OIM 2018 la Cluj – Capitala mondială a matematicii

Printre atâtea festivaluri mai mult sau mai puţin cunoscute, la Cluj poposeşte anul acesta şi Olimpiada Internaţională de Matematică. Trebuie precizat (pentru că presa nu percutează clar la acest aspect): a 59-a ediţie a OIM este primul concurs mondial, în faza sa finală, găzduit de Sala Polivalentă din Cluj. Este interesant că această primă competiţie mondială este despre matematică, ţinând cont că Clujul este oraşul natal al lui János Bolyai.

Pe lângă felicitările pentru idee de a organiza şi transpunerea acesteia în practică ce trebuie transmise tuturor factorilor decizionali şi organizatorici clujeni, vă propun să aruncăm o scurtă privire în istoricul acestei competiţii. Pentru asta am accesat site-ul https://www.imo-official.org şi am scos din biblioteca personală lucrarea Olimpiadele internaţionale de matematică, probleme, rezolvări, punctaj, de E.A.Morozova, I.S.Petrakov, V.A.Skvorjov, apărută revizuită şi completată în traducerea prof. Corneliu Vlădoreanu în 1978 la Ed. Tehnică Bucureşti.

Prima OIM a avut loc în România, la Braşov şi Bucureşti în 1959 şi de aici apare şi prima nedumerire: pe lângă “jocul de cuvinte”, mai exact potrivirea unică de numere, apare întrebarea “de ce nu a 60-a ediţie?”. Numărat din 1959 anul acesta ar trebui să fie a 60-a OIM. Analizând tabelul de pe site-ul oficial la rezultate am văzut că lipseşte OIM din 1980. Ce s-o fi întâmplat atunci? O fi având legătură cu boicotul internaţional împotriva URSS după invadarea Afganistanului, boicot ce s-a concretizat şi în sensul neparticipării multor ţări la Olimpiada sportivă de la Moscova?

A doua ediţie OIM 1960 a avut loc tot în România, organizată în oraşele Sinaia şi Braşov. Ambele au fost olimpiade de matematică şi fizică. Următoarele ediţii au fost organizate astfel: a 3-a OIM 1961 în Ungaria, la Vesprém şi Budapesta; a 4-a OIM 1962 în Cehoslovacia, la Čseké Budejovice şi Praga; a 5-a OIM 1963 în Polonia, la Wroclaw şi Varşovia; a 6-a OIM 1964 în URSS, la Moscova; a 7-a OIM în 1965 în RDG (Germania de est), la Berlin şi Bogensee; a 8-a OIM în 1966 în Bulgaria, la Sofia; a 9-a OIM în 1967 în Iugoslavia, la Cetinje; a 10-a OIM în 1968 în URSS, la Moscova şi Leningrad; a 11-a OIM în 1969 în România, la Bucureşti; a 12-a OIM în 1970 în Ungaria, la Kezthely şi Budapesta; a 13-a OIM în 1971 în Cehoslovacia, la Bratislava şi Zilina; a 14-a OIM în 1972 în Polonia, la Varşovia şi Torun (oraşul natal al lui Copernic); a 15-a OIM în 1973 în URSS, la Moscova; a 16-a OIM în 1974 în RDG, la Erfurt şi Berlin; a 17-a OIM în 1975 în Bulgaria, la Burgas şi Sofia; a 18-a OIM în 1976 în Austria, la Linz; a 19-a OIM în 1977 în Iugoslavia, la Belgrad; a 20-a OIM în 1978 în România, la Bucureşti şi Buşteni.

România a organizat OIM în anii 1959, 1960, 1969, 1978, 1999 şi 2018, deci 6 ediţii, fiind urmată de URSS/Federaţia Rusă cu 5 ediţii. Urmează, cu câte 3 ediţii organizate: Cehoslovacia, Ungaria şi Polonia, cu ediţii din anii comunişti, Marea Britanie şi Statele Unite ale Americii. În tabelul cu rezultatele (neoficiale!, pe naţiuni?) la OIM în dreptul României apare locul 1 în anii 1959, 1978, 1985 şi 1996. În tabelul de găsit la adresa https://www.imo-official.org/results.aspx puteţi studia şi restul rezultatelor României sau a altor ţări.

La primele opt ediţii OIM a fost o afacere internă a blocului comunist, lista ţărilor participante fiind: Bulgaria, Cehoslovacia, Republica Democrată a Germaniei, Polonia (exceptând ed. 2), România, Ungaria, URSS (exceptând ed. 2 şi 3), Vietnam (ţări participante la prima ediţie), apoi Iugoslavia (de la ed. 5), Mongolia (de la ed. 6) şi Finlanda (la ed. 7 şi apoi de la ed. 15). Primele ţări necomuniste participante au fost: Anglia, Franţa, Italia, Suedia (începând din 1967, de la ed. 9, cea din Iugoslavia), Olanda (ed. 11), Austria (ed. 12), Cuba (ed. 13), SUA (începând din 1974 la ed. 16), Grecia (ed. 17), Republica Federală a Germaniei (începând din 1977 la ed. 19 din Iugoslavia) etc. Prima ţară din afara blocului comunist ce a organizat OIM a fost Austria în 1976. Pentru cei de peste 40-50 de ani, care mai cunosc câte un pic de istorie a blocului comunist şi a perioadei dinainte de 1989, aceste date oferă posibilitatea unor interpretări foarte interesante. Apropos: China a intrat în joc în 1985, odată cu deschiderea relaţiilor sale cu restul lumii. Tot în 1985 au fost primiţi în turneu în China formaţia Wham!, în anul dinainte de plecarea spre o carieră solo a lui George Michael (interesante legături se mai pot găsi). Islanda participă tot din 1985.

De pe site-ul oficial am mai spicuit şi alte câteva date interesante despre OIM. În 1991 şi în 2010 Republica Populară Corea a fost descalificată; oare de ce? Există ţări cu 1-2-3 participări ocazionale şi cu rezultate pe măsură. Iată o selecţie a acestora: Bahrain, Benin, Burkina Faso, Brunei, Egipt, Gambia, Irak, Jamaica, Kenya, Laos, Madagascar, Myanmar, Mozambic, Mauritania, Republica turcă a Ciprului de nord, Nepal, Emiratele Arabe Unite, Zimbabue. Logo-ul şi drapelul corespunzător al OIM au fost introduse în 1995 la olimpiada din Canada. Programul şi alte aspecte interesante găsiţi şi la adresa http://www.imo2018.org/  CTG

Simularea la EN-2018 din martie discutată la Avocatul Diavolului

Am reuşit în sfârşit şi cu mare întârziere să spicuiesc câteva elemente din emisiunea Avocatul Diavolului de la Europa FM de vineri 23.03.2018, moderată de domnii Cristian Tudor Popescu şi Vlad Petreanu (de găsit integral – cca. 45 min – la adresa https://www.europafm.ro/avocatul-diavolului-ce-merge-si-ce-nu-merge-in-scoala-romaneasca/ )

VP: Pornim de la rezultatele simulării examenului de evaluare naţională, de la începutul lunii martie 2018, care sunt descrise, unanim, drept “catastrofale”. Mai puţin de 50% din elevii clasei a VIII-a care au susţinut probele respective au obţinut o medie peste 5 şi doar o treime au reuşit să ia note peste 5 la matematică. Sigur, aceste note nu contează la media şcolară generală, nu se trec în catalog, dar rezultatele spun ceva, fie despre lipsa totală de interes a elevilor faţă de evaluarea performanţelor lor şcolare, fie, din păcate, despre nivelul adevărat​ al pregătirii elevilor de gimnaziu înainte de trecerea lor la liceu.

Oricum ar fi, şcoala românească îşi ratează o bună parte din misiunea ei – şi anume, să pregătească noile generaţii pentru o viaţă activă şi valoroasă în societate. La testele PISA, de pildă, care evaluează capacitatea elevilor de a folosi în lumea reală cunoştinţele însuşite la şcoală, România se plasează constant pe locuri codaşe. 42% dintre elevii români de 15 ani sunt analfabeţi funcţional, relevă aceste teste – adică pot citi un text, dar au mari dificultăţi să înţeleagă sau nu înţeleg deloc ce au citit, de fapt. Care e problema aici? Sunt manualele prea stufoase, prost făcute? Sunt prea multe ore în program? Sunt profesorii prea slabi? Sunt elevii totalmente demotivaţi? (…)

Încărcate cu toate manualele, culegerile, caietele şi uneltele cerute la clasă, ghiozdanele cântăresc, uneori, un sfert sau o treime din greutatea copilului. Temele sunt atât de multe, încât copiii nu mai au, practic, timp liber. În plus, pentru a suplini calitatea scăzută a învăţământului de stat – sau pentru a câştiga bunăvoinţa profesorului – mulţi părinţi plătesc meditaţii pentru cei mici, ceea ce îi încarcă şi mai tare.

Să nu vorbim, însă, doar despre ce nu merge – pentru că, întotdeauna, la şcoală vor fi elevi mai buni şi elevi mai slabi, profesori mai buni sau mai slabi. Chiar confruntaţi cu un sistem în general neperformant şi osificat, unii copii fac performanţă, termină liceul cu note mari şi devin specialişti căutaţi de firme importante, angajaţi şi plătiţi apoi foarte bine (în ţară sau afară) – şi, desigur, există şi profesori foarte buni, foarte iubiţi. Care e secretul? Salarii mai mari ar garanta calitatea corpului profesoral? Ce chinuie şcolarii, ce supără părinţii, ce ţine în loc educaţia din România şi care o fi secretul celor care reuşesc, totuşi, să facă performanţă în şcoala românească şi după ea, în profesia pe care şi-o aleg?

