SCRISOARE METODICĂ (II)

În acest început de an (ian.-feb. 2019), membrii Comisiei Naţionale de Specialitate şi inspectorii şcolari pe disciplina matematică, sub coordonarea MEN şi a Societăţii de Ştiinţe Matematice au redactat o Scrisoare metodică despre anumite aspecte ce trebuie urmărite în activitatea profesorilor de matematică.

Scrisoarea metodică are două părţi: în primul rând sunt patru Ţinte, obiective ce trebuie urmărite şi implementate în procesul de predare (cca. ½ pagină). Acestea sunt urmate de o serie de Recomandări lămuritoare ce se întind pe două pagini. În prima parte a acestui eseu am analizat (din punctul meu de vedere!) cele patru ţinte.

*

Această analiza am făcut-o după ce am reluat o scurtă prezentare a evoluţiei predării matematicii în ultima jumătate de secol, conform informaţiilor şi datelor cumulate în cercetările personale pe acest subiect. Daţi-mi voie să rezum această istorie în câteva idei de bază. Astfel, pe fondul unei predări destul de armonioase, spre finalul anilor ’70 în România a avut loc o reformă a predării matematicii (manuale + metodică şi didactică) având ca linii ghidante creşterea rigurozităţii materiei (subiect la modă în acei ani), încărcarea materiei cu teme aduse deseori din clase mai mari şi creşterea dificultăţii exerciţiilor şi a problemelor parcurse la clasă, dar şi la teme, toate având ca obiectiv principal ridicarea nivelului general de predare pentru îmbunătăţirea rezultatelor la olimpiade. Decada anilor ’90 şi reforma din ’97 cu introducerea manualelor alternative a păstrat linia impusă la reforma precedentă, între timp uitată, potenţând însă mai ales nivelul aplicativ, considerat “de excelenţă” în vederea obţinerii a cât mai bune rezultate la olimpiade şi concursuri. După 2000 vocea celor neglijaţi de acest sistem a început să se audă tot mai vehement, astfel încât au urmat ani de reformări mai punctuale sau mai generale pentru echilibrarea sistemului. Programa nouă pentru gimnaziu din 2017 trebuie citită şi înţeleasă în acest spectru. Din păcate foarte mulţi profesori nu înţeleg acest mesaj, aceştia acţionând în continuare în sensul paradigmei “excelenţă la olimpiade şi concursuri”. În acest sens trebuie înţeleasă Scrisoarea metodică din ianuarie 2019.

*

Un aspect important trebuie lămurit în acest moment al prezentului eseu: urmărind exprimarea acestor idei s-ar putea înţelege că sunt un adversar al practicării matematicii la nivel de excelenţă, în general un adversar al olimpiadelor şcolare. Nimic mai greşit! Copiii buni trebuie încurajaţi şi sprijiniţi, iar olimpiadele şcolare organizate în continuare. Colegii care lucrează în direcţia excelenţei merită toate laudele pentru munca lor şi trebuie încurajaţi în continuare pentru această muncă de tradiţie a matematicii româneşti. Pe de altă parte însă, nu sunt de acord cu această politică de sacrificare a marii majorităţi în numele obţinerii rezultatelor cu cei puţini dar buni. Absolutizarea importanţei muncii acestor colegi este cea care produce cele mai multe pagube în sistem, mai exact în mentalul majorităţii elevilor. Părerea mea este că tot ce câştigă această ţară prin respectiva politică adresată pentru cel mult 10% din populaţia şcolară (poate 5% ar fi mai realist exprimat), se pierde sigur, poate chiar înzecit, prin needucarea matematică a celorlalţi, a marii mase a populaţiei şcolare.

Să revenim la scrisoarea metodică. Ce găsim în aceste recomandări? Numai idei de bun simţ, pe care în general nimeni nu le contestă, dar pe care foarte puţini le înţeleg şi, ca urmare, cei mai mulţi nu le respectă. Haideţi să spicuim şi să comentăm câteve din aceste aspecte (reamintesc recomandarea de a citi integral Scrisoarea metodică de pe net).

Competenţele în domeniul matematicii sunt definite drept capacitatea de a dezvolta şi de a folosi o gândire matematică pentru a rezolva o serie de probleme în situaţii de zi cu zi. … se pune accent pe procese şi activităţi, cât şi pe cunoştinţe. Competenţele matematice implică, la niveluri diferite, capacitatea şi disponibilitatea de a utiliza moduri matematice de gândire (gândire logică şi spaţială) şi de prezentare (formule, modele, grafice, diagrame). UAU!!! Ce-mi plac aceste rânduri! Haideţi să vă explic cum le citesc eu.

După părerea mea există trei moduri de educare la copii a unei gândiri cât mai obiective, raţional-logice, atât în sensul deciziilor cât şi în sensul exprimării. Acestea sunt, într-o ordine aleatoare, următoarele:

Educarea copilului în anturaj nemţesc duce la o abordare obiectivă şi o gândire raţională, cunoscut fiind cât de rece raţional procedează aceştia, copilul preluând astfel prin simpla imitaţie acest fel de a fi. Cunosc aceasta din exemplele din jurul meu de copii români crescuţi temporal de “bunicuţe” săsoaice, pe aici, prin Ardeal. Cunoaştem însă astfel de situaţii şi din Germania. Renumiţii fotbalişti Mesut Özil (din familie turcească emigrată în Germania)) sau neamţul neaoş Jérôme Boateng (din mamă germană şi tată ghanez emigrat în 1981 în Germania) sunt doar câteva exemple cunoscute în acest sens.

Practicarea şahului de mic şi în mod ordonat ar fi o altă cale de educare a unei gândiri logice şi a dezvoltării unui mod de abordare strategică vizionar-logică a felului de a acţiona şi de a lua decizii cât mai obiective.

Participarea regulată şi implicată a copilului la raţionamentele matematice de zi cu zi poate duce şi aceasta la formarea unui mod de gândire raţional şi a unui mod de exprimare ordonat „fără a bate câmpii”. Dimpotrivă, practicând pe scară largă o matematică de excelenţă, matematică inaccesibilă majorităţii elevilor, îi văduvim pe aceştia de factorul formativ la nivelul gândirii raţional obiective, lăsându-i pradă sigură unei gândiri subiective, superficiale, o pseudo-gândire ce a căpătat de mult în ţara noastră caracteristici de epidemie generalizată.

Aşadar, nu ne gândim doar la situaţii în care cineva foloseşte efectiv elemente de matematică, cum ar fi de pildă, sarcina calculul de procentaje cu elevi corigenţi, procentaj fete sau băieţi între anumite note, de către o dirigintă profesoară de materie umanistă etc. Aici vă rog să mai lecturaţi încă o dată citatul de mai sus, încercând deci să eliminaţi, pe cât posibil, din gândurile dvs. orice includere a unor situaţii cu adevărat matematice. Acum ar trebui să înţelegeţi magnitudinea dezastrului la nivel naţional cauzat de decenii întregi de orientare a atenţiei şi a preocupărilor profesorilor de matematică doar în direcţia zonei de excelenţă: Societatea română este plină de adulţi (foşti elevi) care nu sunt în stare de a gândi raţional şi a lua decizii cât de cât obiective, modul lor de a privi şi de a aborda situaţiile din viaţă fiind unul dominat profund de subiectivităţi şi egocentrisme, ce se desfăşoară constant sub premiza „vorbeşte gura fără mine, deci probabil că şi gândesc” (poate exagerez puţin, dar o fac cu scop teatral).

Ceva mai jos în scrisoarea metodică găsim următoarul aliniat: O atitudine pozitivă în matematică se bazează pe respectarea adevărului şi pe dorinţa de a căuta argumente şi de a verifica valabilitatea acestora. Extraordinar cum se leagă acest citat de cel precedent, în sensul dat prin explicaţiile ulterioare. Dintre cele trei modalităţi de formare la elevi (educabili) a unei gândiri raţional logice enumerate mai sus, singura viabilă în actuala structură a societăţii şi a învăţământului românesc este matematica. Se vede aici cât de mare este responsabilitatea profesorilor de matematică în acest sens, dar şi cât de distructivă este abordarea elitistă practicată accentuat de peste un sfert de secol în toate şcolile clasificate drept „bune” în jurul nostru. Trăim zilnic în mod dureros felul în care s-a ajuns ca adevărul să nu mai fie respectat, să fie călcat în picioare la nivelul cel mai înalt.

Spuneam că doar matematica a rămas pe baricade. Cât despre şah, ar fi foarte bine de introdus strategic şi obligatoriu în planul cadru, dar cine ia o astfel de decizie, că la discuţiile despre planul cadru toţi vorbesc doar de scos ore.

În continuare găsim confirmări ale acestor puncte de vedere: Parte integrantă a  competenţelor de formare/dezvoltare prin studiul matematicii trebuie să fie: gândirea critică, problem-solving, munca în echipă, competenţe de comunicare şi negociere, aptitudinile analitice, creativitatea şi competenţele interculturale. Vă las dvs., stimaţi cititori, sarcina de a analiza pe rând toate aceste aspecte şi felul în care o predare sănătoasă a matematicii ar trebui să le educe. Desigur, aceasta s-ar întâmpla dacă predarea matematicii ar fi adresată pe o lungime de undă accesibilă majorităţii elevilor. Dimpotrivă, atâta vreme cât predarea matematicii este făcută într-un mod exclusivist, adică excluzându-i de la participarea la procesul gândirii pe majoritatea elevilor, prin ridicare aberantă a nivelului matematicii practicate la cote inaccesibile pentru cei mai mulţi, atâta vreme cât se păstrează acest stil de predare nu există şanse de îndreptare a lucrurilor, viitorul poporului român rămânând în zone absolut incerte.

Revenind la matematica în sine, pe prima pagină a scrisorii metodice apare următorul aspect: Cunoştinţele necesare în domeniul matematicii au în vedere: numerele, măsurile şi structurile, operaţiile matematice de bază. O înţelegere a termenilor şi conceptelor matematice, precum şi o sensibilizare faţă de întrebările la care matematica poate oferi răspunsuri sunt necesare pentru o bună cuprindere a acestor cunoştinţe în competenţele formate sau dezvoltate. Am sublinat doar operaţiile matematice de bază pentru a da un singur exemplu de încălcare a acestor aspecte. Cât de des – oh Doamne – întâlnim elevi care nu ştiu să facă împărţiri, elevi care spun că 7 : 2 = 3,1 dovedind că nu au înţeles ce se întâmplă acolo, şi exemplele pot continua la nesfârşit legat de numerele negative sau de radicali, dar şi de „temutele” numere complexe din liceu. Faptul că profesorii îi iau ca reper doar pe elevii de vârf ai clasei şi merg foarte repede peste pasajele introductive, acest stil de predare îi abandonează într-o ceaţă intelectuală pe majoritatea celorlalţi elevi. Aceştia se vor obişnui astfel pe durată în a trăi într-o continuă „noapte a minţii”, pe care cu timpul o vor resimţi ca normalitate: a nu înţelege mare lucru pentru ei devine o normalitate, iar apoi ne mirăm de tarele lor ca adulţi: sunt uşor manipulabili, sunt profund egocentrişti, având o incapacitate crasă de a vedea întregul, nu sunt în stare de a-şi impune un stil de viaţă anume decât constrânşi, au o capacitate redusă de a gândi şi a lua decizii raţional, devin uşor extremişti etc. Groaznic! Aceste gânduri mă duc încet spre idee de „atentat la fiinţa naţională”.

La recomandările concrete citim de pildă: Adaptarea strategiilor didactice (predare – învăţare – evaluare) în spiritul programelor şcolare şi la specificul colectivelor de elevi . Am dat câteva exemple în prima parte a eseului despre cum consideră unii colegi să-şi adapteze strategiile didactice. Cum ar trebui să predăm? Despre asta tot scriu pe acest blog pentagonia.ro. Despre cum ar trebui să ne adaptăm învăţarea la oră colectivelor de elevi din clasele noastre, adică să dăm atenţie şi elevilor mai slabi (zic eu), găsim şi în această scrisoare referire la 25% din totalul timpului petrecut la clasă. Cât despre evaluare şi ce probleme consideră unii colegi să includă în lucrările scrise, nici nu are rost să mai vorbim. Ca reper orientativ, în cazul unei clase în care nivelul de învăţare este bun şi noi dăm la lucrare scrisă o problemă pe care n-o înţelege nimeni, atunci ar trebui „să ne uităm mai serios în oglindă”.

