinsul părţii a doua:

Bănuiesc că acest manual este din anii când şcoala obligatorie din România fusese extinsă de la 4 ani la 7 ani, deci era manualul de geometrie pentru ultimul an de şcoală generală. Vedem cum şi atunci autorii de manuale considerau ca obligatoriu – din punct de vedere ştiinţific – un studiu preliminar despre drepte şi plane în spaţiu, studiu care să pregătească înţelegerea corpurilor. Pare o obsesie a matematicienilor, care oarecum nu ţine cont de existenţa intuiţiei naturale a elevului (intuiţie cu care însă lumea matematicienilor constatase că s-a păcălit rău de tot în cazul situaţiei sistemului geometric axiomatic, pe la începutul secolului al XIX-lea, aşa încât de-atunci a început “să sufle şi-n iaurt”, adică să ţină cont destul de obsesiv de aceasta chiar din şcoala elementară). Pe de altă parte putem vedea lucrurile şi astfel: în general, în perioada postbelică, corpurile geometrice erau mult mai puţin prezente în viaţa elevului de rând, decât sunt acum. De pildă, în prezent orice copil de şcoală primară a văzut cuburi Rubik sau poze şi filme cu piramidele din Egipt, pe când în anii postbelici “cultura generală” a elevilor despre corpuri geometrice trebuie că era mult mai redusă. Dar să revenim la manualul din 1957.

Capitolul VII. de introducere în geometria în spaţiu nici măcar nu are un titlu, dar nu are trecute la cuprins nici titlurile lecţiilor, deşi dacă răsfoim prin carte găsim nişte titluri (un fel de titluri de aliniat): 139. Planul; 140. Determinarea planului; 141. Poziţia unei drepte faţă de un plan; 142. Construcţia unei drepte paralele cu un plan; 143. Poziţia relativă a două drepte; 144. Drepte paralele; 145. Unghiul a două drepte; 146. Poziţia relativă a două plane; 147. Plane paralele; 148. Dreaptă perpendiculară pe un plan; 149. Condiţia ca o dreaptă să fie perpendiculară pe un plan; 150. Distanţa dintre două plane paralele; 151. Proiecţii; 152. Perpendiculare şi oblice; 153. Distanţa de la un punct la un plan; 154. Unghiul unei drepte cu un plan; 155. Unghi diedru; 156. Unghi plan corespunzător unui unghi diedru; 157. Reprezentarea corpurilor prin desen cotat (tipărită cu caractere mai mici); 158. Reprezentarea corpurilor în perspectivă; 159. Exemple (pătrat, triunghi echilateral, hexagon regulat reprezentate “culcat”).

Titlul 157. are o clară utilitate tehnică (eram în anii de foc ai comunismului, iar absolvenţii care aveau să intre după şcoală în câmpul muncii trebuiau să primească primele indicaţii pentru citirea unui desen tehnic în vederea confecţionării unei anumite piese). Tilurile 157 şi 158 sunt de fapt împreună şi prezintă instrucţiuni detaliate de reprezentare a figurilor şi corpurilor în spaţiu (din păcate, după titlul 158. mai aparte un exemplu de la titlul precedent). Lecţia cuprinsă în aceste două titluri este foarte bine explicată şi actuală oricând.

Este de bănuit ca acest capitol VII. introductiv în ale geometriei în spaţiu să fi fost oricum parcurs “pe repede înainte”, deoarece toată partea de geometrie în spaţiu ocupa cel mult jumătate din anul şcolar, mai probabil însă sub jumătate (poate că cele două capitole aveau alocat doar trimestrul III.). Pentru a înţelege diferenţa uriaşă existentă între acestă prezentare introductivă şi actuala formă a materiei din semestrul I al clasei a 8-a, am anexat în final în scanare acest capitol. Se vede clar cum prezentarea este setată totalmente pe o cunoaştere intuitivă, puţinele cazuri de “teoreme” primind această denumire doar ca “titlu ştiinţific-nobiliar”.