CTP: Aştept ziua în care copiii să nu se mai bucure când se întrerupe soala. După părerea mea, cheia este în aplicarea în realitatea înconjurătoare a cunoştiinţelor dobândite la şcoală. Acolo este problema, în legătura şcolii cu realitatea. Există în clipa de faţă o tendinţă de a pregăti elevul şi de a se pregăti el ca şi cum toată viaţa lui se va desfăşura în şcoală şi nu în viaţă; sunt elevi care trăiesc cu o nostalgie după ce pleacă din liceu (…), trăiesc cu nostalgia acelei bule de protecţie pe care o reprezenta şcoala. Ei acolo s-au simţit foarte bine, au învăţat bine, au avut note mari şi când se ciocnesc după aceea cu realitatea, cu viaţa, constatăm că mulţi dintre premianţi clachează.

Asta e o tendinţă, iar a doua: când pleci din şcoală să uiţi a doua zi tot ce-ai învăţat, ca şi cum ar fi fost o corvoadă aberantă ca să iei o diplomă, şi dupa aceea te duci şi tu să trăieşti fără să-ţi mai aduci vreo dată aminte cum se calculează aria unui romb, de pildă aşa cum v-am rugat stimaţi “europeni fm” să calculaţi aria unui romb căruia îi cunoaşteţi perimetrul de 24 cm şi un unghi de 30 de grade. (…)

Cristina (elevă clasa a 12-a, Suceava): Consider că sistemul de învăţământ este foarte învechit …vreau să merg la facultatea de matematică, doresc să devin programator … profesorii sunt foarte slab pregătiţi … de exemplu vine profesorul şi ne citeşte lecţia din carte … CTP: cât e aria rombului? Cristina: nu-mi amintesc, este ceva cu diagonalele, cu teorema sinusului … Noi nu am mai făcut geometrie în liceu …

Anca (mamă de trei copii din care doi trecuţi de vârsta învăţării acestei probleme): … Copiii mi-au spus că rezultatul e 18…. Au făcut cu a2 şi cu sinus de 30o. … Din 10 profesori cam doi încearcă să … prezinte lecţiile într-un mod atractiv. CTP: într-o discuţie cu academicianul Solomon Marcus am susţinut că soluţia este investirea în profesori (…).

Anca (educatoare): … fetiţa mea a venit şi a spus “am scris la desen”. Şi daţi şi lucrare? “Da. ora viitoare”. VP:  un sistem osificat, birocratizat, cu profesori plictisiţi şi rutinaţi, asta avem până acum. Eu cred că sunt şi alte probleme … CTP: o problemă din punctul meu de vedere: nu atăt că e multă teorie, nu atât că profesorul respectiv nu e entuziast în legătură cu ce predă, ci modul în care îi faci cunoştiinţă elevului … cu problema, asta este esenţial, e ca-n dragoste; dacă e greşit atunci elevul acela se va îndepărta poate pentru totdeauna de domeniu, de subiect … (urmează un exemplu magistral din fizică, despre acceleraţia Coriolis) trebuie să facem poveşti, dar pentru asta trebuie să te ocupi şi să te preocupi despre elev.

Casian (elev, clasa a 12-a, Alba Iulia): … în clasa a 12-a m-am mutat de la profil real la uman … profesorul meu cel vechi, efectiv nu era prieten cu elevii … CTP: e a nu ştiu câta oară când aud o astfel de poveste tristă …

Laura (profesoară de matematică, mai ales la gimnaziu): … o parte din profesori dau un algoritm în loc să-i înveţe să gândească, elevii învaţă reţete … (la problema cu rombul) în nici un caz nu i-aş da formula … l-aş provoca să găsească înălţimea … eu le spun: “copii, nu învăţaţi pentru un examen, formaţi-vă un raţionament”.

CTP: este o iluzie că tehnologia te face mai deştept … soluţia este omul; soluţia este profesorul; soluţia este părintele …

 

*

Este foarte greu să trăieşti într-un sistem menţinut într-un blocaj de către majoritatea decidenţilor, sub pretextul că acest sistem nu se poate schimba. Chiar şi doar urmărind cu atenţie această emisiune, substratul unor afirmaţii din parcursul celor cca. 45 minute, chiar şi doar atât şi găsim câteva aspecte care, dacă ar fi luate în serios cu adevărat, ar putea duce la îmbunătăţirea substanţială a situaţiilor la care se referă (cu condiţia ca cei vinovaţi să aibă forţa de a ieşi din starea în care se complac, din starea ce a devenit pentru ei tipica zonă de confort şi din care cei mai mulţi nici nu se gândesc să iasă). Să evidenţiem câteva dintre aceste aspecte:

Avem multe lecţii, mult prea multe lecţii, iar pe undeva elevii trebuie să mai facă şi loc pentru cele ce vin, astfel încât cele care nu se folosesc o vreme se uită. Totuşi, acest aspect nu explică cum de o elevă de clasa XII-a a uitat cum se stabileşte aria respectivă, pe când CTP încă nu a uitat. Ce şcoală a făcut CTP de încă nu a uitat? Dar să nu luăm doar acest caz; ce şcoală a făcut un verişor de-al nostru care nici măcar nu a ajuns pe la facultate, dar ştia să rezolve toate problemele de mate ale ficei sale când aceasta era în clasa a VIII-a? Viaţa sa a fost rebelă: după şcoala de la Oneşti, printre primele halte a fost şi la mina din Cavnic (MM). La 50 de ani ştia să găsească centrul unui cerc doar cu rigla şi compasul (în mai multe feluri), dar n-a mai ştiut să găsească înălţimea unui trapez dreptunghic ortodiagonal la care se cunoşteau bazele. De ce ştia el mai multă matematică decât fiica sa? Ce fel de şcoală au făcut aceşti oameni, de mai ţin minte astfel de lucruri, pe când actualii elevi de liceu deja le-au uitat?

Un subiect clar al acestei emisiuni îl reprezintă alegerea dintre învăţarea pe de rost a diferitelor rezolvări, mai degrabă a unor formule, pe de-o parte, şi gândirea de la bază a unei probleme, pe de altă parte. Cum este mai bine? Prima îţi asigură o anumită eficienţă, dar îţi trebuie “memorie de elefant”. Cealaltă cale este mai lentă, dar pe durată reuşeşti să te descurci şi după ce intervine uitarea. După 1980 materia s-a încărcat atât de mult încât nu prea mai pare o cale de succes a două variantă. La problema cu trapezul dreptunghic ortodiagonal o elevă mi-a scris o formulă conform căreia înălţimea acestuia este medie geometrică a bazelor. De unde ai scos formula asta? Am întrebat-o. Din caietul meu de formule. Arată-mi-o! i-am cerut, şi mi-a ară tat-o. De unde ai scris-o aici? Nu mai ştia. Cineva făcuse o astfel de formulă pentru o singură situaţie, iar această elevă, a cărei mamă este medic, a memorat-o având nativ capacitate de stocare uriaşă. Dacă îi dai însă o problemă de gândire de care n-a mai văzut se blochează. Oare, încolo vrem să ducem matematica?

În această emisiune CTP se leagă de problema cu rombul dată la simularea EN din 12 martie, iar “bătălia” este între cei care susţin formula directă a2sinA şi cei care susţin gândirea, susţin că elevul ar trebui să ştie că rombul este un trapez, iar pentru formula acestuia trasăm înălţimea pe care o calculăm în triunghiul dreptunghic astfel format folosind sinusul unghiului rombului. De fapt această “bătălie” s-a dat după reforma din 1980 în multe locuri. Iată un alt exemplu: calcularea ariei unui triunghi în care se cunosc lungimile celor trei laturi. În timpul şcolii eu trasam o înălţime iar apoi generam un sistem de ecuaţii aplicând teorema lui Pitagora în cele două triunghiuri dreptunghice formate. Pe când am ajuns profesor (în 1990) toată lumea folosea formula lui Heron (cunoscută la noi sub acest nume). Actualmente elevii se împart în două categorii: cei care nu ştiu rezolva această problemă şi cei care ştiu formula lui Heron. De gândit, nu mai gândeşte nimeni. Munceşti ceva la rezolvarea cu Pitagora şi sistemul de ecuaţii, dar măcar înţelegi ce faci şi te antrenezi în gândire. Dimpotrivă, formula lui Heron are un comportament şi un efect clar de cutie neagră: socoteşti ceva acolo, nu pricepi nimic ce se întâmplă, iar în final îţi dă un rezultat şi gata. Sigur că o astfel de rezolvare o uiţi după câţiva ani.

Dar, pe departe cel mai fierbinte punct al acestei emisiuni a fost momentul când dl. Cristian Tudor Popescu ne-a explicat că cel mai important aspect este felul în care îi faci cunoştiinţă elevului cu subiectul de predat. Probabil aici este punctul central în ceea ce eu numesc ARTA PREDĂRII. Ne explică dânsul că trebuie să facem poveşti, dar pentru asta trebuie – ca profesor – să te ocupi şi să te preocupi despre elev. Aceasta era paradigma în care se preda încă în anii ’70, dar aceasta a fost înlocuită brutal la reforma din 1980 cu o nouă predare mai doctă, de sorginte ştiinţifică preluată din cursurile universitare despre organizarea axiomatică a geometriei euclidiene sau a altor teorii la modă în anii ‘60, cum ar fi teoria mulţimilor, algebra booleană etc. La ora actuală profesorii ştiu să predea doar aşa; nimeni nu mai ştie să facă o poveste prin care să genereze o lecţie. Predarea actuală pleacă de la premisa că elevul este o găleată goală în care profesorul trebuie să toarne marea sa inteligenţă.