O recomandare mi-a atras în mod deosebit atenţia: Asigurarea unei tranziţii optime de la un ciclu de învăţământ la altul (primar-gimnazial, respectiv gimnazial-liceal). Este evidentă necesitatea strădaniei dinspre reprezentanţii ciclului de clase mai mici pentru a putea conecta onorabil cu pretenţiile ciclului următor. Dar a pune o pretenţie exagerată pe cei „inferiori” nouă este o atitudine absurdă şi egocentristă. Eu citesc această recomandare ca o cerinţă adresată în primul rând profesorilor din ciclul „superior al trecerii, adică profesorilor de la clasele a V-a respectiv a IX-a. În cea mai mare parte acestora le este adresată această cerinţă. Dacă ne uităm la clasa a XI-a, în principal la clasele „de real”, acolo problemele nu sunt atât de distructive pentru că este deja vorba de elevi sortaţi pe capacităţi matematice. Că la liceele bune sunt şi aceştia luaţi de sus, extrem de dur, majoritatea angajându-şi ca urmare profesor meditator în particular, iar rezultatele ulterioare ale liceului respectiv se bazează în mare parte pe munca individuală de acasă a acestor meditatori, asta este o situaţie de opţiune a fiecăruia. Dar de aici nu apar avarieri matematice puternice ale acestor elevi.

Dimpotrivă, la clasele a V-a, în care încă nu a avut loc o triere oficială şi în care mare parte din elevi sunt încă în fazele inferioare de gândire, abordarea dură a unui nivel ridicat de predare şi de pretenţii se dovedeşte la mulţi elevi devastator! Aici, neadaptarea profesorului la o tranziţie optimă a clasei la noul ciclu de învăţământ este distrugătoare pentru viitoarea atitudine de dorit pozitivă a elevilor. A discuta apoi de programe remediale este tardiv şi chiar ruşinos (ca să nu folosesc o expresie mai dură, pot spune doar „frecţie la picior de lemn”).

Ajungând pe ultima pagină a recomandărilor găsim: Diferenţierea demersului didactic, având în centru elevul, vizând ambele aspecte ale educaţiei matematice: cea de masă – cultură generală, cât şi cea competiţională – cultură de specialitate. Dacă cineva se mai gândea să nege cele spuse în prezentarea istorică din prima parte a acestui eseu, după acest citat nu mai are nici măcar o minimă şansă. Există două aspecte egal importante ale demersului didactic în ora de matematică: pe de o parte este matematica pentru toţi, pe de altă parte matematica pentru vârfuri, iar profesorul nu are voie să-i neglijeze nici pe unii, nici pe ceilalţi. Ţinând cont că foarte mulţi profesori obişnuiesc să dea atenţie preponderent doar vârfurilor clasei, aceasta este atenţionarea cea mai clară: „Fraţilor, şi ceilalţi sunt tot elevii voştri! Treaba voastră cum vă faceţi timp, dar trebuie să vă ocupaţi constant şi eficient, la nivelul lor, de cei mulţi dar neolimpici!”

Cu alte cuvinte, după decenii de dominaţie a preocupării din partea autorităţilor doar sau preponderent pentru rezultatele în domeniul excelenţei, această recomandare pune pe picior de egalitate, textual chiar în faţă, a importanţei muncii pentru cei mulţi (cei 90%) cu munca pentru cei puţini care dau rezultatele în excelenţă (cei 10%). Desigur că nimeni nu este cu capul în nori: creşterea timpului de preocupare, adaptarea în general a demersului didactic în mod egal pentru cele două categorii de elevi, într-un mod eficient, nu doar de faţadă, ar trebui să ducă automat la o scădere a nivelului preocupaţional pentru elitele mult iubite.

Pentru a atinge acest obiectiv (eu văd precedenta recomandare totodată şi ca un obiectiv!), profesorii mai primesc câteva recomandări. În primul rând: Diversificarea mediilor de învăţare, a instrumentelor şi metodelor de predare-învăţare-evaluare a matematicii, prin implicarea – cel puţin la nivelul învăţământului de masă – a activităţilor de tip învăţare prin cooperare, a investigaţiei, a învăţării bazate pe proiecte, inclusiv prin utilizarea aplicaţiilor IT şi a raportării la realitatea înconjurătoare.

Traducere: „nu doar profesorul la tablă, vorbind şi scriind în format de sorginte academică, urmat de lucrări scrise rupătoare, ci „coborâţi oamenilor pe pământ şi încercaţi să veniţi şi în întâmpinarea celor mulţi. Diversificaţi metodele în întâmpinarea şi în folosul nematematicienilor!” Bucata de text boldită mai sus este în original subliniată!, fiind singurul pasaj subliniat din această scrisoare metodică. „Trebuie să vă mobilizaţi şi să vă diversificaţi metodele, mai ales pentru cei 90% din elevi care au nevoie de matematică doar la nivel de cultură generală!” Cum? „Folosiţi predarea prin problematizare (investigaţia cu elevii în zona de matematică ce trebuie studiată). Raportaţi-vă la realitatea înconjurătoare, nu-i bombardaţi doar cu probleme abstracte din care cei mulţi nu înţeleg mai nimic.”

Un sfat din acest pasaj apare aici ca periculos în interpretare: învăţarea bazate pe proiecte nu trebuie confundată cu ideea de a le da elevilor referate, pe care aceştia să le descarce de pe net. Trebuie să avem grijă ce proiecte le dăm, şi cum le îndrumăm munca, astfel încât să păstrăm un echilibru decent între cantitatea de material preluată de pe net şi cantitatea din proiect realizată efectiv de către elev.

Următoarea recomandare este şi aceasta deosebi de valoroasă: Formarea unei conduite didactice care să favorizeze creşterea motivaţiei învăţării, … prin modalităţi de adaptare a procesului educaţional la particularităţile fiecărui colectiv de elevi (abordări diferenţiate, îndepărtarea barierei de comunicare şi colaborare profesor-elev, dar şi elev-elev, cu accent pe crearea unei atmosfere pozitive la clasă etc.). Adică „faceţi să îmbunătăţiţi atmosfera la ora de matematică, că până acum a cam ajuns să fie negativă.” La acest citat ar fi trebuit de fapt să boldesc aproape tot textul. Acesta este atât de clar încât nu mai e nevoie de explicaţii. Totuşi aş dori să accentuez în mod special ideea de colaborare elev-elev.

Eu le recomand elevilor care au înţeles să-şi caute repede un coleg mai slab căruia să-i explice despre ce este vorba, pentru că ei, elevii care au impresia că au înţeles, au oricum mult de câştigat din acest demers: întotdeauna când îi explici altuia şi tu înţelegi mai bine subiectul în cauză. Mai există desigur şi aspectul social, dar despre acesta nu le vorbesc elevilor; ei sunt prea mici încât să înţeleagă astfel de valori importante pentru societate. Zilele acestea am avut un astfel de exemplu, când unul din cei mai buni elevi ai clasei a VII-a, care înţelesese imediat lecţia, a stat restul orei lângă cei patru elevi mai slabi din spatele său şi i-a ajutat, le-a explicat ce nu înţelegeau la exerciţii, se muta de la unul la altul şi îi lămurea. L-am lăudat apoi (între patru ochi), spunându-i că are mai mari şanse să rezolve situaţia decât mine, pentru că dacă mă duc eu să-i ajut, aceştia se vor bloca „că stă profu’ lângă ei”.

Următoarea recomandare vorbeşte despre: Acordarea unei atenţii deosebite furnizării feedback-ului către elev, mai ales în relaţie directă cu procesul de evaluare şi cu accent pe evaluarea pentru învăţare (formativă), … . Câte o dată am impresia că evaluarea a devenit pentru mulţi un obiectiv în sine, ce ajunge să se manifeste obsesiv. Acest aspect împreună cu îndesarea lucrărilor scrise cu definiţii sau reguli nepotrivite vârstei şi cu probleme artificial îmbârligate (“pentru cei care vor merge la olimpiadă”), acestea duc toate la forme de evaluare care numai formative nu sunt. Ce înseamnă definiţii nepotrivite vârstei? Iată un exemplu (de anul acesta): “Două drepte coplanare care nu au niciun punct comun se numesc …”.Elevul era blocat, nu înţelegea despre ce-i vorba, dar imediat ce-i acopeream cuvântul “coplanare”, acest elev de clasa a VI-a ştia răspunsul. La ce a fost inserat acel cuvânt de geometrie în spaţiu într-o definiţie, apoi într-o cerinţă de clasa a VI-a? Eu nu văd decât o strădanie pentru o evaluare antiformativă.

Ultima recomandare sună astfel: Conştientizarea rolului învăţării experienţiale, în echipă, peer-to-peer learning (învăţare colaborativă), prin utilizarea eficientă a exemplelor, a contraexemplelor, învăţarea de tip încercare-eroare, mai ales în contextul elevului care rămâne utilizator de bază al conceptelor şi raţionamentelor matematice. Şi la această recomandare se precizează că întrega scrisoare metodică se referă mai ales la oferirea accesului elevilor medii la o educaţie matematică de bază, oferirea unei educaţii matematice elementare mai ales elevilor care vor rămâne în viaţă doar utilizatori de bază a conceptelor matematice, adică nu numai elevilor ce vor performa şi vor excela în matematică.

Legat de învăţarea de tip încercare-eroare eu m-am obişnuit în ultima vreme să-i laud pe elevii care spun ceva greşit. În plus le explic şi de ce îi laud de adevăratelea, adică nu îi iau peste picior. Astfel, le spun că mă bucur că au avut curajul să răspundă, că şi-au înfrânt frica de a ridica mâna şi şi-au prezenta ideea. Apoi le explic cât de folositoare este ideea prezentată, chiar dacă este greşită, pentru că prin aceasta elevul îmi oferă imaginea felului cum a înţeles el şi cum gândeşte. Totodată îmi oferă ocazia de a corecta un gând greşit, care poate să apară şi în mintea altui coleg care este însă mai timid, şi eu nici nu ştiu ce gândeşte acela. Ce nu-i spun că, de multe ori profesorul, prin experienţa sa ştie ce greşeli ar putea face în raţionament sau înţelegere elevii, dar este mult mai productiv din punct de vedere psihologic dacă ideea respectivă vine de la un elev, decât dacă vine de la profesor sub forma “să aveţi grijă să nu gândiţi aşa, să fiţi atenţi şi să raţionaţi corect bla-bla-bla”. Desigur că se prea poate ca elevii să nu înţeleagă astfel de raţionamente ciudate, dar pe durată ei înţeleg că “profu’ nu-i ceartă” ci vorbeşte cu respect cu ei, că apreciază că iau atitudine.

*

În final doresc să atenţionez asupra unei lipse de neînţeles a acestei scrisori: de ce nu se face deloc referire şi la nevoia de corectare a predării matematicii în ciclul primar? Pentru că şi acolo există o sumedenie de situaţii cu abordări exagerat de ambiţioase care distrug copiii, sfidând toate regulile unei abordări igienice din punct de vedere psihologic. Daţi-mi voie să vă ofer un exemplu de agresare a copiilor prin nerespectarea principiilor psiho-pedagogice la clasele mici. În clasa a 2-a, sem. II, se învaţă ordinea operaţiilor. Te-ai aştepta să aibă plin de exerciţii în care să aplice şi să exerseze ordinea operaţiilor, fără, dar şi cu paranteze. Asta este legea ce trebuie acum să şi-o însuşească. Dar nu, dimpotrivă, elevii primesc imediat exerciţii de felul: Calculaţi în două moduri a) (8 – 5) ∙ 3; la fel şi la  b) (10 + 6) : 2

Se pare că elevii învaţă aici ordinea operaţiilor şi imediat alături încălcarea ordinii operaţiilor. Adică învaţă cum se poate încălca o regulă imediat după ce a învăţat regula respectivă şi ar trebui să înveţe să o respecte măcar o vreme, până se fixează şi intră în obişnuinţă. Logica lucrurilor ar fi ca elevii să stabilizeze ordinea operaţiilor măcar un an, iar apoi dacă se consideră că sunt toţi atât de buni încât se plictisesc şi nu mai ştim ce să le dăm, atunci eventual să-i învăţăm când şi cum se poate încălca regula respectivă. Altfel, văzând manualele şi culegerile aferente pentru clasa a 2-a, eu conider că lecţia respectivă ar trebui să se numească Ordinea şi dezordinea operaţiilor. Unii elevi se prind ce să facă, alţii nu. Dacă există o mamă prin zonă care să urmărească procesul, bine, dacă nu, atunci ghinion! Dar oare, toate învăţătoarele ştiu de ce se poate face aşa? Ce-ar fi să dăm colegelor noastre exerciţiul 12 : (2 + 4) şi să le punem întrebarea dacă ambele rezolvări sunt corecte şi de ce da sau de ce nu. De ce trebuie să facă învăţătoarele exerciţii care implică o lecţie de clasa a V-a. Sau noi, profesorii, suntem cei luaţi de fraieri, pentru că elevii oricum învaţă aceste lucruri din clasa a II-a?