Putem privi importanţa dată celor două părţi ale geometriei în spaţiu şi analizând pur şi simplu numărul de pagini alocat fiecăriua: Cap VII. Introducere are 19 pagini, pe când Cap. VIII. Arii şi volume are 34 de pagini. Cei drept că apar ocazional şi corpuri neregulate (din punct de vedere a bazelor). Nu l-am studiat în detaliu, dar nu am văzut figuri cu corpuri înclinate. Ca o observaţie evidentă, actualmente raportul între cele două părţi este cu totul altul (cam invers).

Sare “în ochi” destul de repede faptul că nu apare teorema celor trei perpendiculare. Din păcate nu am în paralel spre analiză şi manualul pentru primul an de liceu (sau pentru al doilea), unde este de aşteptat să apară totuşî această vestită teoremă, dar faptul în sine ne arată că aceasta era privită ca un element de geometrie teoretică “înaltă”, doar pentru “cei aleşi” (cei capabili de aşşa ceva şi care intrau la liceu).

Desigur că mai trebuie să ţinem cont în analiza noastră şi de faptul că la vremea respectivă se mergea la şcoală cam de la 6 ani împliniţi, clasa I corespunzând actualei clase pregătitoare, astfel încât acest manual de clasa a 7-a corespunde ca vârstă adresată actualei clase a 6-a.

Revenind la capitolul analizat, putem compara situaţia de atunci cu situaţia actuală şi din punct de vedere al problemelor. Dacă veţi avea răbdare să le lecturaţi, veţi constata că sunt probleme pe bază de situaţii din lumea înconjurătoare, “probleme” ce scot în evidenţă situaţii din lumea reală bazate pe teoria studiată. Nici vorbă de problemele cu care suntem obişnuiţi la ora actuală, deşi se pot găsi anumite probleme ce ar merita făcute la clasă.

Legat de capitolul despre corpuri, merită făcută o singură observaţie: vedeţi cum cilindrul este făcut imediat după prisme, fiind de fapt asimilat grupului prismelor; cilindrul este de fapt o prismă cu baza cerc, simplu, nu-i aşa? Dar, oare, ce-i acela un prismatoid? Nu vă bateţi capul, e o ciudăţenie, lecţia conţinând şi anumite elemente profund discutabile.

Haideţi să facem un salt în timp, tot cu A.Hollinger, dar alături de Carina Pârvulescu, la manualul de clasa a 8-a din 1971 (deja se introdusese de mult clasa a 8-a în şcoala generală, iar geometria în spaţiu avea la dispoziţie un an întreg din şcoala generală, cu materie cuprinsă în examenul de admitere la licee). Între timp capitolul ce ne interesează a primit şi un nume Drepte şi plane (e comic, dar acesta nu are şi un număr). Studiul despre corpuri, cu arii şi volume a fost despărţit în două, existând capitolul 2. Poliedre şi separat capitolul 3. Corpuri rotunde. În plus mai există şi un capitol ciudăţel cuprinzând Elemente de cosmografie (oamenii trebuiau să înţeleagă ce se petrecea în marea luptă de cucerire a spaţiului cosmic, între “minunea sovietică” şi capitaliştii ăia de americani).

Deşi se păstrează linia de prezentare intuitivă în capitolul despre drepte şi plane, între timp a apărut şi teorema celor trei perpendiculare, dar şi unele probleme de structuri artificiale constuite ad-hoc (de pildă: în figura 64 punctul M este exterior planului triunghiului ABC etc.). La acest capitol sunt cu totul 6 pagini de exerciţii scrise mai mărunt, incluzând însă şi 16 figuri generoase, cu multe întrebări din anii ’50 pentru aprofundarea fenomenelor studiate (apare din nou scăunelul cu trei picioare), dar şi probleme noi, atât dintre cele pe structuri artificiale, dar şi întrebări pe corpuri studiate (între timp capitolul foloseşte şi corpuri elementare, cuburi, prisme sau piramide).