La ora deschisă ţinută în toamna lui 2017 despre divizorii unui număr, eu nu am explicat elevilor nimic, ci doar am pus întrebări, care erau astfel alese încât elevii au generat toate cunoştiinţele lecţiei. Singurul lucru ce l-am explicat în aceea lecţie a fost titlul, ce este acela un divizor, ce înseamnă a divide, anume că este vorba de împărţirea exactă. Dacă aş fi predat în germană nu ar fi trebuit să explic nici acest fapt, pentru că în germană se foloseşte echivalentul cuvintelor împărţitor şi împărţibil. La ora respectivă nu am adus o poveste deosebită, dar nici nu trebuie ca orice oră să aibă o poveste de “dat pe spate”. La momentul respectiv am generat mai mult un joc pe care l-am continuat apoi în orele următoare.

Revenind la CTP, dânsul ne sugerează mai mult să venim cu o întrebare adresată elevilor, desigur o întrebare bine aleasă, cu tâlc, iar apoi, pe deschiderea plină de curiozitate generată astfel în sufletul elevilor, pe această deschidere profesorul vine cu răspunsul izbăvitor, vine cu noile cunoştiinţe, care vor crea impresii profunde şi de durată. Aceasta a fost emisiunea cu gândurile ei. Ce s-a întâmplat însă la clase după simulare? Din câte am văzut, mulţi profesori s-au năpustit la clasele a VII-a sau a VIII-a să facă rapid toate acele formule cu sinus (la triunghi, la paralelogram şi desigur la romb). QED sau: aceştia sunt soldaţii şi cu aceştia defilăm.

Post Scriptum

Azi am aflat ceva foarte interesant. După cum poate ştiţi, eu am făcut şcoala până în clasa a VIII-a în limba germană. În această limbă toţi se numesc Herr Lehrer (d-le învăţător), şi învăţător se numesc şi în Germania toţi până la bacalaureat. De-abia la facultate se numesc Herr Professor. La noi, mai nou şi învăţătoarele şi educatoarele se numesc profesor (de învăţământ primar sau preprimar). Astăzi am aflat că în Republica Moldova până la nivelul bacalaureatului toţi se numesc învăţători, iar profesori se numesc doar cei de la facultate (adică la fel ca la nemţi). Poate că această informaţie să ne ajute a înţelege paradigma greşită în care trăim, astfel încât să reuşim a ne schimba puţin câte puţin (cum cânta un mare basarabean), astfel încât în urma noastră să nu mai rămână poveşti cum am auzit în emisiunea respectivă. Constantin Titus Grigorovici

 

Problema care a împărţit România în două

În postarea Ordinea operaţiilor în clasele primare din februarie 2016 am discutat despre cum este înţeleasă sau nu ordinea operaţiilor în ciclul primar. Problemele mari sunt legate de ordinea efectuării între operaţia de adunare şi cea de scădere, şi se pare că problemele sunt de fapt la nivelul unor învăţătoare, care apoi îi învaţă greşit pe copii. În acest sens, când simt că „miroase” în clasă a o astfel de greşeală, eu îi întreb pe elevi: între adunare şi scădere, care operaţie se face prima?. Vă daţi seama ce distractiv-bulversantă devine ora dacă primesc un răspuns de tipul: adunarea!, la care dau din cap că-i greşit; apoi, repede careva are impulsul de a da celălalt răspuns posibil, după mintea lor: scăderea!, la care eu iarăşi răspund că NU!. După o clipă de linişte bulversată, careva răspunde sigur pe el: prima care-i scrisă!, iar eu în sfârşit mă arăt mulţumit. Uneori mai pun şi a doua întrebare: între înmulţire şi împărţire, care operaţie se face prima?, iar elevii ştiu de data asta răspunsul corect din prima.

La adresa Ordinea operaţiilor pe internet (august 2016) am tratat exemplul unei situaţii de ordinea operaţiilor propuse “internauţilor” străini, care scotea în evidenţă faptul că unele astfel de exerciţii nu se pot rezolva cu “calculatorul de buzunar”, fie el chiar şi din “deşteptofon” sau de pe laptop. În momentul acela mândria noastră de mari olimpici ne făcea să pufnim de râs profund dispreţuitor.

Iată, însă, cum arată o astfel de situaţie pe plaiurile mioritice ale internetului. Este vorba de banala “problemă” 7 – 5 + 2 = ?, despre care puteţi lectura prezentarea de la adresa Problema ASTA a impartit Romania in doua!. Dacă nu doriţi, iată aici materialul respectiv în variantă prescurtată (corectat şi cu diacritice).

*

Sunt de-a dreptul şocat. O problemă de clasa pregatitoare a reuşit să divizeze poporul român consumator de internet. Studiu de caz pentru ce se întâmplă acum în România. Se dă problema:

Şi mi-am zis că e o glumă proastă. Că nimeni nu va comenta la prostia asta şi că toată lumea ştie rezultatul. Greşit! E momentul în care îmi dau seama că trăiesc într-o mare bulă şi că realitatea doare. 52 de oameni au apreciat părerea lui Andrei. 52 DE OAMENI! Nu numai că Andrei şi Matematica sunt paraleli, dar oamenii au aprecit şi faptul că el îi face idioţi pe toţi ceilalţi. Cum nu se poate mai bine! Apoi vine rândul „idioţilor”:

De aici, cele două tabere, „idioţii care cred că e 0” şi „idioţii care cred că rezultatul e 4”, încep să se certe şi să îşi arunce jigniri despre mamele şi rudele celorlalţi, (…), despre „scoala care au facuto”. Te doare mintea!  86 de oameni au apreciat explicaţia lui Mihai, dar şi faptul ca el i-a numit „cretini”:

Iată concluziile lui Silviu Iliuţă, autorul acestui eseu publicat pe Cronici pe bune:

  1. O problemă simplă  a reuşit să creeze pe net două tabere care se jignesc, se acuză, aruncă cu rahat. incredibil! Vă daţi seama ce se întamplă la problemele adevărate şi cât de uşor e să divizezi românii, aruncându-le o simplă prostie pe net?
  2. Cu riscul de a părea extremist sau orice „-ist”, eu cred că cei din tabăra celor cu răspunsul 0 nu ar trebui să voteze. Trebuie să li se explice frumos care e treaba cu ordinea operaţiilor. Dacă insistă în răspunsul lor, cred că nu ar trebui să meargă la vot (…) Pentru că nu ai cum să votezi, dacă Olguţa îţi promite că îţi creşte salariul cu 0 lei, iar tu te bucuri şi îi dai votul. Nu ai cum să ai drept de vot, dacă Liviuţ îţi spune că ţi se înmulţesc veniturile cu 1, iar tu îi dai votul pentru asta.(…) Pur şi simplu ţi-e mai bine dacă votează alţii pentru tine! Eşti mult mai în siguranţă. (…)
  3. Oricât de prost pregătit e un om, nu trebuie să îl jigneşti! Nu eşti DELOC mai presus decât el dacă îl faci „idiot”! Încearcă să îi explici frumos, chiar dacă el este agresiv. Este foarte important să avem înţelegere. (…)
  4. Daca aţi citit acest articol şi încă vă întrebaţi care e răspunsul corect, vă rog frumos, în genunchi, să nu mergeţi la vot! Din spirit civic. Nu este nicio problemă că nu ştiţi, ar fi de apreciat dacă aveţi deschidere să învăţaţi, dar chiar este o problemă dacă votaţi.

*

Da, să revenim la partea de matematică, oricât de minimalistă ar fi aceasta în subiectul de faţă. Oricum, putem sta liniştiţi: în meciul „celor cu 4” în confruntare cu „cei cu 0”, scorul final pare să fie undeva la 86-52, raportul fiind cam de 3 la 2. Lăsând gluma de-o parte, ar trebui să vedem de unde vine o astfel de minunăţie; de ce totuşi „doi din cinci români” cred în a doua variantă? La începutul prezentului articol am amintit bănuiala că unele învăţătoare traduc simpla enumerare a operaţiilor de ordinul I într-o ordine obligatorie. De pildă, în citatul: Într-un exerciţiu în care apar operaţii de adunare, scădere şi înmuţire se rezolvă întâi înmulţirea, apoi adunarea şi scăderea (Matematică şi explorarea mediului, manual pentru clasa a II-a, Didactica Publishing House), diferite persoane cu o structurare mai filologică a creierului vor înţelege regula astfel: Într-un exerciţiu în care apar operaţii de adunare, scădere şi înmuţire se rezolvă întâi înmulţirea, apoi adunarea şi doar apoi scăderea.

Nu vreau să discut despre cine este responsabil pentru această greşeală din mintea acestor doamne învăţătoare; mai mult mă interesează despre cine este în măsură să corecteze respectivul aspect. În acest sens cred că noi, profesorii de matematică ar trebui să ne propunem să abordăm cu tact şi cu respect faţă de colegele noastre acest subiect şi să încercăm să eradicăm defectul din gândirea lor în discuţii calme şi civilizate cu dânsele. Nu e simplu, dar cred că se poate.

Putem privi lucrurile şi altfel: se prea poate ca învăţătoarea să fi predat bine, dar această confuzie să apară în mintea micuţului, neatent, neconcentrat, nepasionat de fenomenul matematic, poate şi alţi de ne-…, în mintea sa rămânând peste ani doar vocea stridentă a doamnei învăţătoare care striga la el: CARE-I ORDINEA OPERAŢIILOR? CE OPERAŢIE TREBUIE FĂCUTĂ AICI PRIMA, COPILE?, astfel încât atunci când a văzut ca adult scrierea 7 – 5 + 2 să se fi declanşat doar amintirile spaimelor din copilărie, gândind cu o voce interioară tremurândă: Oare aici pe care trebuia să o fac prima? Probabil că adunarea, că ştiu eu că în copilărie tot urla aia la mine dacă le făceam în ordinea în care erau scrise. Astfel, cred că este foarte posibil că şi aspectele psihologice să influenţeze situaţia acestui 7 – 5 + 2, cel puţin în unele cazuri.