Eu consider că încălcarea ordinii operaţiilor este o acţiune specifică gândirii algebrice şi nu are ce căuta în clasele mici. Dacă este să-l chemăm în ajutor pe Piaget (Jean Piaget, matematician şi totodată psiholog de notorietate mondială), atunci voi spune că elevii trec din faza gândirii de copil (stadiul operaţional concret), în faza gândirii adulte (stadiul operaţional formal) pe la 11 ani (la mulţi elevi chiar mai târziu, 12, poate chiar 13 ani). Scurtcircuitarea ordinii operaţiilor în clasa a II-a este in acest context o aberaţie fără rost. Desigur că se vor găsi elevi care să o înţeleagă, dar care-i rostul? Şi apoi, cu ce costuri? Câţi elevi din clasă nu o înţeleg şi doar îi bulversează, uneori iremediabil, această lecţie (şi apoi venim cu cerinţa unui plan de remedial!). Prof. Constantin Titus Grigorovici

SCRISOARE METODICĂ 2019 (I)

Cu ocazia acestui început de an (ian.-feb. 2019) am fost blagosloviţi de o nouă găselniţă venită “de sus”: o Scrisoare metodică elaborată de către membrii Comisiei Naţionale de Specialitate şi inspectorii şcolari pe disciplina matematică, sub coordonarea MEN şi a Societăţii de Ştiinţe Matematice. UAU!

Îmi cer scuze pentru limbajul agresiv-vulgar de mai sus, dar am vrut să joc un pic de teatru şi să exprim cam cum a fost percepută în şcoli, de către profesori, această nouă “mişcare” a ministerului: “Cum? Ce? Ce-au mai inventat?”. În unele şcoli poate că s-a întrunit catedra, în altele poate a fost însărcinat un coleg cu redactarea planului operaţional. Dar, despre ce-i vorba? Cine ştie ce a înţeles fiecare! Ar fi trebuit să fim convocaţi şi să fim lămuriţi despre ce şi cum. Sau poate nu? Pentru că la precedenta mişcare, la începutul clasei a V-a pe noua programă, ştim noi ce explicaţii am primit …

Permiteţi-mi să analizez mai profund această nouă “misivă”, această iniţiativă care, corect transpusă (!), s-ar putea dovedi piatra de hotar între trecutul matematicii şcolare utopic, aşa cum l-a dorit Ceauşescu şi un viitor matematic sănătos pentru majoritatea elevilor. Nu voi relua respectiva scrisoare metodică, ci doar fragmente din aceasta, în măsura necesităţii înţelegerii şi curgerii textului. Cititorii care nu sunt prezenţi sau activi actualmente în învăţământ, şi deci n-au avut ocazia de a o primi pe scară ierarhică, sunt rugaţi să o lectureze de pe postările site-urilor ISJ din ţară (introduceţi Scrisoare metodică 2019); la fel sunt rugaţi să facă şi colegii care nu au citit-o încă.

*

Pentru cei care n-au avut ocazia să lectureze diferitele mele eseuri legate de istoricul acestui subiect, permiteţi-mi să fac un scurt rezumat al acestor idei. (1) În diversele cărţi legate de forma matematicii şcolare publicate în anii 60-70 se găsesc numeroase mărturii ale luptei dintre metodişti şi teoreticieni  Pe de o parte se situau cei care doreau impunerea unor teme noi în predare (cum ar fi teoria mulţimilor, dar şi multe noţiuni nerelevante pentru materia în cauză, dar necesare unei definiri mai riguroase, cum ar fi de pildă noţiunea de semiplan în clasa a VI-a pentru definirea interiorului unui unghi); aceştia doreau şi impunerea unei mult mai crescute rigurozităţi în prezentarea subiectelor la clasă, mai ales în exprimare, atât în cea scrisă cât şi în cea orală (axiomatizare, definire super-detaliată, scriere riguroasă, de pildă pe baza limbajului mulţimilor), o exprimare mult mai apropiată de forma academică în care se ajunsese în prima jumătate a secolului XX. De cealaltă parte se situau metodiştii, susţinători ai metodelor tradiţionale de predare verificate pe fiecare vârstă şcolară. Aceştia (printre care vârful se pare că îl reprezenta Profesorul Eugen Rusu) încercau să avertizeze de efectele negative ce vor apărea la elevi în cazul unor astfel de schimbări, luptându-se de pildă pentru păstrarea folosirii intuiţiei în predare.

(2) Olimpiada Internaţională de Matematică a fost organizată pentru prima oară în 1959 în România şi doar între ţări din blocul comunist; la fel şi a doua ediţie. Primele ediţii au reprezentat o afacere internă a sistemului comunist care se străduia să genereze o organizare mondială paralelă cu cea capitalistă. Doar spre finalul anilor ’60 au intrat în horă şi primele ţări capitaliste. În toată această perioadă România s-a situat constant între leaderii noii mişcări matematice inter-ţări, ocupând relativ constant locuri fruntaşe. De abia la începutul anilor ’70 au început să intre în concurs şi marile puteri capitaliste, în frunte cu SUA. Din acel moment lupta între cele două blocuri sociale s-a acutizat, ridicându-se la nivele ce au ajuns cvasi inaccesibile majorităţii participanţilor, lupta devenind una “pe viaţă şi pe moarte” între leaderii celor două blocuri, URSS şi SUA. În aceste condiţii, românii nu mai ajungeau pe primele locuri ale competiţiei.

(3) În preocupările sale, Ceauşescu a decis spre finalul anilor ’70 o reformă a învăţământului, mai ales a celui matematic, cu scopul explicit de a aduce din nou România pe locurile fruntaşe în OIM, dar şi în alte olimpiade internaţionale. Se întâmpla asta în marea strădanie de a aduce România pe locurile fruntaşe în toate competiţiile, desigur şi în cele sportive, pentru a dovedi teoriile sale fantasmagorice despre omul de tip nou specific societăţii socialiste multilateral dezvoltate bla-bla-bla. Pentru obţinerea rezultatelor dorite în matematică au fost aduşi la ordin atât reprezentanţii curentului teoreticienilor, cât şi responsabilii pentru pregătirea loturilor de olimpici. L-a fel ca şi în activităţile sportive, s-a organizat o foarte largă bază de preocupare şi selecţie. Materia şcolară a fost încărcată, îngreunată şi teoretizată, diferite lecţii au ajuns deseori în clase mai mici şi nivelul problemelor aplicative a început să crească constant. Toată această reformă s-a petrecut orientativ între 1977 şi 1981, iar noua linie a fost impusă cu forţa în deceniul ce a urmat până la căderea lui Ceauşescu. Chiar dacă în primii ani profesorii au rezistat, mai ales în cazul schimbărilor absurde din materie aceştia păstrând formele vechi de lecţii, cu timpul majoritatea au fost forţaţi să “se dea pe brazdă” sub presiunea inspectorilor şcolari. Ţinând cont că cei care au prins această reformă în activitate la catedră s-au cam pensionat sau chiar nu mai sunt printre noi, eu obişnuiesc să o numesc pe această Reforma uitată din 1980.

(4) La începutul anilor ’90 când celelalte ţări-satelit URSS în fostul bloc operau transformări structurale de eliberare de sub metodele şi principiile dictaturilor comuniste, noi, românii, eram mândri nevoie mare de “olimpicii şi sportivii noştri” şi nimănui nu-i trecea prin cap să pună în discuţie nivelul aberant al matematicii şcolare. Mai mult, în cadrul reformei din 1997 avântul teoreticisto-olimpic s-a păstrat, chiar s-a potenţat prin apariţia mai multor manuale paralele, scuzaţi, alternative, majoritatea dintre acestea crescând din nou nivelul, faţă de cele comuniste valabile din anii ’80, de la reforma deja uitată. Creşterea a avut loc mai ales în direcţia aplicativă, a dificultăţii problemelor. Cu această ocazie toată tradiţia de probleme de excelenţă din GM şi de la diferitele olimpiade s-a descărcat în noile manuale, nemailăsând loc exerciţiilor de bază pentru fixarea noţiunilor de către elevii obişnuiţi sau chiar slăbuţi la matematică. În loc să aibă loc un proces reparatoriu, dimpotrivă presiunea asupra profesorilor a crescut “exponenţial”: directorii îi presau pe profesori să aducă rezultate la olimpiadă pentru şcoală; sistemul le dădea salarii de merit celor cu rezultate, iar inspectorii şcolari organizau toată ziua concursuri şi centre de excelenţă. Toată lumea era în concurs cu toată lumea şi asta în numele unei paradigme impusă de Ceauşescu. Ne bucuram că am scăpat oficial de dictator şi de regimul său, dar îi trăiam cu bucurie viitorul, cel puţin cel matematic şcolar, aşa cum îl preconizase el. Copiii nu erau încă distruşi de televizor, iar rezultatele la olimpiade încă mai veneau, situaţia fiind similară cu sportul românesc unde sistemul a mers din inerţie încă un deceniu şi ceva după căderea lui Ceauşescu.

(5) Cândva în anii 2000 (eu aş spune orientativ 2004-2005) s-a cam terminat cu avântul general iar balanţa a început să se încline încet dar sigur în direcţia opusă: se auzeau tot mai des voci în favoarea elevilor de rând, iar elevii performanţi ca pe vremuri începeau să apară tot mai rar; elevii în general începeau să fie tot mai puţin dispuşi să-şi petreacă tot timpul învăţând lucruri cu grad redus de entertainment, fiind tot mai atraşi de consumul mass-media (TV, jocuri pe calculator şi, timid la început, dar tot mai sigur internetul). Au urmat încet, dar hotărât, diferite schimbări de programă care încercau să uşureze matematica şcolară, mai ales pe cea gimnazială. Cea mai stupidă dintre toate a fost, după părerea mea, mutarea sistemelor de ecuaţii din finalul clasei a VII-a în finalul clasei a VIII-a, dar la fel de distructivă a fost şi mutarea capitolului despre patrulatere din clasa a VI-a în clasa a VII-a, peste vacanţa mare. Şi totuşi plângerile se înteţeau şi în curând toată presa a început să se plângă la unison despre starea jalnică a şcolii româneşti. Da, şi cam aşa trăim de peste 10 ani.

Aceste gânduri  se pot studia şi în eseurile mele din 2016, de găsit într-o variantă mai scurtă în postarea http://pentagonia.ro/reforma-uitata-o-scurta-descriere/ sau mai pe larg în postările http://pentagonia.ro/reforma-uitata-partea-i/ şi http://pentagonia.ro/reforma-uitata-partea-a-ii-a/.

 

Prin programa din 2017 s-a încercat o reformă reparatorie mai amplă, dar marea masă a profesorilor, inclusiv mulţi inspectori, nu o înţeleg. Nu înţeleg ce se întâmplă, pentru că toată lumea este încă setată conform paradigmei “olimpiade şi cocursuri” moştenită de la Ceauşescu şi îmbunătăţită prin manualele alternative de la finalul anilor ’90. Foarte mulţi profesori predau cât se poate de teoretizat şi aruncă în elevi cu probleme mult peste posibilităţile lor. Aşa au fost setaţi. Aşa a fost setată profesorimea de peste 30 de ani.

*

Ca urmare, s-a redactat această scrisoare metodică, pentru compunerea căreia au fost adunaţi împreună toţi cei care sunt într-un fel sau altul răspunzători de matematica şcolară. Haideţi să citim scrisoarea metodică acum, după ce am recapitulat istoricul predării matematicii şcolare, aşa cum am reuşit eu să-l reconstitui. Haideţi să spicuim împreună acest document (pentru conformitate, precizez că toate pasajele următoare scrise înclinat sunt citate din respectiva SCRISOARE METODICĂ). Documentul începe cu patru ŢINTE:

1) Asigurarea calităţii educaţiei prin centrarea activităţii didactice pe proces, în egală măsură cu centrarea pe rezultate.

Gânduri explicative: Decursul procesului didactic este la fel de important ca şi rezultatele acestuia (întrbare pentru cititor: oare de ce un proces didactic sănătos este la fel de valoros ca şi rezultatele procesului?). Nu ne interesează doar rezultatele; rezultatele cu orice preţ trebuie evitate; gândirea matematică se formează foarte bine în proces. Dimpotrivă, dându-i direct reţetele pentru a ajunge cât mai repede şi mai sus la aplicaţii de excelenţă, văduvim mintea elevului de procesul înţelegerii sursei ideilor şi a formării unei gândiri complete; dându-i direct reţeta de rezolvare pentru a economisi timp, îi tăiem elevului din timpul în care el ar trebui să-şi exerseze gândirea pe marile raţionamente ale matematicii. Predarea matematicii nu constă doar în a le da elevilor rapid reţete, procesul predării matematicii este în sine important pentru înţelegerea fenomenului studiat şi pentru formarea gândirii în ansamblul său. Profesorii de matematică trebuie să se concentreze şi pe procesul predării şi vor fi evaluaţi ca atare. S-au încheiat vremurile când doar rezultatele contau. Rezultatele deosebite se obţineau în general doar cu elevii buni, dar un proces bine construit îi ajută şi pe elevii de nivel mediu;  cu elevii mediocrii se obţin mult mai greu rezultate, chiar şi la examinări, dar societatea a înţeles că formarea gândirii logice printr-un proces didactic sănătos are urmări pozitive în gândirea generală a populaţiei dincolo de simplele subiecte de examen (de pildă se educă oameni mai greu manipulabili de către politicieni, iar acest fapt în sine creşte valoarea medie a unei populaţii, a unei societăţi); atragerea elevilor în procesul activităţii didactice coborând parcursul acestuia la un nivel accesibil majorităţii le dă şi elevilor mediocri ocazia de a-şi îmbogăţi gândirea practicând raţionamente logice specifice matematicii, nu doar dresându-şi mintea în aplicarea unor reţete de rezolvare ce se vor da la evaluare.