Cum spuneam, astfel de analize ale formelor de predare din trecut ar trebui făcute în mod foarte serios, pentru că de acolo pot fi deduse idei deosebit de bune în rezolvarea problemelor cu care ne confruntăm în prezent. În general, orice programă şi orice manual vor corespunde cu adevărat nevoilor actuale doar dacă se bazează pe un studiu profund al trecutului, din punct de vedere al experienţelor de predare, apoi pe un studiu profund al prezentului, mai ales din punct de vedere al psihologiei elevului din zilele noastre, şi nu în ultimul rând un studiu profund al viitorului, din punct de vedere nevoilor generale ale viitorilor adulţi pe toate palierele profesionale posibile, adică pe tot evantaiul profesional, dem la cei de orientare reală la cei de orientare umanistă, de la cei de elită până la muncitorul de rând (care, şi acesta, ar trebui să înveţe să gândească la nivelul său de capacitate şi de nevoi).

Din păcate, fiecare pas făcut în reformarea predării matematicii, pas care nu ţine cont de aceste aspecte, trimite tot mai departe în viitor o posibilă vindecare a predării geometriei pentru generaţiile următoare. De pildă, analizând o culegere pregătitoare cu teste pentru noua formă de Evaluare Naţională în finalul clasei a 8-a (una renumită, “nu spui care”), observ că elementele de stereometrie sunt aproape eliminate, preluând de la sine înţeles (drept “cvasi-obligatorie”) ideea din anul trecut şcolar când aria şi volumul corpurilor au fost excluse din programa de examen. Oameni buni, ce facem aici? Distrugem generaţii după generaţii! Constantin Titus Grigorovici

P.S. Pe când erau gate părţile 7 şi 8 ale acestui mega-eseu, discutând pe aceste subiecte cu soţia mea, a reieşit un aspect special. Ea şi-a adus aminte cum în clasa a 8-a savura situaţii de tipul unor piramide neregulate, adică la care fie baza este un poligon neregulat (cel mai uzual exemplu este un romb) dar înălţimea cade în centrul acestuia, fie că înălţimea cade într-un punct necentral al bazei (eventual chiar într-un colţ al bazei), fie amândouă cumulate. La aceste corpuri trebuia să calculezi înălţimile feţelor laterale în mod special, acest calcul implicând de obicei şi aplicarea teoremei celor trei perpendiculare, această mare teoremă căpătând astfel un sens practic, pe mintea elevului de clasa a 8-a (care tot în scopul calculării găseşte o justificare mai pe mintea lui, decât în scopul demonstrării pure a unor situaţii – vorbesc aici de amintiri rămase de 40 de ani, însă în mintea unui profesor).

Bine, veţi spune, dar corpurile neregulate nu sunt actualmente în materie. Da, pentru că au fost scoase din materia clasei a 8-a cândva la începutul anilor ’90, exact ca să uşureze materia. Dar nu au uşurat-o, pentru că toate aceste aplicaţii ale teoremei celor trei perpendiculare au fost păstrate în probleme pe structuri artificiale: Pe planul rombului ABCD se ridică perpendiculara OM, O fiind punctul de intersecţie al diagonalelor rombului etc. Problema a rămas, dar a fost de fapt crescut nivelul de dificultate, deoarece elevul nu mai are corpul care să-i ofere acea “schelă” de susţinere a imaginaţiei şi a gândirii în spaţiu.

Ah, da, şi am omis un aspect: vorbesc aici de amintirile unui fost elev care în clasa a 8-a a ratat “la mustaţă” locul 1 la olimpiada judeţeană pe Cluj (pe-atunci acesta era apogeul, ne-existând şi fază naţională). Soţia mea povesteşte cum savura munca de a depista unde cade respectiva “apotemă”; teorema celor trei perpendiculare căpăta astfel “sens” în mintea sa. Şi eu am astfel de amintiri, puţine însă din clasa a 8-a (eu n-am umblat la olimpiade în a 8-a), dar multe din liceu (care evident predomină).