Evident că persoanele care susţin că se face adunarea înaintea scăderii nu şi-au însuşit cum trebuie principiul conform căruia semnele de + şi – dintre numere pot fi privite atât ca semne de operaţie, cât şi ca semne ale unor numere pozitive sau negative. Aici trebuie atrasă atenţia şi asupra unei alte situaţii care este cu totul nouă pentru noi. În scrierea 7 – 5, al cui este semnul minus? Deci, cum se citeşte o scădere? Se citeşte 7 – … 5 sau se citeşte 7 … – 5? (cele trei punctuleţe mimează o pauză) Obişnuinţa la baza învăţământului românesc, încă de la începuturi este că minusul aparţine lui 7. De unde ştiu asta? Păi uitaţi-vă unde pune învăţătoarea semnul de scădere la o scădere cu numerele unul deasupra celuilalt: după numărul descăzut, în dreapta sa. Acolo îl punem şi noi profesorii! Forma corectă ştiinţific este însă că minusul este al lui 5. Aşadar semnul de scădere ar trebui pus lângă scăzător, la stânga sa, adică în faţa sa. De ce să-l punem acolo?, veţi întreba. Pentru că aşa e corect, iar asta ar preîntâmpina multe neînţelegeri. Nu mă credeţi, aşa că scot „artileria grea” a argumentelor: aşa fac şi nemţii, dar şi alţi vestici! Uitaţi în următoarea poză:
Aţi văzut unde este poziţionat semnul de scădere, sau v-aţi uitat doar la mitraliera învăţătoarei? Amândouă se potrivesc în oarecare măsură discuţiei noastre. Revenind la semnul minus din scădere, acesta poate fi pus şi la scăderile din cadrul împărţirii. Nu înţelegeţi cum? Ia aduceţi-vă aminte cum se face chestia asta în algoritmul de împărţire a polinoamelor: este acelaşi lucru, doar că nemţii o fac de la început în forma corectă. De ce? Că-s nemţi şi aşa fac ei lucrurile, corect din prima. De ce nu le facem şi noi aşa? Cred că intuiţi răspunsul.

Revenind la dificila noastră problemă cu ordinea operaţiilor, cred că am fost un pic cam necinstit la începutul acestei postări, în sensul că nu cred că doar învăţătoarele sunt de vină. Mai exact, dacă noi suntem atât de buni pe lângă dânsele, de ce nu remediem noi problema? Din clasa a 5-a toţi elevii ajung pe mâna unui profesor de matematică şi totuşi 2 din 5 internauţi au dat-o în bară cu banala secvenţă 7 – 5 + 2. Oare de ce? Cum se poate întâmpla aşa ceva? Păi, să vă prezint bănuiala mea: cu o programă atât de încărcată şi cu atâta preocupare pentru olimpiade încă din clasa a 5-a, cine mai are timp să se ocupe de ordinea operaţiilor din capul „elevilor slabi”? Pentru că da, profesorul de matematică visează numai la chestiile grele. Să corectezi astfel de gafe din gândirea elevilor trebuie să te ocupi măcar o oră, poate chiar două, cu astfel de banalităţi, iar apoi, ulterior să mai reiei subiectul de câteva ori ca să-l fixezi definitiv. Pentru asta trebuie să faci tu personal multe fişe, pentru că în culegeri nimeni nu pune „exerciţii pentru proşti”; toţi vrem să ajungem cât mai repede în zona „de excelenţă”. E greu, ştiu, să te cobori la nivelul „celor slabi” şi să te preocupi şi cu ei, dar dacă noi n-o facem, n-o va face nimeni. Ştiu, veţi răspunde că nu e vina noastră, a profesorilor de la clasă; s-o remedieze familia, direct sau prin intermediul meditatorul particular! Ce mă interesează pe mine chestia asta? Înspectorul de mate îmi cere şi mă laudă pentru rezultate la olimpiadă, nu pentru „looseri” recuperaţi. Un profesor bun se adresează în lecţii elevilor buni, nu codaşilor clasei.

Exagerez? Poate. Pentru o impresie artistică mai bună am dat un pic drumul unui ton mai agresiv, dar realitatea nu este deloc departe de prezentarea mea. Haideţi să dau câteva exemple culese de curând (adică în luna martie 2018), care ne arată cum materia este îngreunată artificial de către profesori şi dusă uneori departe de orice posibilitate de înţelegere de către elevi, potrivită vârstei şi cunoştinţelor acestora. Materia „zboară peste elevi” atât de sus încât de multe ori rezultatul mult lăudatului învăţământ românesc este cel văzut în exemplul de mai sus cu 7 – 5 + 2.

Trigonometria în clasa a 7-a se face în triunghiul dreptunghic, aplicându-se unghiurilor ascuţite din acesta. În clasa a 7-a nu se învaţă funcţii trigonometrice, pur şi simplu pentru că elevii încă nu au învăţat noţiunea de funcţie. În clasa a 7-a profesorul trebuie să aleagă titlul lecţiei undeva între Trigonometrie, Elemente introductive de trigonometrie sau poate Rapoartele trigonometrice. În clasa a 7-a sinus nu este funcţie ci este raportul dintre cateta opusă unui unghi ascuţit şi ipotenuză. Şi dacă tot am ajuns la unghiurile ascuţite pentru care calculăm rapoartele respective, aceste unghiuri particulare sunt 30o, 45o şi 60o. În nici un caz nu le putem da elevilor un tabel extins cu valorile 0o şi 90o, pentru că elevii nu-şi pot imagina cum este acela un triunghi dreptunghic cu un unghi de 0o sau cu încă un unghi de 90o. La fel de absurd ar fi dacă elevul s-ar poziţiona în unghiul drept încercând apoi să caute cateta opusă.

Acestea sunt gafele de predare cu care mă întâlnesc din când în când. Acum însă mi-a fost sesizat cazul unui coleg care a tratat aproape o oră întreagă funcţile trigonometrice fără să vorbească despre triunghiul dreptunghic, deci nici despre laturile sale. În schimb, pe lângă diferitele „formule fundamentale”, aflăm că dacă unghiul x este obtuz atunci cos x < 0 (!!!). Urmează multe exerciţii în care pornind de la o valoare a unei funcţii trigonometrice se calculează celelalte trei. Apoi, de niciunde apare brusc sin30o = ½ din care sunt deduse în continuare celelalte – da, aţi ghicit – pe baza formulelor fundamentale. Abia acum, spre sfârşitul orei, apare un nou titlu: Triunghiul dreptunghic Funcţii trigonometrice în care vedem în sfârşit un triunghi dreptunghic şi găsim rapoartele cunoscute sin = cateta opusă/ipotenuză etc. Aici elevii sunt informaţi că dacă cunoaştem un unghi (30o, 45o sau 60o) şi o latură, aplicăm funcţiile trigonometrice şi aflăm TOT. În sfârşit ajungem la primul exemplu folositor elevului de clasa a 7-a, dar după prima latură calculată s-a sunat, deci s-a dat tema şi gata ora. (din nou: !!!)

Descompunerea în factori a expresiilor de tipul x2 + bx + c în clasa a 7-a este un titlu destul de general şi se face mai mult pe cazul formulelor de pătrat a binomului. De abia în semestrul I al clasei a 8-a se cere mai serios să descompună toată lumea expresii de tipul x2 + 3x – 10 etc. Ecuaţia de gradul II vine în clasa a 8-a semestrul II, deşi la examen nu s-a dat în ultimii ani deloc. Elevii încep de abia în clasa a 9-a să se întâlnească puternic cu formulele generale ax2 + bx + c = 0, Δ = b2 – 4ac şi x1,2 =  –b ± radical Δ supra 2a (scuze de scriere, ca să nu aveţi probleme la citire) şi respectiv ax2 + bx + c = a(x – x1)(x – x2). A da elevilor în clasa a 7-a forma generală a rezolvării ecuaţiei de gradul II pentru a avea o formă generală de descompunere, înaintea oricărei variante particulare, este pur şi simplu bătaie de joc la adresa gândirii elevilor. Iată doar un argument în acest sens: elevii tocmai ce au învăţat formulele binomiale în care literele reprezintă numere doar în valoarea lor absolută, nu şi cu semnul lor. Astfel, de exemplu în cazul (x – 3 )2, unde a = x şi b = 3, aplicăm formula pătratul unei diferenţe. Atenţionez că în mintea elevilor din aceast moment b nu este – 3, aşa că nu aplicăm formula pătratul unei sume, după modelul [x + (– 3)]2 (acest pas, includerea semnului în literă, acesta apare doar la formula pătratul unui trinom; la aceasta nu se mai dau toate variantele de formule, în toate combinaţiile de semne + sau –, elevul fiind forţat aici să vadă numărul împreună cu semnul său). Ca urmare, în calculele de la formulele generale pentru ecuaţia de gradul II elevii vor greşi masiv la semne. Sigur, putem striga la ei, îi putem ameninţa cu lucrare de control, dar cu ce preţ, mai ales că oricum ei încă nu au văzut nici măcar o singură ecuaţie particulară de gradul II. Las cititorului „bucuria” de a găsi şi alte contra-argumente. Precizez doar că acest exemplu apare destul de des în ultima vreme, tot mai mulţi profesori preferând să „scurtcircuiteze” drumul greu de formare a gândirii algebrice a elevilor de clasa a VII-a, dându-le o reţetă general valabilă cu care să-i terorizeze. Şi asta în condiţiile în care mare parte din elevii claselor nu stăpânesc formele elementare de descompunere în factori.