Mai presus de toate aceste gânduri, eu cred însă că respectiva ţintă scoate în evidenţă răspunsul la întrebarea “pentru ce învăţăm matematica?”. Iar răspunsul nu este doar “pentru examene şi concursuri”. Nu, pe lângă acestea – a căror realitate nu o contestă nimeni – pe lângă acestea mai există un motiv, anume formarea unei gândiri deductive logico-raţionale care îl va însoţi şi îi va sluji viitorului adult toată viaţa sa, mai ales în viaţa extramatematică, în luarea unor decizii corecte şi juste. Iar acest stil de gândire nu se formează dându-i elevui reţete rapide pentru obţinerea unor rezultate bune (rezultate atât direct în probleme, cât şi rezultate la nivel superior, în performarea elevilor la concursuri şi examene), ci se formează în procesul construirii lecţiilor de matematică. Nu mă pot abţine aici să nu scot în evidenţă strădaniile mele din recenta serie de postări menită a scoate preconizata predare a Teoremei lui Pitagora în finalul clasei a VI-a din zona de eficienţă concentrată pe rezultate rapide (obţinute prin predarea simplă a reţetei) şi aducerea predării acesteia într-o formă de proces deductiv al activităţii didactice, chiar dacă într-o formă mai intuitivă şi mai infantilă decât demonstraţiile cu care eram obişnuiţi până acum.

2) Creşterea preocupării profesorilor pentru conştientizarea elevilor privind rolul matematicii, atât din perspectiva de utilizatori primari, în viaţa de zi cu zi, cât şi ca urmare a diversificării domeniilor profesionale în care noţiunile şi raţionamentele matematice sunt prezente şi sprijină realizarea de sarcini şi acţiuni.

Gânduri explicative: Acest ţel conectează direct cu cele spuse în finalul comentariului la ţelul precedent, doar că schimbă un pic întrebarea: “la ce ne trebuie matematica?” în loc de “pentru ce învăţăm matematica?”. Oricum, şi aici extinderea este clară: nu învăţăm matematica doar pentru concursuri şi examene, ci – direcţia este de data asta chiar dată “mură-n gură” – de matematică avem nevoie în viaţa de zi cu zi (o mai ţineţi minte pe caseriţa din vară cu cele opt boxuri de apă minerală a câte şase butelii fiecare, în total 40 de butelii?), dar şi în multe specializări profesionale şi în îndeplinirea sarcinilor de serviciu ulterioare. Profesorii trebuie să se străduiască mai mult în acest sens; de fapt nu mai ajung argumente de tipul “vă trebuie la examen”. Ce nu s-a spus în redactarea acestui al doilea ţel este faptul că, pe lângă marea masă a facultăţilor ce includ şi cursuri de matematică, gândirea raţională logico-deductivă este de fapt necesară şi în majoritatea specializărilor care nici măcar nu se declară utilizatoare de matematică.

Încercând să luăm nişte exemple, mă gândesc că un pictor sau un muzician virtuoz chiar nu prea au nevoie în meseria lor de gândire raţională, dar un psihiatru care nu şi-a format o gândire logico-deductivă poate reprezenta uneori chiar un pericol pentru pacienţii săi (acest tip de psihiatri par din păcate majoritari). Ca o anecdotă, din cei doi psihiatri (psihologi, sau cum s-or fi mai numind) întâlniţi în şcoala noastră de-a lungul anilor la care am observat clar o gândire cu adevărat sănătoasă, una avea la activ şi facultatea de matematică.

Revenind la lucruri serioase, mă gândesc cât de important este ca viitoarele învăţătoare să aibă o relaţie pozitivă cu matematica, ele ca formatoare de bază a gândirii logice la viitoarele generaţii de copii. Din păcate însă, situaţia este cu totul alta: la PIPP nu ajung persoane care să fi avut o foarte bună relaţie cu gândirea logică, cursul de matematică ce le este adresat nu este privit ca important, având mari şanse să-şi rateze misiunea, iar mai departe nu are rost să discutăm, fiind evidentă forma deficitară a primilor paşi în formarea gândirii matematice la viitoarele clase primare (groaznică spirală a decăderii gândirii logice!).

3) Identificarea corectă a nevoilor de activităţi remediale, proiectarea şi desfăşurarea unor activităţi specifice, eficiente, cu accent pe formarea / dezvoltarea graduală a competenţelor (remedierea vizează îmbunătăţirea nivelului de competenţă, conţinuturile fiind suport al competenţelor).

Gânduri explicative: Nu am nimic cu activităţile remediale, nu neg rolul acestora, care este deosebit de important în multe cazuri, dar “gândesc şi eu în gura mare”: când vom ajunge să ne referim la activităţi de prevenţie a “avarierii matematice” a elevilor? De ce nu vorbim despre Identificarea corectă a nevoilor de activităţi preventive? Cum ar trebui să arate predarea matematicii structurată într-o formă preventivă? Ca să citez o reclamă simpatică difuzată la televizor: “aşa ceva, nu există!” (un individ holbându-se pe telefonul prietenului la site-ul Publi24). Dar, cum ar trebui să predăm astfel încât să acţionăm preventiv? Preventiv la ce? Păi, să încercăm să prevenim apariţia avarierii matematice a elevilor, rămânerile în urmă faţă de colegi şi apariţia blocajelor în gândire, clacarea în viaţă a unor copii în principiu sănătoşi şi fără defecte vizibile la nivelul gândirii. Acestea trebuie prevenite printr-o predare sănătoasă. Desigur că o astfel de predare este mare consumatoare de timp şi de obicei profesorii nici nu se gândesc să abordeze astfel de metode preventive pentru că setarea lor a fost în ultimii 30-40 de ani să tot fugă prin materie, să facă cât mai mult şi cât mai greu pentru a performa în zona de concursuri şi examene. În această paradigmă au fost împinşi, la început în anii ‘80 forţat, apoi din anii ’90 sub titluri de performanţă şi excelenţă (mândri că suntem români, noi şi olimpicii noştri etc.). Atunci când nu vom mai vedea clasamente cu cele mai bune şcoli la olimpiade sau examene, atunci vom şti că societatea este vindecată şi are rost să vorbim despre forme de predare conţinând activităţi preventive şi nu doar activităţi remediale. Până atunci acest blog pentagonia.ro va rămâne o pasăre rară şi oarecum ciudată în peisajul şcolar matematic din ţara noastră.

4) Aplicarea conformă a curriculumului (având în vedere zona dezvoltării proximale) în relaţie directă cu particularităţile colectivelor de elevi, nevoile şi stilurile de învăţare ale acestora, favorizând creşterea participării active la propria învăţare, diminuarea abandonului şcolar sau pasivităţii faţă de educaţie şi îmbunătăţirea rezultatelor învăţării, atât reflectate în rezultate la examene, evaluări, concursuri şi olimpiade şcolare de specialitate, cât şi în termeni de reuşită profesională şi socială.

Gânduri explicative: Încet, dar sigur, ies la iveală felul în care s-a predat la clase în primul an de introducere a noii programe, în anul şcolar 2017-2018 la clasele a V-a, dar şi în actualul an şcolar 2018-2019 până acum la clasele a VI-a. Ies la iveală situaţiile în care profesorii au acţionat distructiv la adresa majorităţii elevilor din clasă, în numele vechii paradigme care le îndrepta atenţia doar spre “elevii cei mai buni din clasă”, în numele obţinerii unor rezultate cât mai bune la sistemul de olimpiade, aceşti profesori acţionând abuziv şi distructiv la adresa celorlalţi elevi (să le spunem “restul de 90%”), agresându-i cu probleme foarte grele, mult peste nivelul vârstei şi al colectivului de elevi, dar şi cu un mod de predare a noilor cunoştiinţe cât mai abstract, teoreticist, neadaptat vârstei, deseori importat din clasele mai mari, uneori chiar din liceu (deci cu salt de vârstă chiar de 4 ani). Deseori programa nu a fost respectată, de pildă majoritatea profesorilor făcând în continuare ecuaţii în clasa a V-a, pur şi simplu pentru că nu erau pregătiţi în a parcurge problemele aritmetice prin metode specifice, fără punerea în ecuaţie, deşi noua programă o cerea explicit. În paradigma cu care s-au obişnuit, majoritatea profesorilor au nevoie de ecuaţii pentru rezolvarea situaţiilor întâlnite, iar lipsa acestora pur şi simplu nu funcţionează în acord cu pregătirea olimpiadelor aşa cum se pricep aceştia. Am întâlnit chiar un caz în care profesoara a predat în clasa a V-a într-o singură oră numerele întregi, inclusiv toate operaţiile, cu motivaţia că “să fie dacă se dă la olimpiadă”.

În şcolile bune din mediul urban nu prea apare abandonul şcolar, dar pasivitatea, chiar repulsia faţă de matematică este omniprezentă. Există clase întregi în care toţi părinţii plătesc ore particulare copiilor doar pentru că predarea profesorului nu este adaptată nevoilor reale ale vârstei şi particularităţilor colectivului de elevi, profesorul predând de fapt doar pentru “elevii cei mai buni din clasă” care urmează a merge la olimpiadă şi a reprezenta şcoala în mod onorabil (fiecare, cum şi ce înţelege prin onorabil). În nici un caz o astfel de abordare nu favorizează creşterea participării active a elevilor la propria învăţare. Cât despre reuşita profesională şi socială, am atins acest subiect în analiza celorlalte ţeluri. Se vede cum toate sunt profund interconectate, dar nimeni nu vorbeşte despre sursa cauzală a tuturor problemelor actuale ale predării matematicii şcolare în România.

Aşa văd eu lucrurile, acesta este punctul meu de vedere, iar cele de mai sus reprezintă o foarte scurtă analiză, în care am încercat să ating doar câteva aspecte vizate de către Scrisoarea metodică din acest punct de vedere. Mi-ar place să n-am dreptate, să fie totul doar o simplă şi isterică exagerare, dar toate aspectele converg către astfel de concluzii. Dvs., stimaţi cititori, cum vedeţi lucrurile? Este evident că analiza se cere continuată, aşa că voi încerca să revin cât de curând, în măsura timpului disponibil.

Prof. Constantin Titus Grigorovici

P.S. Pentru cititorii care ar fi tentaţi să conteste aceste gânduri, considerând că elevii nu sunt abuzaţi prin predarea matematicii în gimnaziu, daţi-mi voie să vă prezint câteva exemple din ultima perioadă.

Perimetrul unui triunghi este egal cu 60 cm iar raza cercului înscris în triunghi este egală cu 4 cm. Aria triunghiului este egală cu … cm2. Problema este preluată de pe site-ul mate.info.ro profu’ de mate, de pe unul din testele având ca titlu TEST model NR. 3 – Pregătire pentru simulare E.N. Proba scrisă la matematică clasa a VII-a, 13 martie 2019. Formula S = p ∙ r este în materia de clasa a VII-a şi trebuia să o facem? Sau nu este? Sau o fac diverse persoane ca un prim pas de introducere sub umbrela excelenţei? Dar atunci, ce căuta pe acest “model” de simulare? Oricum, în isteria creată de lipsa unor modele oficiale pentru simularea pripit organizată la clasa a VII-a, lumea a ajuns uşor la aceste modele şi întrebările despre ele circulau de zor.

Dar nu numai prin probleme din afara materiei sunt agrasaţi elevii, ci chiar şi prin lecţii. Un exemplu în acest sens ar fi studiul despre progresii în clasa a V-a, de către profesori tare ambiţioşi: una este să numeri aditiv sau multiplicativ din 2 în 2 sau din 3 în 3, sau chiar din ½ în ½  şi să pui câteva întrebări despre diferite momente ale acestui fenomen, şi alta este să imporţi cu totul lecţia din clasa a IX-a, cu toată abordarea teoretică, dar mai ales cu toată zestrea de probleme, şi asta în numele excelenţei şi al performanţei la olimpiade. Acesta este un exemplu cu salt de vârstă de patru ani în jos. Şi la alte materii se întâmplă astfel de preluări în bloc de la clase mai mari. Cunosc despre înclinaţia pentru astfel de acţiuni o situaţie din anul şcolar 2000-2001. Pe vremea respectivă eram dirginte la o clasă de a VIII-a, iar elevii trebuiau să se pregătească pentru nou introdusele probe la geografie şi istorie în cadrul Examenului de Capacitate. O elevă avea soră mai mare cu 5 ani, iar mama lor mi-a atras atenţia că testele după care se pregăteşte “asta mică” sunt aceleaşi teste după care s-a pregătit cu un an în urmă sora cea mare pentru examenul de Bacalaureat.