Reversul acestei situaţii, anume calculul ariei laterale a unor piramide regulate, ne atrage din nou atenţia asupra unui aspect special, anume asupra faptului că la apotema piramidei regulate nu este nevoie de T3P. Nu este nevoie, după mintea elevului de a 8-a, dar nu este nevoie nici din punct de vedere teoretic, feţele laterale ale piramidei fiind triunghiuri isoscele, în care înălţimea cade evident în mijlocul muchiei de bază, toate calculele putând fi efectuate cu cunoştiinţele de a 7-a. Cu alte cuvinte, reiese iarăşi aspectul de care am scris, anume că pentru aria laterală a unei piramide regulate (a piramidelor din programă) nu este nevoie de T3P, în general de  toată partea de teoreme în spaţiu.

Am alunecat din nou în această stare pe care unii ar putea-o interpreta drept agresiune la adresa rigurozităţii matematice. Nimic mai greşit! Problema este în cu totul altă direcţie: rigurozitatea matematică este foarte importantă, dar locul ei în forma pură este altundeva, anume în facultate, deci după o a doua selecţie a doritorilor de matematică (prima fiind la sfârşitul clasei a 8-a). După prima selecţie se poate trece la rigurozitate ridicată, dar nu absolută, aspectele de psihologia pedagogică trebuind să rămână activă în selecţia materiei (chiar dacă nu pe primul loc, ci doar pe al doilea, după rigurozitatea teoretică). Înainte de prima selecţie a populaţiei şcolare rigurozitatea matematică trebuie să fie însă pe al doilea loc, după criteriile psiho-pedagogice. Până la EN din clasa a 8-a, fiind o şcoală generală, matematica trebuie să aibă ca obiectiv principal formarea şi şcolirea capacităţii de a raţiona la cât mai mulţi elevi, nu doar la elite. Şcolirea gândirii trebuie adaptată la nivelul marii populaţii şcolare. O gândire prea ridicată în cadrul orelor de matematică îi lasă pe cei mai mulţi fără o gândire raţională (adică îi lasă proşti!).

Bine, dar cum facem cu rigurozitatea teoretică a geometriei, care este astfel condamnată “să rămână de căruţă”, pentru că geometria sintetică se mai face doar în clasele gimnaziale? Aici iese în evidenţă marea gafă petrecută la reforma din 1997 când a fost scoasă geometria sintetică din licee, după ce la reforma din 1980 se cam înghesuise oricum toată la un nivel foarte înalt în gimnaziu. Practic, după 1980 se făcea geometria sintetică de două ori, cam la fel (în cazul generaţiilor care au terminat clasa a 8-a înainte de 1981 geometria gimnazială era la un nivel mai scăzut decât cea din liceu). Astfel, în 1997 s-a considerat că de fapt nu-şi mai are loc o a doua reluare a geometriei sintetice în liceu, pentru că aceasta oricum se face în mod complet în gimnaziu. Aici este MAREA GREŞEALĂ, despre care nu ştiu cât este de clar sesizată la nivelul conducerii matematicii româneşti.

Acum ne pregătim pentru o nouă programă de liceu (generaţia ce a pornit prima clasa pregătitoare este în clasa a 8-a iar pentru ei trebuie făcut totul nou), dar pandemia ne ocupă tot timpul şi parcă văd că ratăm şi acest moment ce ar putea fi reparatoriu la adresa geometriei. Pentru mine este evident că acesta ar trebui să fie cât mai urgent subiectul unui viitor eseu (dacă nu m-am trezit prea târziu).

SCANARI Cap VII-Introducere