Desigur că acestea nu sunt exemple izolate. Ce părere aveţi de un profesor de liceu care-i explică unui elev de clasa a VIII-a rezolvări prin radiani? Iar copilul docil stă să treacă urgia peste el, încercând să înţeleagă cumva chestia asta prin regula de trei simplă. Sunt de acord că-i va folosi pe viitor, dar atunci hai să punem învăţătoarele să facă radicali cu ei, iar în clasa a V-a, imediat după operaţia de putere am putea face şi logaritmii, că „ce-are?”, le va folosi mai târziu.

Să mă opresc? Veţi spune că exagerez, aşa că haideţi să mai dăm două exemple, ca să ne convingem de magnitudinea fenomenului. Ce spuneţi de titlurile următoare la clasa a VII-a (acum, în aprilie) şi, mai ales, ce părere aveţi despre efectul acestor lecţii într-o clasă de nivel mediu fără participanţi la olimpiada judeţeană? Iată: Valoarea minimă şi valoarea maximă a unui polinom de gradul II; sau, lecţia următoare: Ecuaţii de gradul II cu mai multe necunoscute, în condiţiile în care elevii clasei respective încă nu reuşesc clar să facă ecuaţii particulare sau generale de gradul II cu o necunoscută (toate acestea la titlul oficial Ecuaţii de forma x2 = a). Ar trebui să mulţumesc colegului respectiv pentru aceste exemple (vreau să spun: contra-exemple), dar sunt doar scârbit de situaţia respectivă.

Oare cum se simte un profesor care face aşa ceva elevilor, fără nici un dram de empatie faţă de fiinţa şi gândirea elevului, a elevului disperat că nu pricepe nimic sau mai nimic? Sunt sigur că mulţi elevi sunt leneşi şi nu au nici un chef să înveţe. Sunt sigur că mulţi nu au dotarea necesară pentru a înţelege matematica în general. Dar tot aşa de sigur sunt că mulţi dintre adulţii avariaţi matematic reprezintă victime rămase în urma activităţii unor învăţătoare incompetente sau a unor profesori exagerat de ambiţioşi (frustraţi?), care fac lecţii mult prea grele şi mult prea devreme, fiind total lipsiţi de orice urmă de tact pedagogic. Cu astfel de contraexemple de lecţii ale unor colegi, îmi vine greu să mă semnez ca profesor. CTG

Ziua lui Pi

Primii care au reuşit să aproximeze mulţumitor aria cercului şi implicit prin aceasta şi numărul Pi au fost vechii egipteni. În Papirusul Rhind se găseşte o aproximare a discului înscris în pătratul de latură 9 în două faze. Mai întâi aria discului este aproximată cu aria octogonului ABCDEFGH obţinut pe treimile laturilor pătratului circumscris. Optic această aproximare pare destul de bună ducând chiar la un raport aria disculu/aria pătratului razei de cca. 3,11. Apoi egiptenii măreau aria obţinută 63 cu o unitate, la 64 care este aria pătratului de latură 8, generând o aproximare şi mai bună, de 3,16 pentru Pi. Cu alte cuvinte, aria discului de diametru 9 era aproximată cu aria pătratului de latură 8. (scuze pentru tabla execrabil ştearsă la ora de la care am făcut poza următoare).

Despre temele de casă date copiilor

În data de 8 noiembrie 2017 Moise Guran a găzduit la postul Europa fm, în cadrul emisiunii România în direct o foarte interesantă dezbatere cu ascultătorii, subiectul fiind chiar temele date la şcoală. Părerile exprimate în cadrul acestei ore de emisie au fost de o complexitate şi o profunzime greu de egalat. Eu personal, de mult vroiam să abordez acest subiect, dar acum nici nu mai trebuie să lucrez tare mult; cu greu se pot găsi aspecte de completat la cele spuse de doamnele care au prins să intre în emisiune (majoritatea). Ca urmare, am reluat în text aproape toată emisiunea. Totuşi, pentru cei care doriţi să o ascultaţi integral, o găsiţi la adresa https://www.europafm.ro/romania-in-direct-ministerul-educatiei-vrea-sa-stie-ce-parere-ai-despre-temele-copilului-tau-chiar-asa-ce-parere-ai-video/. Desigur că mare parte din emisiunea respectivă se referă la temele de la matematică, aşa că subiectul ne interesează în mod direct. Iată, în continuare, ce am selectat din această emisiune, deşi în unele momente aspectele sunt foarte fine şi nu pot fi cuprinse cu adevărat clar în textul citat în scris. Reiterez în acest sens învitaţia să ascultaţi emisiunea integral, pentru că merită cu adevărat; este “o emisiune de colecţie”.

*

Moise Guran:  …  Ministerul Educaţiei vrea să ştie ce părere avem despre teme. Mulţi dintre d-vs au o problemă cu temele date la şcoală; unii cred că acestea sunt repetitive şi plictisitoare; pe de altă parte, mulţi dintre noi ar vrea ca copilul să stea preocupat cu temele toată ziua astfel încât să nu mai facă alte prostii; în acest sens emisiunea pornea de la următoarea ÎNTREBARE: Consideraţi că într-o zi normală copilul ar trebui să petreacă mai mult sau mai puţin de o oră cu temele primite de la şcoală?

IUNIA: depinde de ce temă primeşte…; orice temă practică poate deveni un joc dacă-i captează atenţia; mai târziu jocul poate deveni mai serios. … o provocare …exerciţiile şi problemele la matematică sau la gramatică trebuie să rămână la şcoală!

DOINA:  … una din revoltele legate de teme este că se întâmplă de multe ori să vină acasă cu lecţia neînţeleasăsunt în situaţia de a preda eu noţiunea respectivă, chiar dacă uneori nu mi-o mai amintesc … trebuie să iau manualul, care la rândul lui este o problemă, pentru că este ceva stufos şi neprietenos la maxim în multe cazuri… Ar trebui să se găsească un echilibru. … parcă li se răpeşte copilăria …. Eu îi încurajez să înveţe la toate materiile, aşa ar trebui până în clasa a VIII-a; acum li se construieşte cultura generală. Nu pentru note, ci pentru ştiinţa lor este important să abordeze cu seriozitate toate materiile, numai că vin cu aşa o cantitate mare de teme încât nu le mai rămâne timp pentru joacă … MG: le-aţi spus vreo dată ”mamă, te duci pe responsabilitatea mea la şcoală  cu tema nefăcută”, le-aţi spus vreo dată? D: este atât de delicată treaba asta, pentru că dacă se duc se răsfrânge asupra lor, dacă mă duc să vorbesc cu profesorul în sensul acesta, profesorul o va lua personal, şi chiar dacă nu se manifestă, se va răzbuna ulterior tot pe copil … MG: sau vă calcă alţi părinţi cu maşina; am avut o astfel de experienţă, am ridicat problema într-o şedinţă cu părinţii, daţi-le mai puţine teme şi au sărit ceilalţi părinţi, era să fiu sfâşiat acolo…;  astăzi … un părinte mână forte tratează cu maximă seriozitate toate temele (MG arătând cu degetul ridicat a ameninţare), dar sfârşeşte prin a fi păcălit, că nu ştiţi ce fac ei acolo … deocamdată s-ar putea să ştiţi, dar imedit ce n-o să-i mai spuneţi (să lucreze), n-o să le mai facă, tocmai pentru că s-au obişnuit să aibă un stimul exterior: voinţa dvs.

SORINA: … o joacă până în clasa a IV-a, cu seriozitate după aceea…. Nu sunt de acord cu teme mai mult de o oră; copiii aceştia merg la şcoală şase ore, şapte, în clasa a VII-a, … MG: după şapte ore vin rupţi… S: Fiecar profesor, în afară de faptul că materia e foarte stufoasă, fiecare cere şi are pretenţia că la materia lui să vină pregătiţi … în afară de cele şase ore de la şcoală, el ar trebui încă şase ore să mai lucreze acasă; …ce facem cu copiii ăştia?  … Ştii de ce nu mai ştii ce-ai învăţat în şcoală la cutare materie? Pentru că profesorul, în loc să aibă cu elevii o discuţie interesantă în clasă, – nu generalizez, dar sunt profesori care dictează lecţia din carte în caiet, iar ei acasă trebuie să o înveţe. (Mă strecor şi eu, Titus G, retroactiv în discuţie: şi dacă o dictează din minte e mai bine???, pentru că mulţi dintre noi aşa procedăm de fapt, turuim o lecţie învăţată pe de rost de-a lungul anilor)

CĂTĂLIN: … întrebarea emisiunii e doar o parte din problemă; mie mi s-ar părea că ar fi foarte necesar ca orele de curs să fie făcute atractive astfel încât copilul să asimileze informaţia acolo … în cazul în care statul are de gând să taie temele de acasă şi să lase sistemeul de învăţământ aşa cum este acum nu mi se pare OK …. Copiii vin la şcoală obligaţi, nu-i atrage nimica; MG: ba da, acolo socializează. C: orele la care am învăţat cel mai bine şi de la care ţin minte ceva au fost orele interactive, orele la care profesorul a ştiut cumva să le facă atractive, să facă să mă intereseze. În momentul când primeam foarte multe teme acasă, mi se părea cumva o derogare a responsabilităţii profesorului şi mă pune pe mine să învăţ singur nişte lucruri pe care, dacă acasă nu le înţeleg, nu am pe cine să întreb, dezvolt nişte frustrări, nu am curajul să întreb … MG: am trecut toţi prin asta, cu timpul înveţi să fi autodidact …