Cât despre prezentările teoretice, pentru cititorii care consideră că exagerez, că aceste descrieri sunt fabulaţii, că de fapt nu se exagerează, daţi-mi voie să vă prezint un exemplu concret din această iarnă, găsit în caietul unui elev. Este vorba despre primii paşi în lecţia Proporţionalitatea inversă (indirectă). După acest titlu apar scrise imediat următoarele rânduri, fără cuvinte de legătură sau alte explicaţii, în pur stil minimalist matematicist:

{ a1 , a2 , … , an }  şi  { bn , bn-1 , … , b2 , b1 }  i.p.

a1 < a2 < … < an         bn < bn-1 < … < b2 < b1      

Aici ar trebui să spun: g.e.d.! Totuşi nu mă pot abţine, aşa că întreb: la ce bun toate astea? La ce îi poate ajuta pe elevii de clasa a VI-a o astfel de definiţie (incluzând renumitele “…”, puncte-puncte, la care majoritatea elevilor reacţionează cu spaimă în glas: “Suma lui Gauss?”) şi cu această îngâmfată etalare de scriere generalizată pentru n numere, care în plus, la proporţionalitea inversă – în cazul absolutizării ordonării celor două mulţimi de numere, neapărat în ordine crescătoare – impune tratarea elementelor celei de a doua mulţimi de la coadă (bn < bn-1 < … < b2 < b1). Mă mai puteţi urmări? Da’ de elevi ce să mai zicem!? Toate acestea se adaugă în dificultate situaţiei oricum dificile generate de forma condiţionării proporţionalităţii inverse cu fracţii supraetajate (am scris despre aceasta în postarea http://pentagonia.ro/maimutele-si-educatia/ , pe vremea când credeam că mai rău nu se poate). Ce-ar fi fost dacă definiţia s-ar fi dat doar pentru trei elemente, să zicem {a, b, c} şi {x, y, z} sunt i.p etc.? Ce a obţinut cadrul didactic respectiv în sufletul elevilor săi? Cum s-au dus aceşti copii acasă din punct de vedere al încrederii în sine. Vă las pe dvs. să alegeţi un răspuns la aceaste întrebări. Eu mă gândesc doar dacă nu trebuia să folosesc mai degrabă denumirea “antididactic”.

Sticla lui Klein la RENVERSANT în Bordeaux

De banda lui Moebius (August Ferdinand Möbius, 1790-1868) şi de sticla lui Klein (Christian Felix Klein, 1849-1925) am cam auzit cu toţii. Aceste curiozităţi inventate de cei doi matematicieni germani reprezintă oarecum exemple ale unuia şi acelaşi fenomen, prima în 2D, iar a doua în 3D. Pe prima o putem confecţiona uşor şi prezenta la clasă ca o curiozitate, ca o născocire specială a minţii omeneşti (să vedeţi ce fericiţi “se joacă’ elevi cu hârtie, lipici şi foarfecă, realizând astfel de benzi şi apoi tăindu-le în jumătate sau pe o treime, sau lipindu-le dublu răsucit!).

Cea de a doua însă nu poate fi atât de uşor confecţionată. Pe internet se găsesc adrese de unde poate fi achiziţionată (preţul este destul de ridicat). O imagine imprimată cu o astfel de “sticlă” poate fi însă la fel de bine folosită în prezentarea la clasă. Interesant este aspectul deosebit de decorativ al sticlei lui Klein, fapt care începe să-i crească în valoare, ridicând-o la nivelul operelor de artă de expus în propria locuinţă, sau în alte locaţii, cum ar fi un cabinet de matematică. Următoarele poze sunt culese la o scurtă căutare pe internet; le puteţi găsi şi dvs., pe acestea şi multe altele.

Un exemplar mai special va fi expus la Bordeaux în Franţa, în cadrul unei expoziţii numită Renversant găzduită în La Cité du Vin între 15 martie – 30 iunie 2019. Dacă sunteţi pasionaţi de arta modernă, aveţi drum pe acolo şi “ştiţi un pic de matematică”, atunci merită să vizitaţi stabilimentul respectiv (în poze arată uluitor) şi expoziţia cu pricina. Următoarele imagini sunt preluate de pe https://www.laciteduvin.com/en/do/temporary-exhibitions/mind-blowing-when-art-and-design-take-glass  Titus Micu-Klein

Teorema lui Pitagora şi tripletele de numere pitagoreice în clasa a 6-a

În precedentele postări despre figura cu pătratele construite în exteriorul triunghiului dreptunghic ne-am concentrat asupra ideii de arie a acestora, scoţând în evidenţă descompunerea acestor pătrate în pătrăţele, adică în unităţi de bază. La acestea relaţia din teoremă se evidenţiază adunând conţinuturile celor două pătrate ale catetelor pentru a obţine pătratul ipotenuzei. În acest sens reamintesc traducerea ad-literam a cuvântului german pentru arie: Flächeninhalt = conţinutul suprafeţei.

Despre acest subiect am mai vorbit şi cu alte ocazii, de pildă în postarea din toamna lui 2018 http://pentagonia.ro/teorema-lui-pitagora-un-simbol-denaturat/ . Desigur că în exterior, pe laturile triunghiului dreptunghic se pot desena orice poligoane, cu condiţia să fie toate trei asemenea între ele (trei dreptunghiuri asemenea, trei triunghiuri echilaterale, trei pentagoane regulate etc.). Aceste construcţii ar fi însă potrivite, doar ca nişte curiozităţi, de prezentat mult după învăţarea teoremei lui Pitagora.

Mai am o poză găsită pe net în care însumarea pătratelor catetelor apare nu doar la nivel numeric, ci şi la nivel geometric al suprafeţelor (figura are o mică greşeală: îi lipseşte o linie în pătratul din stânga, dar sper că se înţelege).

Această imagine sugerează o nouă direcţie de gândire în tema noastră de studiu, anume că dacă unui pătrat (celui roz, cu 16 = 42 unităţi) îi putem adăuga o lărgire cu un rând în ambele direcţii, iar această lărgire (care este reprezentată de un număr impar) este totodată pătrat perfect, atunci obţinem un triplet de numere care respectă Teorema lui Pitagora. Se înţelege? Cam îmbârligat, ştiu. Haideţi să o luăm cătinel.

Suma primelor numere impare este studiată în mod algebric în clasa a X-a, fiind cunoscută în forma: 1 + 3 + 5 + … + (2n – 1) = n2, demonstrată fiind prin inducţie matematică. Există şi situaţii când suma primelor numere impare este inclusă în exerciţii din zona de excelenţă şi olimpiadă la clasele mici gimnaziale, dar subiectul nu este oficial inclus în materie, fiind considerat inaccesibil pentru majoritatea elevilor. Există însă o formă ceva mai accesibilă de a ajunge în zona acestui subiect. Haideţi să o vedem.

Pentru a înţelege ce urmează trebuie însă să schimbăm puţin forma de a privi numerele pătrate. Până acum le-am reprezentat sub forma unor figuri geometrice, anume nişte pătrate împreună interiorul acestora împărţit în pătrăţele ca unităţi de arie. Totuşi în postarea precedentă am avut două imagini care făceau aluzie la o altă abordare.

În primul rând a fost imaginea cu piesele tip “LEGO”, imagine cu pătrate al căror conţinut erau acei “bumbi” specifici, ca nişte buline, aproximante ale unor puncte. Bulinele respective erau ordonate “în pătrat” de trei ori trei ş.a.m.d. Apoi, în imaginea următoare a avut loc o distanţare şi mai puternică faţă de figura pătratului împărţită în pătrăţele. Astfel, în figura cu roşiile aranjate în “formă de pătrat”, figura geometrică numită pătrat a ajuns doar orientativă. “Pătratele” din această imagine nu mai sunt de mult pătrate în sensul geometric, dar totuşi rolul acestora în Teorema lui Pitagora este clar şi evident. Aici roşiile acelea micuţe joacă rolul de buline sau punctuleţe în reprezentarea numerelor pătrate.

Reprezentarea numerelor prin punctuleţe a apărut în Grecia Antică, învăţaţii din acea vreme folosind pietricele (sau orice altceva, obiecte cât de cât punctiforme, cum ar fi sâmburi) pentru a reprezenta vizual anumite proprietăţi ale numerelor (numerele prime, numerele pătrate sau numerele triunghiulare). Astfel. în diferite lucrări numerele pătrate sau numerele triunghiulare (la fel ca şi altele de inspiraţie geometrică) sunt denumite numere figurate. Faptul că suma primelor n numere impare este egală cu pătratul lui n, de exemplu 1 + 3 + 5 + 7 + 9 + 11 = 36 = 62, poate fi reprezentată prin punctuleţe foarte clar astfel:

Vedeţi în această imagine cum, în afară de 1, orice număr poate fi reprezentat în forma unui “echer de tâmplar” isoscel (nişte L-uri isoscele, numite în antichitate gnomon), însumarea acestora generând o formă de “pătrat”. Astfel, fiecare nou echer, reprezentând un nou număr impar, măreşte pătratul deja existent la următorul număr pătrat. De pildă, dacă la suma 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 = 72 adunăm următorul număr impar, adică 15, obţinem (1 + 3 + 5 + 7 + 9 + 11 + 13) + 15 = 72 + 15 = 64 = 82.

Cu ce ne ajută asta la Teorema lui Pitagora? Păi, aşa-numitul triunghi egiptean, adică suma divină 42 + 32 = 52 se obţine ca 42 + 9 = 52 din următoarea figură:

Asta se întâmplă datorită faptului că 9 este primul număr impar pătrat diferit de 1. Ne punem, pe bună dreptate, întrebarea dacă şi când ne mai întâlnim cu o astfel de situaţie. Păi, desigur la adăugarea gnomonului (a “echerului”) numărului 25, care este următorul număr impar totodată şi pătrat. În acest caz suma numerelor impare până la 23, adică primele 12 impare dă 122 = 144, la care dacă adăugăm 25, obţinem 132 = 169. Avem în acest caz tripletul pitagoreic 122 + 52 = 132. Astfel putem găsi şi alte triplete care îndeplinesc ciudata însumare din Teorema lui Pitagora, următorul fiind de pildă în dreptul numărului impar pătrat 49 (găsirea acestuia elevii o pot primi ca temă opţională).

Se bănuieşte că Pitagora ştia de aceste lucruri, cunoscute de pe vremea civilizaţiei babiloniene. Desigur că Pitagora cunoştea şi obţinerea unor astfel de triplete prin amplificarea celor deja găsite, cum ar fi (6, 8, 10) sau (9, 12, 15) prin amplificare din cel egiptean.. Pe lângă aceste metode există şi alte căi de a găsi triplete pitagoreice, astfel că se găsesc cu totul 11 triplete cu pătratele de cel mult trei cifre (adică până la 1000). Acestea sunt următoarele: (3, 4, 5) şi amplificările sale (6, 8, 10); (9, 12, 15); (12, 16, 20); (15; 20; 25); (18, 24, 30); apoi avem (5, 12, 13) şi amplificarea (10, 24, 26); în final încă trei triplete (7, 24, 25); (8, 15, 17); (20, 21, 29) ale căror amplificări depăşesc însă la pătrat limita de 1000.

Aici v-am arătat calea “babiloneană”de a găsi astfel de triplete, prin figurarea numerelor pătrate, dar şi lista completă până la un anumit nivel de mărime, pentru a le putea folosi în exemple de calcul. Totuşi, eu nu cred că ar trebui să le arătăm elevilor această listă completă. Ei vor trebui să înveţe algoritmul de calcul şi aplicarea acestuia, nu să înveţe pe de rost o serie de rezultate. Astfel, eu la clasă mă concentrez cu elevii mai mult asupra proceselor accesibile de deducere a astfel de triplete şi mai puţin asupra găsirii cât mai multora şi a memorării acestora. Titus şi babiloniile sale

P.S. Vrem – nu vrem, oricum ajungem aici şi la subiectul numit “rădăcina pătrată”: în finalul clasei a VI-a va trebui să le predăm elevilor aplicarea teoremei lui Pitagora dar, prin programă nu avem de studiat până la acel moment finalul calculului, care se face prin rădăcina pătrată (eu am tot căutat-o, dar nu e trecută nici în a V-a, nici în a VI-a). Aşadar, cum să predăm Pitagora fără radicali? Zice nevastă-mea s-o facem ca Pitagora, că nici el n-avea radicalii!!! Logic, nu? Dacă m-ambiţionez, o fac şi aşa, dar nu cred că are sens, pentru că oricum imediat după vacanţa de vară trebuie să le explic cum vine treaba cu rădăcina pătrată. Aşadar, undeva, înainte de lecţia despre Pitagora ar trebui introdusă rădăcina pătrată. Dar cum şi unde?