TINELA: am o fetiţă în clasa a VII-a, primeşte teme multe şi proaste, la algebră, la geometrie, acelaşi tip de exerciţiu, de făcut de zece ori, pentru că aşa se procedează, consider că sunt inutile; copilul mă întreabă de ce trebuie să-l fac de atâtea ori?… aş vrea mai puţine teme. Copilul meu petrece mai mult timp la şcoală şi la teme decât mine la lucru. … copiii trăiesc o stare de stress continuă … la şcoală l-i se predă şi nu sunt decât ascultaţi şi l-i se dau testări; de fapt noi facem un fel de home-scooling, lucrăm acasă şi de la şcoală primim teme … Jumătate din copiii care ajung la neurolog cu dureri de cap sunt din cauza stresului şi a oboselii. MG: de ce dvs. nu puteţi să recalibraţi efortul? T: Am încercat la şedinţa cu părinţii să spun că primesc teme multe şi toată lumea s-a uitat la mine ciudat pentru că majoritatea părinţilor spun să le dea, ce să facă, să bată mingea? Da, au nevoie să bată şi mingea pentru că sunt copii … MG: spuneţii copilului “dacă vi acasă cu un cinci nu-i nici o tragedie”… T: i-am spus şi asta, i-am spus să facă din fiecare câte un exerciţiu, dacă are mai multe la fel, dar copilul îmi spune că nu vrea să facă lucrul ăsta, să fie diferită de ceilalţi, ca profesoară să o scoată la tablă şi să-i spună “a da, tu n-ai făcut tot, ia să vedem de ce n-ai făcut, ştii sau nu?”. MG: e o lipsă de respect să sfidezi profesorul, să-i spui că mama a zis să nu fac exerciţiile astea … T: eu trebuie să-mi apăr sănătatea copilului. Ori, dacă copilul petrece patru ore seara la teme, merge la şcoala după-amiaza, de la 12 la şase, după cină, dacă te apuci la 7 ½, 8, până la cât credeţi dvs. că pot face teme? Două ore minim, dar are mai mult. Dimineaţa, te trezeşti la 7 ½, iei micul dejun, nu mai spunem că nu au timp de alte activităţi, mai faci 2-3 ore dimineaţa; atunci vă întreb, cinci cu şase sunt 11 ore pe care copilul le petrece studiind şi învăţând la şcoală (la şi pentru), mai mult timp ca noi la serviciu. MG, zâmbind: da, dar vor fi antrenaţi pentru viaţă. T: aşa zic şi eu, dacă mai apucă să aibă pentru ce să se antreneze. MG: ceea ce descrieţi dvs. ştim mulţi dintre noi, am trecut prin asta, problema este ce faceţi dvs. ca părinte. Ce faci ca părinte, îl scoţi din rând sau nu? T: Da, ar trebui să facem ceva ca părinţi, … nu ne vedem decât propriul interes, copilul meu să se vadă odată scăpat de acest sistem de învăţământ, ne uităm degeaba în stânga şi-n dreapta la finlandezi şi la alte state care fac ceva cu sistemul de învăţământ, noi mergem cu el aşa; ce notă merită sistemul nostru de învăţământ? Ar primi nota zece pentru că rezistă!!! Adică, aşa prost cum este, acesta a rezistat, în prostia lui, a rămas aşa, fără să fie nici o modificare (semnificativă) de-a lungul timpului. Acei profesori şi învăţători care mai există (cei de calitate), aceia ar trebui să facă ceva, să se facă auziţi. Pentru că ei au putere să schimbe ceva din interiorul sistemului. La o oră deschisă profesoara a scos copiii şi a făcut un fel de joc şi a fost foarte lăudată la sfârşit: “vai, bravo, ce frumos că faceţi sub formă de joc” etc. După ce a plecat inspectoarea respectivă totul s-a derulat în sistemul vechi, adică treci la tablă, te ascult, stai jos, mâine iar la fel şamd, fără să fie nici un pic antrenant … .

FLORENTINA: Copilul, elevul trebuie să-şi facă temele acasă în funcţie de determinarea lui, de dorinţa lui de a afla lucruri, să fie responsabil, să fie ajutat să înţeleagă că asta-i meseria lui … Sistemul de învăţământ o să se schimbe când se vor schimba şi părinţii copiilor. Dacă nu-l responsabilizezi, dacă nu-i stârneşti curiozitatea pentru discipline, sunt frumoase disciplinele şcolare … un copil poate să-şi facă temele într-o oră pentru că e mai ambiţios, pentru că-i merge mintea, pentru că e ordonat … MG: pentru că a înţeles din clasă, pentru că i s-a predat foarte clar în clasă ceva şi, da, atunci n-ai nevoie acasă mai mult de 2-3 exerciţii la mate, de exemplu F: pentru că a fost atent în clasă, pentru că a pus întrebări, pentru că îşi asumă lucrul ăsta. MG: dvs. sunteţi dascăl. F: Nu sunt dascăl, sunt părinte. … MG: sunt profesori la a căror materie copiii nu au teme …. Profesorul îi poate stimula să caute lucruri, acum au internetul la dispoziţie, … procesul de gândire este cel care contează.

ALINA:  … sunt necesare temele acasă; acum, depinde de fiecare copil în cât timp îşi  face temele. Copilul cel mare (clasa a VI-a) prinde din clasă, … face temele în maxim 45 min. Cel mic (clasa a II-a) merge mai greu, nu este atent, nu este aşa de interesat ca cel mare … MG: vă vând un pont: ce învaţă (pe de rost) seara, are să ştie mult mai bine dimineaţa. F: pentru mine nu este o problemă, fiecare face cum poate. Temele sunt necesare, pentru că în clasă profesorul – oricât este de bun – … nu poate să-i facă pe toţi să înţeleagă …. Profesorului îi este greu să-i disciplineze pe toţi 34 din clasă, sunt şi copii mai rebeli. MG: Şi noi eram 40 în clasă, dar rebeliunile erau destul de rare; profesorii erau mai autoritari, dar erau şi profesori care ne atrăgeau pur şi simplu atenţia cu ceea ce ne spuneau. În primul rând despre asta e vorba. Poţi să faci chimia să fie atractivă, eu zic că poţi; poţi şi fizica şi matematica, eu nu cred că vre-un profesor are scuză că nu erau copiii atenţi. F: … consider că şi acasă trebuie să te mai uiţi un pic peste ce s-a făcut la ore. … Avem timp pentru toate dacă se organizează.

CAMELIA: lucrurile trebuie luate de la bază, cu ce ieşim noi din liceu, din facultate? Pentru că s-a  dovedit ştiinţific că doar 6% din noţiunile învăţate rămân. … m-am îmbolnăvit, mi-a căzut jumătate din păr când am avut examene … şcoala, aşa cum este făcută la noi este aproape inutilă, … Copiii sunt copii, toţi sunt o hârtie albă atunci când vin la şcoală … de ce în alte părţi se poate şi la noi nu se poate? MG: răspunsul e foarte simplu: o să vă luptaţi cu o întregă clasă politică şi cu 200.000 de dascăli, eu sper că măcar jumătate dintre ei au totuşi o altă opinie, în ţările alea de care auziţi dvs. că performează învăţământul, acolo acesta este croit în jurul copilului … temele de acasă sunt cele care-i fac pe copii prizonieri. Sunt ele eficiente? Asta urmează să aflăm (la examene)

CRISTINA: consider că învăţământul nostru are foarte multe probleme. Temele pentru acasă sunt şi o corvoadă şi un ajutor. Tu ca părinte, în măsura în care îţi permite şi timpul, verificând şi lucrând cu copilul acele teme, îţi dai seama ce anume nu a înţeles din clasă, unde manualul este cu o exprimare nepotrivită pentru vârsta acelui copil, şi să îl ajuţi prezentându-i tu materia acolo unde profesorul în clasă nu reuşeşte … Nouă temele ne mănâncă destul de mult timp, sâmbăta din weekend şi 2-3 ore când ajung acasă (de la serviciu) … MG: este evident că trebuie corelat timpul pe care-l petrece copilul acasă învăţând sau făcându-şi exerciţiile şi problemele de la matematică, sau scriind orice, cu timpul pe care-l petrec la şcoală. În momentul de faţă nu există (această corelare) şi noi toţi ştim că le-am transformat copilăria într-o corvoadă. Până la un moment dat, când tu, ca părinte, zici STOP: muncesc pe bani, o să-i pun pregătire şi – din păcate – nimeni n-a făcut un astfel de studiu, … sunt rare cazurile când copiii care au performanţe … atunci când  au mers numai pe educaţia de la şcoală.

*

Da, cam acestea au fost în mare gândurile exprimate (apreciez că textul de mai sus reprezintă cca. 70% din totalul emisiunii). Am subliniat câteva dintre ele ca deosebit de importante, deşi tot ce am reluat din emisiune are o valoare deosebită. Consider că este imposibil a găsi o descriere clară şi unică a subiectului, chiar şi numai a nucleului acestuia, aşa că cea mai bună este o descriere cât mai completă a aspectelor implicate şi a diferitelor puncte de vedere. Iar acest lucru l-a reuşit emisiunea lui Moise Guran din miercurea respectivă: o agoră în care, prin voia sorţii, au intrat în direct păreri foarte bune şi realiste. Urmăresc când am timp emisiunea România în direct şi am auzit multe “vrute şi nevrute” spuse de ascultători intraţi în direct; Moise nu apucă să-i scoată de pe linie întotdeauna, aşa că emisiunea are de obicei şi păreri calificabile drept “rebuturi”. De data aceasta însă cantitatea de valori a fost covârşitoare, generând clar o “emisiune de colecţie”. Comentarii la aceste gânduri, dar şi adăugări, voi încerca într-o postare separată. Acum mă mulţumesc să vă fi prezentat doar emisiunea respectivă. CTG

Profu’ de mate’ din Vancouver

Din şirul analizelor critice la adresa şcolii din România, vă recomand postarea din 19.09.2017 De la directoarea îmbrăcată în vuittoane, la proful  de mate în pantaloni scurţi sau cum mi-am dus fiul de 16 ani la reanimare într-un sistem de învăţământ normal, de pe Republica, semnată de Ada Bucur.

Iată, pentru trezirea curiozităţii, ultima parte a articolului, partea în care Andrei descoperă că există şi profi’ de mate’ super, cât şi o scurtă analiză a acestuia după primele zile în noua sa şcoală din Vancouver, Canada.

*

Cel mai tare m-am amuzat când a venit şi m-a întrebat: „- Ştii care e proful meu preferat?”  „- ?”  „- Ăla de mate! Ne explică atât de bine totul! Şi face glume aşa de bune! Şi vine la şcoală în pantaloni scurţi!” (M-a amuzat pentru că lui Andrei nu i-a plăcut niciodată matematica şi mă gândeam cam cum ar fi ca proful ăsta în pantaloni scurţi să-l facă pe fiul meu să-i placă o materie care până acum l-am forţat să o înghită de voie, de nevoie).

Chiar dacă e abia la început, l-am rugat pe Andrei să puncteze pe scurt, aşa cum vede el lucrurile, diferenţele dintre liceul din Vancouver şi cel din Bucureşti. Iată ce mi-a spus:

  • mult lucru practic care mă ajută să înţeleg ce mi se predă vs multă teorie greoaie pe care nu o înţelegeam;
  • se lucrează mult în echipă, ceea ce mă ajută să-mi fac mulţi prieteni vs totul e individual, ceea ce conduce la o continuă competiţie cu ceilalţi copii;
  • toţi profii sunt dispuşi să te ajute vs nimeni nu are timp să vorbească cu tine;
  • pe profesori îi interesează opinia noastră şi o pun în aplicare ca să ne explice cum e bine vs opiniile noastre nu contează ;
  • toti profii sunt glumeţi şi ne fac să râdem vs mai toată lumea e încruntată mai tot timpul;
  • materii mai puţine, utile, legate de ce ne interesează vs materii multe pe care nu avem timp să le înţelegem;
  • după o zi de şcoală mă simt obosit pentru că am lucrat şi am învăţat ceva interesant vs mă simţeam obosit după ore întregi de plictiseală.

Au trecut două luni de când am plecat şi, deşi mi-e dor de acasă, trebuie să mă împac cu lumea asta nouă pentru că fiul meu e la reanimare – o încercare de resuscitare a eu-lui său într-un sistem de învăţământ normal.

*

Desigur că aici ar merita să facem o analiză a diferenţelor punctate de Andrei. Multe din punctele evidenţiate ca negative ţin de o minimă decenţă înspre respectarea elevului ca fiinţă în devenire, ca viitor partener în societate, fără a-l privi de sus cu o vădit agresivă şi jignitoare atitudine de superioritate. Aceste atitudini pot fi totuşi mai bine explicate de către un psiholog. Eu m-aş opri acum doar la primele două reproşuri, care ţin direct de schimbările implementate în şcoala românească în reforma din 1980, reformă în care, mai ales la matematică, şi-au dat mâna peste capul dascălilor universitarii şi olimpiştii, împărţindu-şi frăţeşte ora de matematică, totul sub oblăduirea şi la dorinţa lui Ceauşescu, cel care dorea să demonstreze astfel superioritatea sistemului socialist prin rezultate la olimpiadele internaţionale. Zece ani profesorii au fost forţaţi să se modeleze pe o predare pe care o simţeau nenaturală, dar pe care cu timpul şi-au însuşit-o, astfel încât, după Revolutie o susţineau deja necondiţionat. Iată cele două direcţii aşa cum le-a văzut Andrei:

1) Multă teorie greoaie pe care nu o înţelegeam. Într-adevăr, nivelul de teoretizare din manualele apărute începând cu 1978 la liceu şi 1981 la gimnaziu a fost unul excesiv, mult peste tot ce înţelegeau atât elevii, cât şi profesorii. Atunci s-a introdus congruenţa, măsura unghiurilor, echivalenţa fracţiilor, divizibilitatea cu bară în locul celei cu trei puncte, la gimnaziu, sau introducerea numerelor complexe ca perechi ordonate, la liceu, iar lista poate continua la nesfârşit. În anii ’80 profesorii de matematică s-au transformat într-o subspecie ciudată de oameni care vorbesc singuri la tablă şi au pretenţia absurdă ca elevii să-i înţeleagă în limbajul lor abstract.

2) Totul e individual, ceea ce conduce la o continuă competiţie cu ceilalţi copii. Da, competiţia acerbă din clasă este doar primul pas în drumul de a strânge candidaţi pentru olimpiadele locale, judeţene şi naţionale, cu vârful în micul grup ce constituie lotul naţional. Nimeni însă nu se gândea pe vremuri, şi nici acum nu se prea gândeşte, la toate victimele colaterale rămase pe parcurs, la toţi acei copii care rămân frustraţi, speriaţi, fără prieteni, cu socialul din sufletul lor “varză”.

Problema uriaşă a celor două aspecte este că ambele direcţii reproşate de Andrei duc la un vid de educare a marii mase a elevilor. Profesorii predau lecţiile la un nivel “peste capetele elevilor”, adică de obicei atât de teoretic şi abstract, încât cei mai mulţi elevi nu le înţeleg. Cât despre partea de aplicaţii, aceasta se adresează doar elitei, fiind prin nivelul de excelenţă de obicei total inaccesibile majorităţii elevilor. Ce se întâmplă în şcoală cu această mare masă a elevilor ce nu beneficiază de factorul educativ al matematicii, acesta este un alt subiect. Ideea este că oricum aceştia rămân needucaţi matematic, cu frică şi cu ură pentru această materie. Dacă ar rămâne needucaţi doar în privinţa noţiunilor matematice, încă dezastrul nu ar fi aşa de mare. Din păcate însă, această mare masă de needucaţi matematic are la sfârşitul şcolii şi o incapacitate crasă de a gândi logic, de a argumenta şi de a înţelege când cineva îl minte. Da, aceştia sunt viitorii votanţi gata pregătiţi de a constitui o uriaşă masă de manevră pentru politicieni care promit “marea cu sarea” în alegeri şi apoi îşi bat joc de întreaga ţară. Iar profesorii de matematică ce au mers pe această linie a predării se fac direct responsabili de dezastrul în care se află ţara ca urmare a felului în care majoritatea votanţilor – foşti elevi! – se lasă fraieriţi de către politicieni şi promisiunile lor, pentru că nu au fost învăţaţi să gândească pe baza matematicii, ci au fost doar obligaţi să tocească materia.

Astfel, epistola Adei Bucur ne pune în faţa unei decizii pe care nu o putem lua decât individual: rămân în continuare un profesor croit după modelul reformei lui Ceauşescu, setat doar spre o predare mult prea teoretică şi orientat doar după probleme inaccesibile majorităţii elevilor, sau o iau pe calea schimbării şi încep să lucrez la transformarea mea într-un profesor pentru aceşti elevi ai secolului XXI, un profesor al acestei planete, conectat cu tot ce este mai bun pedagogic pe plan mondial? Am spus că această decizie de schimbare o putem lua doar individual; ministerul prin comisia de redactare a noii programe ne-a pus în faţă posibilitatea de a ne schimba, dar decizia de a ne schimba trebuie să o luăm noi, fiecare individual (acum nu vom fi forţaţi ca în comunism să ne schimbăm). Eu personal am luat această hotărâre cam prin 1994, şi de atunci încerc să lucrez constant în această direcţie. Am evoluat foarte greu, sacadat, pentru că eram de obicei singur, doar cu soţia mea ca partener în acest proces anevoios. Dimpotrivă, dvs. stimaţi colegi, aveţi acum o situaţie mult mai “roză”. Rămâne să luaţi doar decizia. Noua programă de la minister a deschis oficial calea. Cât despre site-ul pentagonia.ro, acesta reprezintă simplul şi umilul meu aport în direcţia schimbării. CTG

Prezentare de carte: Amir Alexander – Infinitezimal

Apărută în 2017 la editura HUMANITAS, lucrarea Infinitezimal a lui Amir Alexander  ne prezintă felul cum a contribuit la făurirea lumii moderne o teorie matematică periculoasă. Iată cum îşi prezintă autorul lucrarea: Este continuumul alcătuit din infinitezimale? – cu greu ne putem închipui ce pasiuni a stârnit această întrebare ciudată. Dar în secolul XVII, în toiul bătăliei, combatanţii din ambele tabere credeau că răspunsul putea modela toate aspectele vieţii în lumea modernă care se năştea. Şi au avut dreptate: când vacarmul bătăliei s-a stins, apărătorii infinitezimalelor învinseseră. Iar de atunci lumea s-a schimbat ireversibil.

În acest sens, pe coperta a IV-a a cărţii găsim următoarea prezentare mai detaliată: La sfârşitul secolului XVI şi începutul secolului XVII, Europa era frământată de conflicte violente nu doar în plan politic şi social, dar şi în aparent mult mai paşnicul domeniu al ştiinţelor matematice. Dacă pe câmpurile de luptă Reforma se confrunta cu Contrareforma, în matematică bătălia se dădea între partizanii infinitezimalelor – readuse acum la viaţă, după ce puseseră grele probleme anticilor – şi matematicienii tradiţionalişti, fideli modelelor geometriei euclidiene. Ni se pare azi greu de închipuit cât de subversivă a fost ideea de infinit mic şi ce miză politică, religioasă şi culturală a avut susţinerea ei.

Preocupat de raporturile dintre matematică, istorie şi cultură, Amir Alexander ne spune în Infinitezimal povestea  impunerii noţiunii de infinit mic la începuturile lumii moderne, subliniind consecinţele ei pe termen lung. Eroii cărţii sunt oameni de ştiinţă (Galilei, Torricelli, Wallis, Newton), filozofi (Hobbes, Locke), clerici şi conducători politici – cu toţii prinşi într-o luptă care, în ultimă instanţă, demonstrează forţa de iradiere a ideeilor din matematică.