Cum? Cel mai simplu ar fi de a introduce rădăcina pătrată doar din numerele pătrate, drept operaţie “de probă” a ridicării la pătrat a numerelor naturale. Unde? Cel mai bun loc în materie cred că ar fi fost în capitolul despre numere naturale din semestrul I al clasei a V-a, în continuarea lecţiei despre numere pătrate. Cei care au fost prevăzători, poate chiar au făcut-o acolo, sau o vor face la următoarele clase de a V-a. Dacă însă nu a fost studiată încă rădăcina pătrată, atunci cred că cel mai bine ar fi să o introducem chiar înainte de Teorema lui Pitagora, în ora precedentă. Ca rădăcină doar din numerele pătrate ajunge chiar şi jumătate dintr-o oră. Sunt suficiente doar câteva exerciţii de “extragere” pe baza tablei numerelor pătrate. Pentru asta trebuie însă prezentată tabla numerelor pătrate până la 302 (vezi în acest scop primele exerciţii de pe fişa publicată în postarea http://pentagonia.ro/radacina-patrata-faza-aritmetica-prin-predare-intuitiva/).

Ziua lui pi – 14 martie 2019

Primăvara acesta profesorii de matematică în şcolile din toată ţara au primit un minunat cadou de ziua lui Pi: vor avea de corectat şi simulări la clasa a VII-a, sărbătorind astfel prin muncă înverşunată, în profund stil comunist, această minunată sărbătoare. Pi – … … de treabă!

PS Ce-ar fi ca la anu’ să dăm simulările puţin înainte de 15 ianuarie, că să aibă şi colegii de la limba română o astfel de bucurie?

Hypo-tenuza

Dacă tot am vorbit mai mult în ultima vreme despre triunghiul dreptunghic, despre Pitagora şi despre cum sunt văzute aceste lecţii în occident, haideţi să privim un pic şi caricaturizarea umoristică ce se găseşte pe net în legătură cu acest subiect. Totul porneşte probabil de la faptul că în limbile respective cuvântul ciudat pentru ipotenuză aminteşte de hipopotam, dar şi de alte ciudăţenii (pentru asta trebuie să ştiţi un pic de engleză, cele mai multe fiind greu traductibile). Cineva a încercat totuşi să genereze şi o variantă românească (găsită imprimată pe o sacoşă, o plasă neagră de cumpărături, primită cadou de Crăciun).




Situaţia este surprinsă şi într-o caricatură pe care o traduc în continuare: Probabil că ai dreptate Pitagora, dar toţi vor râde dacă o vei denumi “hipotenuză”. Pythytus

Teorema lui Pitagora şi pătratele acesteia în clasa a 6-a

De când am pornit acest blog am scris de câteva ori despre figura geometrică cu trei pătrate construite pe laturile unui triunghi dreptunghic şi despre faptul că aceasta prezintă într-o formă deosebit de intuitivă Teorema lui Pitagora. De pildă, în luna mai 2018, în postarea despre cum mi-am pus faianţa în baie, am arătat cum am încercat să evoc în propria-mi casă amintirea din copilărie despre figura geometrică cu cele trei pătrate, figură ce era zugrăvită pe un perete al holului de intrare în apartamentul unde am locuit până în clasa a VI-a, acasă în Oraşul Victoria. Foarte interesant, cât de pregătit eram eu de pe atunci pentru Teorema lui Pitagora în clasa a VI-a.

Reluarea temei cu ajutorul ciocolăţilor pătrate Ritter Sport nu reprezintă în acest sens o simplă fixaţie, o ciudăţenie personală, ci răspunde unei necesităţi de moment în sensul sprijinirii profesorilor ce vor avea de predat în finalul clasei a VI-a Teorema lui Pitagora începând de anul acesta. Acolo este stabilită prin programă, explicându-ni-se că trebuie să o predăm fără demonstraţie, explicată prin verificări de triplete de numere pitagoreice, doar pentru a putea ajunge cât mai repede la determinarea lungimii folosind pătrate perfecte (din nou citatele sunt preluate înclinat din programa de matematică – clasele V – VIII, pag. 16). Trebuie (!) să facem acest lucru pentru a ne asigura că le-o predăm elevilor NOI, PROFESORII DE MATEMATICĂ, cea mai importantă teoremă din gimnaziu, probabil chiar cea mai renumită din toate timpurile, astfel încât să nu apuce să le-o arate elevilor colegii profesori de fizică, doar pentru că lor le-o trebuie în toamna clasei a VII-a.

OK, foarte bine aşa, dar care-i diferenţa? Că le-o arată ei superficial sau le-o arătăm noi superficial înaintea lor, tot superficial se numeşte. Am arătat în prima parte cum putem însă aduce această teoremă într-o formă de minimă “demonstrare”, o formă de justificare intuitivă, scoţând-o astfel din starea de HOCUS-POCUS de neînţeles spre care ne direcţionează noua programă.

După cum am mai spus, sunt foarte mulţi cei care nu cunosc figura cu triunghiul dreptunghic şi pătratele construite în exterior pe laturile sale, care nu o asociază cu Teorema lui Pitagora. Se întâmplă asta pentru că respectiva figură a fost exilată din manuale începând cu reforma din 1980, demonstrarea teoremei făcându-se doar pe baza teoremei catetei obţinută prin asemănarea triunghiurilor, respectiv datorită faptului că în textul teoremei s-a pus accentul doar pe aspectul de putere a doua a lungimii unei laturi, eliminându-se din discuţie ideea de arie a unui pătrat. Interesant este aici următorul aspect: dacă, în justificările cu pătratele construite pe laturile triunghiului, legătura dintre unghiul drept şi relaţia între cele trei pătrate este destul de evidentă pentru “ochiul începător” al elevilor, în demonstraţiile care folosesc doar lungimile laturilor, adică numerele la puterea a doua, legătura dintre cele două părţi ale Teoremei lui Pitagora se pierde pentru cei mai mulţi elevi.

S-a mers astfel în ultimii aproape 40 de ani doar pe abordarea aritmetică, eliminându-se cu totul forma geometrică, formă care aducea o foarte vizibilă reprezentare grafică a fenomenului numeric pe care se bazează Teorema lui Pitagora. Oare ce se întâmplă în alte părţi legat de aspectele discutate? În plimbările mele pe internet am găsit diferite poze care aduc în discuţie situaţia cu pătratul ipotenuzei care este cât suma pătratelor catetelor, exemplificată pe cazul triunghiului de laturi (3, 4, 5). Iată două mai interesante dintre acestea, poze care arată cât de cunoscută este de fapt imaginea respectivă:

La ce sunt bune toate acestea – veţi întreba – de vreme ce autorii noii programe nu au acordat nici măcar o minimă atenţie ideii de “demonstraţie” a teoremei. Noi de ce să ne stresăm când ei tocmai au deschis cutia Pandorei, spunând lejer că se poate “fără demonstraţie” la cea mai mare teoremă din toate timpurile?! (conform programei, a doua trecere pe la Teorema lui Pitagora, de data asta cu demonstraţie, se face de abia peste un an, undeva în finalul clasei a VII-a).

Se vede aşadar – pentru orice matematician responsabil – că discuţia despre prezentarea Teoremei lui Pitagora în finalul clasei a VI-a este una importantă, mai ales prin prisma justificării accesibile a acesteia pe baza însumării ariei pătratelor catetelor pentru a obţine echivalarea ariei pătratului ipotenuzei. Până acum am discutat despre prezentarea unor situaţii sub formă concretă (cine mai găseşte şi altele în afară de ciocolată, “LEGO” sau roşii?) sau de imagini aduse ca poze ori prezentate digital, imagini care ar trebui desigur să se concretizeze şi ca figuri geometrice pe tablă (profesorul de mate trebuie să fie conştient de importanţa unui astfel de demers). Cu alte cuvinte, am discutat doar despre ce ar trebui să facă profesorul în faţa clasei pentru a prezenta această teoremă cât mai just.

Cred că ar fi cazul să ne îndreptăm atenţia şi asupra felului despre cum ajung aceste desene în caietele elevilor? (aspecte despre care desigur că programa cea nouă nu ne vorbeşte). Nu trebuie făcute multe desene. Cum am precizat în finalul postării despre folosirea ciocolatei, este vorba de puţine figuri geometrice, dar acestea ar trebui să fie cât de cât coerent şi corect realizate în caiete. Indiferent de câtă experienţă are o clasă în realizarea figurilor geometrice (din câte văd în jurul meu, nu prea se lucrează în acest sens), sunt şanse mari ca mulţi elevi să nu reuşească acest desen, pentru că este vorba de construirea unuia sau a două pătrate poziţionate oblic faţă de aliniamentul şi liniatura caietului de matematică. Şi atunci ce facem?

Eu cred că există două direcţii de acţiune. Prima ar fi ca elevii să decupeze pătratele (anterior colorate) de pe o altă coală de hârtie (tot cu pătrăţele) şi să le lipească corect asamblate în caietul de clasă la locul potrivit în cadrul lecţiei. Aceasta ar fi varianta uşoară, pentru că nu implică construcţii geometrice foarte abile. Dar pentru asta trebuie să fim dispuşi la transformarea unui sfert de oră de matematică într-o parte manufacturieră, pentru care elevii trebuie să aibă la ei lipici şi foarfecă. Desigur, le-o putem da şi ca temă, dar în acest caz eu nu garantez pentru ce se va găsi în unele caiete.

O a doua direcţie de reprezentare ar fi desenarea figurii geometrice cu instrumente pe caiet. În acest moment apare ideea de a alege între cele două posibile variante de poziţionare a triunghiului dreptunghic: cu ipotenuza drept bază (aşa cum am prezentat-o în imaginile cu ciocolata sau cu faianţa) sau cu o catetă drept bază (aşa cum apare în pozele cu piesele “LEGO” sau cu roşiile cherry). În varianta cu ipotenuza ca bază vom avea de construit două pătrate înclinate pe laturile oblice, pe când în varianta cu o catetă ca bază (să alegem cateta cea mare) vom avea de construit doar un pătrat pe o latură oblică (cel de pe ipotenuză). Este evident că a doua variantă este preferabilă din acest punct de vedere.

Un aspect mai trebuie evidenţiat aici, anume că la triunghiul (3, 4, 5) figura cu pătrăţele este destul de mică, dar poate fi uşor dublată prin trecerea la altă unitate de măsură, anume la cm2. Dimpotrivă, la triunghiurile (6, 8, 10) sau (5, 12, 13) figurile în pătrăţele sunt clar preferabile pentru a încăpea pe pagina de caiet. Dacă vrem să le punem pe toate trei triunghiurile alăturat, pentru a exemplifica (bio)diversitatea acestora, atunci vom alege desigur pătrăţelul caietului de matematică drept unitate de măsură.

Dacă încercăm să analizăm şi mai profund aceste două variante de realizare a figurii – poziţionând ipotenuza sau o catetă drept bază – atunci ajungem să descoperim aspecte de-a dreptul surprinzătoare.

Construcţia figurii cu o catetă drept bază ne “îndrumă” spre cazul de construcţie LUL în varianta sa CC (catetă-catetă cu unghiul drept între acestea). Putem să ne imaginăm aici de pildă cateta de 4 ca bază şi cateta de 3 ca înălţime, pătratele acestora fiind desenate cu laturile orizontale sau verticale exact pe liniile de pe caietul de matematică. În acest caz lungimea ipotenuzei de 5 apare ca “probă” a construcţiei.

Dimpotrivă, construcţia figurii cu ipotenuza drept bază ne “îndrumă” spre cazul de construcţie LLL: latura de 5 ca bază şi laturile de 3 şi 4 ca laturi oblice construite cu compasul. În acest caz verificarea corectitudinii situaţiei se face cu un echer care va verifica unghiul drept.

Cu alte cuvinte, mai elevat spus, adică într-un limbaj mai potrivit clasei a VII-a, în cazul construcţiei triunghiului dreptunghic cu laturile de (3, 4, 5), varianta de construcţie cu cateta ca bază corespunde Teoremei directe a lui Pitagora; dimpotrivă, varianta de construcţie cu ipotenuza ca bază şi catetele oblice, dar de lungimi date, corespunde mai degrabă Teoremei reciproce a lui Pitagora.

În final îmi permit să vă aduc şi o mică imagine din pedagogia alternativă Waldorf, care sărbătoreşte anul acesta 100 de ani de la înfiinţarea primei astfel de şcoli la Stuttgart în Germania (septembrie 1919). Rudolf Steiner, întemeietorul acestei şcoli, a cuprins pentru clasa a V-a şi o materie numită Desen geometric cu mâna liberă, în care elevii trebuiau să parcurgă în formă de desen principalele figuri geometrice, ajungând până la Teorema lui Pitagora, cel puţin în cazul triunghiului dreptunghic isoscel. De-a lungul anilor, dascălii Waldorf au încercat să găsească căi de parcurgere a acestei materii. Pe caietul de matematică putem foarte uşor desena o astfel de figură pentru că laturile oblice sunt în acest caz diagonale ale pătrăţelelor, fiind înclinate la 45o faţă de liniatură. După ce construim figura, împărţim pătratele de pe catete cu câte o diagonală, iar pătratul ipotenuzei cu ambele diagonale, relaţia din Teorema lui Pitagora devenind astfel evidentă.

În acest sens vă prezint şi o imagine cu o dublă caricatură din 1886, din Foaia volantă de München, cu Pitagora înainte şi după descoperirea renumitei teoremei denumită după el, în cazul triunghiului dreptunghic isoscel. Nu cred că Steiner a avut aşa ceva în gând atunci când a spus cele de mai sus, dar această caricatură ne oferă măcar o oarecare imagine a spiritului acelor vremuri în legătură cu subiectul nostru. CTG

P.S. “Ameninţarea” cu cutia Pandorei legată de lipsa unei demonstraţii a fost desigur o exagerare, mai degrabă o “figură de stil” menită să dea un aer de opoziţie. Realitatea este că în matematica gimnazială există multe puncte unde nu prea le explicăm elevilor de unde vin lucrurile învăţate.

Jocul din copilărie “de-a hoţii şi vardiştii” se numeşte în matematica pură “de-a axiomele şi teoremele”. Însă în matematica şcolară mai apar şi alţi factori decisivi, ca doi arbitri pe care i-am putea denumi accesibilitate şi intuitivitate. Aceştia interferează în procesul de stabilire a materiei de predat, eliminând din jocul pur “de-a axiomele şi teoremele” diferite pasaje, ca fiind prea “violente”, adică inaccesibile minţii elevilor. Haideţi să trecem în revistă câteva astfel de momente, în care demonstrarea paşilor parcurşi este “împinsă sub preş”, omisă sau doar mimată.

Dintre cele mimate îmi vin acum în minte două momente. Primul ar fi Teorema lui Thales, care este oarecum pregătită prin Teorema paralelelor echidistante. Aceasta însă poate duce la justificarea primeia doar în cazul unui raport raţional; situaţia iraţionalităţii rămâne “în aer”, fiind preluată însă în mod inconştient de intuiţia elevilor (aşa se întâmplă şi pentru numere iraţionale). Un alt caz, chiar mai enervant, îl reprezintă teorema care afirmă că tangenta la un cerc este perpendiculară pe raza dusă în punctul de contact. Aceasta nu primeşte o demonstraţie, dar elevii sunt plictisiţi de către toţi profesorii şi de către toate manualele cu câteva teoreme premergătoare pe drumul unei demonstraţii: arce cuprinse între coarde paralele etc. Acestea, la rândul lor, nu au mai deloc aplicaţii (în mod similar cu teorema paralelelor echidistante), dar toată lumea le face.

Dintre cele prezentate fără demonstraţie mă gândesc la următoarele. Primul exemplu ar fi metoda triunghiurilor congruente: dintre cele trei cazuri, unul era considerat axiomă iar celelalte erau demonstrate din acesta. Când am început noi să predăm şi trebuia să ne dăm definitivatul era încă la modă acest subiect: care este axioma şi cum era demonstraţia aia prin reducere la absurd? Un alt exemplu în acest sens, faţă de care nimeni nu face “mare caz” este formula pentru volumul piramidelor: de ce este acolo supra 3? Dacă la aria triunghiului se poate uşor explica de ce este supra 2, la volum lucrurile stau mult mai greu. Cât despre formulele sferei în acest context, am vorbit cu altă ocazie. Mai dau încă un exemplu, din aritmetico-algebră: de unde vine algoritmul de extragere a rădăcinii pătrate? De ce se face în acest mod?

Analizând însă toate aceste exemple, vedem că ele au fost eliminate din predare sau nici măcar nu au fost introduse, deoarece demonstraţia respectivă a fost considerată (din start sau ulterior) mult prea dificilă pentru mintea gimnazială a elevilor. Vedem deci că nu este nimic neobişnuit în a li se da elevilor o teoremă fără justificare. Consider însă că Teorema lui Pitagora poate fi justificată într-un mod intuitiv accesibil prin ariile pătratelor celor trei laturi ale triunghiului dreptunghic, aşa că prezentarea acestei teoreme fără nici măcar o minimă justificare poate fi liniştit considerată drept o gafă de predare.

Îmi permit aici şi o scurtă observaţie nematematică de final: cu scuzele de rigoare vreau să precizez că sunt conştient că folosesc un limbaj care pentru răgăţeni ar putea suna în anumite momente a regionalism, de pildă în cazul pluralului cuvântului ciocolată (ciocolăţi în loc de ciocolate). Prefer varianta ardelenească din două motive: în primul rând consider că dă textului o culoare specifică Clujului, oraş unde îmi desfăşor activitatea; în al doilea rând, folosind exprimările uzuale din această zonă, îmi permit să stau în “zona de confort” din punct de vedere lingvistic, fapt care mă ajută să mă concentrez mai bine asupra subiectelor propuse. Sper că cititorii pot trece peste aceste impedimente, reuşind la rândul lor să se concentreze asupra gândurilor exprimate în aceste eseuri.

Aflarea laturii necunoscute in triunghiul dreptunghic

În finalul clasei a VI-a va trebui să-i învăţăm pe elevi să calculeze o latură necunoscută a triunghiului dreptunghic folosind Teorema lui Pitagora aplicată numeric. Cum va funcţiona, Dumnezeu ştie! Om vedea! Depinde de cum am pregătit lecţia. Sper că nu răspunsuri ca în următoarea imagine (cerinţa este să “găsiţi x”, iar răspunsul este “aici este”):

Teorema lui Pitagora şi Ciocolată Ritter Sport în clasa a 6-a

De curând mi-am dus la îndeplinire o dorinţă mai veche, anume de a realiza din ciocolăţi Ritter Sport figura geometrică ce prezintă Teorema lui Pitagora cu pătratele laturilor sale în exteriorul triunghiului (3, 4, 5). Am încercat diferite variante pentru o poză cât mai sugestivă şi mâncând cu această ocazie destul de multă ciocolată. Pentru a se înţelege cât mai clar şi a ajuta la exprimarea în cazul viitoarelor folosiri a imaginii la clasă am ales până la urmă ciocolăţi de culori diferite (neagră, albă şi cu lapte). Iată ce a ieşit:

Odată vizualizată imaginea pe ecran, am realizat avantajul uriaş al acestei poze în contextul includerii Teoremei lui Pitagora în finalul clasei a VI-a pe noua programă, fără demonstraţie, explicată prin verificări de triplete de numere pitagoreice, doar pentru a se putea ajunge cât mai repede la determinarea lungimii folosind pătrate perfecte (pasajele prezentate înclinat sunt preluate din programa de matematică – clasele V – VIII, pag. 16).

Pentru cei care încă n-au înţeles, la nivelul conducerii matematicii şcolare s-a ajuns la concluzia că Teorema lui Pitagora trebuie predată înainte de începutul clasei a VII-a, pentru că altfel profesorii de fizică de la grupele de excelenţă (şi nu numai) încep să le-o arate oricum elevilor în toamnă, pentru că au nevoie de ea în sezonul de olimpiade din primăvară, dovedind astfel o acută durere în cot faţă de minimele nevoi de rigurozitate ale matematicii.

Aşadar să le dăm elevilor Teorema lui Pitagora fără nici măcar o minimă justificare! Eu nu sunt de acord cu aşa ceva, şi asta pentru că legătura realizată prin Teorema lui Pitagora (directă sau reciprocă) între proprietatea unui triunghi de a avea un unghi drept şi ciudata egalitate între puterile “a doua” ale lungimilor laturilor sale, această legătură este una lipsită total de evidenţă. Cu alte cuvinte, noua programă ne cere să dăm cea mai mare teoremă din toate timpurile doar ca un fel de reţetă gen hocus-pocus şi gata.

Acest aspect de totală ne-evidenţă de care vorbesc, era evidenţiat în stilul lor specific chiar şi de preoţii de Egiptul Antic. Iată cum prezentau ei asocierea între triunghiul dreptunghic şi ciudata egalitate între puterile a doua ale triunghiului (3, 4, 5). În mistica vremii aceştia considerau numerele pare ca femeieşti iar numerele impare ca bărbăteşti (6 = 3 + 3 iar 7 = 3 + 1 + 3). În egalitatea 32 + 42 = 52, numărul 3 era considerat zeul  Osiris, 4 era zeiţa Isis, iar 5 era copilul lor Horus. Cu alte cuvinte, adunarea între 3 şi 4 care dă 5, prin intermediul ridicării la pătrat era considerată o adunare divină. În limbajul nostru, pentru a nu deveni mistici, putem spune că legătura dintre unghiul drept al unui triunghi şi laturile sale care să respecte o egalitate de felul 32 + 42 = 52 este o legătură uluitoare, total ne-evidentă.

Situaţia de lipsă totală a unei minime evidenţe se păstrează atâta vreme cât păstrăm folosirea cuvântului “pătrat” doar pentru “puterea a doua”. Însă imediat ce acceptăm folosirea cuvântului “pătrat” cu sensul său iniţial, de figură geometrică, respectiv înţelegând că vorbim de aria sa, lucrurile capătă brusc sens, cel puţin în cazul triunghiurilor cu laturi de lungimi întregi. Din păcate însă, acest aspect a fost neglijat total de către autorii programei noi la mutarea Teoremei lui Pitagora în clasa a VI-a.

Văzând minunata poză de mai sus cu pătratele (având incontestabil unghiuri drepte), se observă automat că laturile celor două pătrate mai mici sunt aliniate perfect, arătând astfel evidenţa unghiului drept al triunghiului cuprins între cele trei pătrate. Moment în care m-am gândit să refac figura şi cu alte numere, adică cu alte pătrate decât cele de (3, 4, 5). Zis şi făcut, şi iată ce a ieşit:



Analizând cele trei poze în comparaţie cu prima se poate vedea clar că la acestea triunghiul cuprins între cele trei pătrate nu mai este dreptunghic, pentru că cele două pătrate mai mici nu au laturi în prelungire. Facem în paralel o verificare de ordin aritmetic: 22 + 32 < 42 (4 + 9 < 16) şi 32 + 42 < 62 (9 + 16 < 36) pentru situaţiile cu triunghi obtuzunghic, respectiv 42 + 52 > 62 (16 + 25 > 36) pentru o situaţie cu triunghi ascuţitunghic. Aceasta ne creează un tablou mai larg şi mai clar: a2 + b2 < c2 indicându-ne un triunghi obtuzunghic, pe când a2 + b2 > c2 (c fiind latura cea mai lungă) corespunzând unui triunghi ascuţitunghic, situaţia de trecere între cele două variante, reprezentată printr-o egalitate, adică atunci când a2 + b2 = c2, ne indică evident un triunghi dreptunghic. Clar? Clar!

Cred că o astfel de succesiune de imagini poate aduce o destul de bună legătură în mintea elevilor de clasa a VI-a, între ideea de triunghi dreptunghic şi egalitatea divină între “pătratele laturilor” sale. Desigur că putem confecţiona şi nişte cartoane împărţite în pătrăţele de aceeaşi mărime, pătrate cu laturi de 2, 3, 4, 5, 6, 7 etc. cu care să putem experimenta ceva mai mult ca în situaţiile sus prezentate. Confecţionând până la pătrate de 10 am putea arăta şi următoarea situaţie de egalitate pentru triunghiul (6, 8, 10) obţinut prin amplificarea primului, cunoscut şi ca triunghiul egiptean. Dacă am avea pătrate până la 13, am putea să le arătăm un triunghi dreptunghic nou, triunghiul (5, 12, 13), care nu derivă din amplificarea celui egiptean.

Pe de altă parte, seria redusă până la 6, dar din ciocolăţi Ritter Sport este mai atractivă (gustoasă), fiind destul de clară şi edificatoare pentru copii (o astfel de variantă, cu ciocolăţi achiziţionate din fondul clasei, se finalizează şi cu un mic festin dulce pentru elevi, legându-le definitiv în amintire Teorema lui Pitagora de o senzaţie pozitivă). Găsind prin magazine doar ciocolăţi cu latura de 4 sau 6, am decis să tai din acestea pentru a obţine pătrate cu latura de 2, 3, respectiv de 5. Ciocolăţile Ritter Sport au ajuns o prezenţă obişnuită şi în România. La nemţi sloganul lor este QUADRATISCH. PRAKTISCH. GUT, care în traducere liberă înseamnă pătratic – practic – bun (traducerea imprimată în engleză pe unele ambalaje este parţial diferită). Pentru cei interesaţi de detalii gustoase (adică pe post de bibliografie), am folosit următoarele sortimente: white + crisp (cea albă), nugat praline (cea cu culoare de ciocolată de lapte) şi dark chocolate – halbbitter (cea mai întunecată).

În urmă cu un an, când am avut ideea aceasta, am căutat imediat şi pe internet. Nu se putea ca să nu fi avut altcineva ideea respectivă până atunci. Şi într-adevăr, am găsit poze cu Pitagora şi Ritter Sport, dar cu nişte ciocolăţele împachetate câte un pătrăţel individual (într-adevăr, dacă vrei să o faci la clasă, este mult mai igienic aşa). Deşi în acest caz pătratul este de obicei deformat în dreptunghi datorită ambalajului, până la urmă am găsit şi o imagine cu “pătrate” cât de cât corecte. Îmi place foarte mult şi comentariul alăturat: alune2 + marţipan2 = lapte2 (uneori e comică limba germană pentru că are un umor tare sec: autorul a dat “factor comun” cuvintele “ciocolată cu” şi apoi a împărţit egalitatea cu acestea). Constantin Titus Grigorovici

P.S.

Reprezentarea grafică a unei funcţii se face pentru a putea înţelege mai bine variaţia sa, adică “comportamentul” acesteia în general sau în anumite puncte. Cei puţini, cu o imaginaţie numerică bună, le înţeleg oricum, dar pentru a le accesibiliza cât mai multor persoane, funcţiile se reprezintă grafic. Iniţial reprezentarea grafică a funcţiilor a făcut parte din strădania de a transmite studenţilor înţelegerea pentru evoluţia fiecărui tip de funcţie în parte. De abia ulterior reprezentarea grafică a devenit un scop în sine (problemă sau exerciţiu, de dat ca temă şi apoi la testare), coborând cu timpul în liceu (nu vreau să comentez aici despre ce înţelege un elev care învaţă doar graficul funcţiei de gradul I).

Prin această postare, dar şi prin multe altele înainte, doresc să atrag în primul rând atenţia asupra faptului că Teorema lui Pitagora prezentată doar numeric este abstractă şi greu de înţeles pentru majoritatea elevilor. Doar cei obişnuiţi deja în a prelua o reţetă fără comentarii (aşa se face) o vor aplica din prima şi o vor considera uşoară. Toţi ceilalţi însă se vor duce acasă buimăciţi şi vor trebui şi ei dresaţi de către părinţi sau de către profesorii particulari înspre aplicarea reţetei. De aplicat, o vor aplica până la urmă, dar de înţeles nu o vor înţelege, matematica întărindu-şi astfel în mintea majorităţii caracterul ei de colecţie de reţete de nepătruns, în cel mai bun caz nuanţate cu un iz de hocus-pocus.

Datorită multelor insistenţe din partea mea în legătură cu figura cu pătrate în exteriorul triunghiului dreptunghic s-ar putea înţelege că am o “fixaţie”, o obsesie legată de această figură. Total greşit! Prin toate aceste reveniri şi atenţionări doresc doar să transmit că în cazul absenţei pătratelor ca figură geometrică în exteriorul triunghiului, Teorema lui Pitagora reprezintă un fenomen abstract, inaccesibil unei înţelegeri reale pentru majoritatea elevilor. Puteţi verifica desigur şi câţi adulţi nematematicieni o înţeleg în jurul dvs. Să vedeţi ce figură fac diverse persoane când le arăt Teorema lui Pitagora în baie pentru că nu înţeleg: ceea ce ţin ei minte din şcoală o reţetă de calcule într-un anumit format, iar aici eu le arăt nişte pătrate.  Vă daţi seama cum se uită când îi întreb câte pătrăţele sunt în pătratul cel mic (9), dar în pătratul mijlociu (16); dar în pătratul cel mare (aici unii trebuie să se forţeze bine până deduc 25). Unii încă nici acum nu pricep ce vreau şi trebuie să-i întreb cât face 9 cu 16: abia acum se luminează la faţă şi reuşesc să facă conexiunea între ce au învăţat în şcoală şi ce văd pe perete. Abia acum înţeleg DE CE funcţiona reţeta aia.

Mai ales în vremurile din urmă, când majoritatea covârşitoare a elevilor au crescut cu prezenţa constantă a ecranului, aceştia nu mai au puterea de imaginaţie dezvoltată astfel încât să înţeleagă ce se întâmplă în Teorema lui Pitagora (nici dacă le-o demonstrăm pe calea asemănarea triunghiurilor + teorema catetei, adică prin rapoarte, nu înţeleg mare lucru).

Aşadar, pătratele respective construite în exteriorul unui triunghi constituie de fapt “reprezentarea grafică” a Teoremei lui Pitagora. Desigur că interioarele pătratelor respective trebuie colorate, haşurate, pentru a sugera că vorbim despre suprafeţele lor. Astfel, putem constata că există două forme extreme pentru textul Teoremei lui Pitagora.

FORMA NUMERICĂ: În orice triunghi dreptunghic suma pătratelor lungimilor catetelor este egală cu pătratul lungimii ipotenuzei. În acest caz cuvântul “pătrat” se referă la operaţia de “puterea a doua”. Această prezentare a teoremei este una curat numerică, abstractă, dar uşor de reţetat pentru aplicaţii în probleme.

FORMA GEOMETRICĂ: În orice triunghi dreptunghic suma ariilor pătratelor catetelor este egală cu aria pătratului ipotenuzei. În acest caz cuvântul “pătrat” se referă la figura geometrică vizibil construită în exteriorul triunghiului pe fiecare latură. Această prezentare a teoremei este una destul de clar de înţeles pentru majoritatea elevilor, dar anevoios de aplicat pe exemple concrete (doar n-o să desenăm în fiecare problemă cele trei pătrate!, fără să mai discutăm de cazurile cu lungimi neîntregi)

Analizând cele două variante, putem spune că forma geometrică, cea cu pătrate în exterior, este una potrivită introducerii şi înţelegerii fenomenului, pe când forma numerică, cea cu “puterile a doua” una mult mai practică pentru scriere şi pentru aplicaţii ulterioare în calcularea celei de a treia laturi. O predare corectă trebuie în mod automat să le includă pe amândouă, cea geometrică pentru înţelegere la început, apoi cea numerică pentru scriere şi aplicaţii în continuare.

Pentru a nu da două variante de text diferite (cea cu “arie” respectiv cea cu “lungime”), cel mai sănătos este să dăm un text care să le cuprindă oarecum pe amândouă, un text care omite ambele cuvinte şi care totodată le subînţelege pe ambele, text care era folosit înaintea reformei din 1980 (reformă evidenţiată între altele printr-o rigurozitate excesivă):

FORMA DE COMPROMIS: În orice triunghi dreptunghic suma pătratelor catetelor este egală cu pătratul ipotenuzei. Faţă de avantajele enumerate mai sus, acest text este şi mai scurt, deci mai uşor de cuprins de către minţile elevevilor. În plus, acest text forţează atât imaginaţia, cât şi intuiţia elevilor, ambele caracteristici fiind foarte importante în viaţa ulterioară de adult.

Mai trebuie lămurit un aspect important: oare, cam de câte ori  trebuie făcută figura cu pătrate în exterior la o clasă? Eu o fac o dată pentru triunghiul (3, 4, 5), cu fiecare pătrat împărţit în pătrăţele unitare (la fel ca la exemplul cu ciocolata), şi încă o dată ora următoare cu pătratele doar haşurate (interiorul colorat), pentru generalizare. Mai departe ne concentrăm asupra formei scrise în cât mai multe exemple. După ce au văzut primul desen, la următoarele exemple de calcul elevii vor prelua prin analogie forma scrisă de rezolvare, gândindu-se că este la fel ca atunci cu ciocolata.

Să nu încheiem înainte de a arunca o privire şi pe YouTube (cuvânt de căutare: pitagora), unde găsesc mai multe preocupări faţă de subiectul nostru. În primul rând amintesc “filmuleţul” https://www.youtube.com/watch?v=vMyv5mRzzMU (ThePitiClic) în care autorul ne explică încă o dată cele de mai sus. Apoi găsim una dintre cele mai bune explicaţii, o demonstraţie cu apă: https://www.youtube.com/watch?v=CAkMUdeB06o

P.P.S. O cunoştinţă care a citit acest text înainte de publicare ne-a trimis următorul comentariu: Eu la şcoală am învăţat-o cu terenuri de tenis de mărimi diferite şi spectatori care priveau dintr-un triunghi şi mă miram de ce sunt terenurile pătrate şi de ce stau spectatorii într-un triunghi : )

Minutul de 1000 de euro şi matematica şcolară

Luni 4 feb. 2019 în emisiunea Deşteptarea de la Europa FM, domnii Vlad, George şi Luca, în rubrica Minutul de 1000 de euro a avut loc următorul dialog între cei trei prezentatori şi ascultătorul intrat în direct:
Ce determină formula pi-er-pătrat? Ce măsoară această formulă?
Raza!
După terminarea minutului, în care aceasta a fost singura greşeală – deci diferenţa de la 90 euro (câte 10 pentru fiecare răspuns corect) şi 1000 euro (premiul mare pentru situaţia cu toate 10 răspunsurile corecte) – dialogul a mai continuat:
R este raza! Ia gândeşte-te ce era.
Aria?
Cred c-o să ţi minte toată viaţa.
Matematica! ….
E singurul răspuns greşit
Sper să nu mă-ntâlnesc cu Domnu’ profesor de matematică. Nu eram sigur, aşa că am zis ceva la nimereală.
Felicitări pentru cei 90 de euro, dar mia, era … ! (unde? în formulele cercului?)
A doua zi, marţi 5 feb., cu alt ascultător “drăcuşorul matematici” a lovit din nou, şi din nou matematica a făcut diferenţa dintre 90 euro şi 1000 euro:
Câte laturi are un hexagon?
Şapte!
După terminarea minutului şi a celor zece întrebări dialogul a continuat (din nou reluat orientativ):
Eu plec acasă acum (Vlad), nu mai suport!
Da’, ce-am făcut? Sau ce n-am făcut?
Vai de capu’ meu: Tetra, Penta, Hexa, Hepta, Octo!
Şapte!
Da’ un heptagon câte laturi are?
Erau şase!!
Am zis şşş-apte!
Ai zis 1000 euro: pa-pa!
Eu în locul tău m-aş duce şi-aş desena hexagoane până deseară, şi m-aş gândi la 1000 de euro: hexagon după hexagon pe o coală albă.
Albinuţe hexagoane.
E incredibil, ieri 90 euro, azi 90 euro, … e un semn! (din partea matematicii?)

Da, aceasta a fost istoria a două întrebări (din geometria de final de clasa a VII-a!!!) în care ascultătorii respectivi au pierdut câte 910 euro. Ca norocu’ că a treia zi drăcuşorul matematicii nu a mai lovit, aşa că ne-am liniştit. Până la urmă, în această vacanţă cei trei colegi din Deşteptarea au reuşit să dea mia de euro, mai cu cântec, mai cu poveste, vineri, după ce au dezbătut răspunsurile date de un ascultător joi.

În urmă au rămas doar gândurile respective, care – cel puţin mie – mi-au trezit amintirea unui om minunat, Marcetti Perneş, care a lucrat ani la rând ca portar în şcoala noastră şi care, atunci când ieşeau elevii de la lucrare de control la mate îi întâmpina şi ştia să le spună toate răspunsurile. Dorea să le dovedească astfel că nu profu’-i de vină, ci ei pentru că erau întrebări logice şi trebuiau să gândească, şi dacă şi el reuşeşte, înseamnă că erau doar pe baza unor cunoştinţe elementare minime.

Revenind la realitatea noastră, situaţia ar trebui să ne dea de gândit (nu numai nouă, hexa apare şi în chimie). Şi, să fim bine înţeleşi: lucrurile pot evolua doar înspre mai rău; cu cât scade vârsta de început “a vieţii în faţa unui ecran” şi cu cât creşte timpul petrecut, de pildă în faţa deşteptofonului, cu atât va fi tot mai rău. Şi tot mai mulţi sunt cei care se întreabă retoric: la ce bun să învăţăm toate prostiile, că doar se găsesc pe internet?! Sigur, nu trebuie învăţate pentru concursuri “de cultură generală”; ele sunt folositoare însă şi în alte locuri. Dar acesta este alt subiect. Titus Hexagonezul