La pagina 2 găsim următoarea prezentare: Amir Alexander (născut în 1963) este un istoric american care studiază raporturile dintre matematică, societate şi cultură. Predă la Universitatea din California, Los Angeles. Pe lângă prezenta lucrare, în original cu titlul “Infinitesimal. How a Dangerous Mathematical Theory Shaped the Modern World” (2014), a mai publicat “Geometrical Landscapes: The Voyages of Discovery and the Transformation of Mathematical Practice” (2002) şi “Duel at Dawn: Heroes, Martyrs, and the Rise of Modern Mathematics” (2010). Multe mulţumiri şi cu această ocazie d-lui Vlad Zografi, redactor al acestei traduceri, responsabil pentru apariţiile cărţilor de ştiinţă la editura HUMANITAS.

Deşi din lipsă de timp nu am putut să mă arunc în lectura acestei cărţi, am considerat totuşi potrivit a v-o prezenta. Oricum, este evident însă că lucrarea se adresează tuturor celor ce au de-a face cu elevii de liceu sau cu studenţii, pentru care se vor găsi multe poveşti interesante. Este evident că această carte trebuie adăugată pe lista de lectură “obligatorie” pentru orice profesor de matematică ce se respectă (lista orientativă de cărţi de care vorbesc se găseşte la adresa http://pentagonia.ro/prezentare-de-carte-anii-de-aur-ai-cartilor-despre-matematica/ ).

CTG

Cel mai mare divizor comun (cmmdc) – o propunere

În programa de matematică gimnazială din 2017, la Sugestiile metodologice din final, apare următoarea indicaţie: … Noţiunile de “cel mai mare divizor comun” şi “cel mai mic multiplu comun” vor fi introduse prin enumerarea divizorilor, respectiv a multiplilor, … (pag. 31, indicaţii despre clasa a V-a). Aceasta vine în întâmpinarea preocupărilor mele din ultimii ani de a găsi metode alternative de predare adaptate nivelului elevilor, în sensul că am simţit de mult că pentru vechea reţetă (factorii comuni la puterea cea mai mică din descompunerile în produse de puteri de factori primi ale numerelor respective) se găsesc de la un an la altul tot mai puţini elevi care să o cuprindă şi să-i găsească rostul. Accept totuşi şi varianta că de la un an la altul creştea de fapt nivelul meu de empatie faţă de valurile de copii de clasele V-VI care nu înţelegeau şi nu erau în stare să aplice reţeta respectivă. Indiferent care o fi adevărul, m-am hotărât să prezint şi această temă în conexiune cu prezentarea celor patru ore despre divizorii unui număr. Pozele lecţiei respective nu sunt cele mai reuşite, dar din acestea se poate deduce lecţia şi parcursul acesteia. În prima poză se vede forma indicată în noua programă, formă pe care eu o predau de cca. 20 de ani (se vede folosirea culorii în prima fază, dar şi felul cum am abandonat imediat apoi culoarea, pentru a nu forma o dependenţă inutilă; din păcate portocaliul folosit iniţial se vedea bine în clasă, dar nu se vede mai deloc pe poze, aşa că va trebui să vă uitaţi cu atenţie sporită).

Totuşi, sunt de părere că trebuie să deschidem şi porţi spre nou, spre ceva mai evoluat, aşa că de mulţi ani predau şi o a doua metodă, care ne permite o creştere a numerelor la care să calculăm cmmdc. Această metodă se bazează pe folosirea formei descompuse în factori a unui număr. Folosesc însă descompunerea simplă în factori primi şi nu scrierea unui număr în produs de puteri de factori primi. Această formă mai simplistă are avantajul că lărgeşte cercul celor care înţeleg ce se întâmplă; metoda cunoscută oficial este evident mai performantă, dar şi mai abstractă, cerând din partea elevilor o capacitate mai ascuţită de gândire (capacitate care la această vârstă foarte mulţi elevi încă nu o au, rămânând în urma respectivei lecţii doar cu o nouă şi puternică doză de frustrare împotriva matematicii în ansamblu). Forma prezentată în această lecţie conectează desigur şi cu diferitele strădanii din precedentele ore, aşa că pentru elevi nu este un mare şoc.

Mai întâi am studiat ce se întâmplă pe exemplul deja cunoscut al numerelor 12 şi 18 (unde am evidenţiat cu acel portocaliu palid factorii comuni în descompunerile celor două numere), după care am trecut la exemple cu numere mai mari (24 şi 30, apoi 72 şi 96). Cei doi “săculeţi” folosiţi în prezentarea descompunerii numerelor 12 şi 18 i-am mai prezentat în postările despre numerele prime de la începutul anului 2017. În multe cazuri această reprezentare se dovedeşte mai sugestivă şi simt că îi ajută pe copii să-şi imagineze mai bine comportamentul factorilor unui număr. Fiind o formă necunoscută de reprezentare (eu am imaginat-o în urmă cu câţiva ani), nu abuzez de aceasta, mai ales că oricum forma “cu bară” este net superioară şi rapidă. Astfel, în metoda a doua, numită “prin descompunere” elevii trebuie doar să aleagă factorii comuni din descompunerile în factori primi ai celor două numere (pe tablă sunt coloraţi cu portocaliu). Legat de lecţia prezentată aici precizez că la începutul orei următoare am primit “reclamaţii”: o elevă mi-a spus înaintea orei că nu a înţeles şi nu a ştiut tema, aşa că am pornit cu diverse alte exemple de lămurire şi cu reluarea celor de la temă. De abia apoi am trecut la o nouă lecţie.

Metoda merge desigur şi la trei numere, iar elevilor le-am spus că această lecţie ne va ajuta mai târziu la fracţii. Ce înseamnă “mai târziu” nu pot preciza acum cu certitudine. În principiu însă, parcursul plănuit este următorul: după lecţiile despre divizori şi cmmdc voi prezenta cât de repede posibil şi lecţia “soră”, cea despre multipli, despre multiplii comuni şi despre cmmmc. Acestea le voi prezenta însă pe scurt (într-o oră) şi doar în formatul intuitiv de bază recomandat în programa naţională. Ca urmare, voi folosi doar găsirea intuitivă a numitorului comun pentru adunarea şi scăderea fracţiilor în semestrul al II-lea din clasa a V-a. De abia în clasa a VI-a, odată cu reluarea operaţiilor cu fracţii ordinare, voi urca la exerciţii ce nu vor mai funcţiona atât de intuitiv, iar atunci ne vom reaminti de această lecţie. Tot atunci se prea poate să ajungem şi la dezvoltarea metodei a 2-a în metoda 2’, adică în forma cunoscută, cea amintită şi la începutul prezentului articol. Această metodă arhicunoscută de către adulţi (cei care au fost buni la matematică în şcoală), metoda ştiută pe de rost cu factorii comuni la puterea cea mai mică pentru cmmdc, respectiv factorii comuni şi necomuni la puterea cea mai mare pentru cmmmc, această metodă se înţelege mult mai uşor pe cazul simplificării fracţiilor, respectiv a aducerii fracţiilor la numitor comun. Faptul mi-a fost confirmat de diferiţi elevi care, după explicaţii pe astfel de exemple cu fracţii, au avut avut acea stare de revelaţie de tip A-HA!, deci de aia zicea lecţia din clasa a V-a astfel. Astfel, în clasa a VI-a, după ce voi fi dat de lucru întregii clase pagini întregi de exerciţii de rutină din categoria Ordinea operaţiilor, cu ocazia unor exerciţii mai dificile de aducere la numitor comun, voi conduce elevii spre cristalizarea metodei 2’.

Revenind la noua programă, eu cred că în acest spectru ar trebui citită, studiată, înţeleasă şi aplicată această programă. Speranţa este că atât profesorii de la clasă, cât şi cei responsabili de formarea primilor pe noua linie vor avea destulă energie şi răbdare, încât să parcurgă procesul de înţelegere şi de implementare, oricât de mult ar dura acesta. Şi, sunt convins că va dura mult (nu ştiu câţi ani va dura, dar va dura mult). În acest sens ştiu doar că procesul învers, în urma reformei din 1980 a durat cca. 10 ani (vezi articolele despre reforma uitată postate pe această pagină în 2016: Reforma uitată (partea I) respectiv Reforma uitată
(o scurtă descriere)
). Eram elev, apoi student în acei ani, dar cunosc destul de bine situaţia de la părinţii mei, având o imagine destul de corectă asupra fenomenului şi înaintea momentului 1990 când am început eu să predau.

CTG, 29 oct. 2017

Un nou început

Generaţia noastră de profesori am fost supuşi în ultimii 20 de ani la diverse reforme, fiecare mai ambiţioasă sau mai liniştită. Mulţi dintre noi nu mai au energie, sunt sătui de atâtea schimbări, aşa că se arată reticienţi faţă de acest “al nu ştiu câtelea” nou început. Mai ales că acest nou început este poate cel mai ciudat dintre toate, mergând vizibil în contrasens faţă de majoritatea demersurilor cu care ne-am obişnuit în toţi aceşti ani.

Pentru cei care nu au înţeles încă, această nouă programă are un profund caracter reparatoriu faţă de agresiunile reformei din 1980 la adresa predării matematicii gimnaziale. Ca să înţelegem acest aspect trebuie să ne uităm un pic în urmă şi să cugetăm la ce s-a întâmplat atunci.

Înainte de acea reformă predarea matematicii în gimnaziu prezenta o abordare profund intuitivă a materiei, în care rigurozitatea teoretică apărea moderat şi cu respect faţă de mintea matematică în formare a elevilor. Odată cu noile manuale introduse din 1981 s-a impus în şcoli o predare mult mai riguros teoretică, de inspiraţie academică. Ordonarea lecţiilor – de pildă la geometria din clasa a VI-a – a fost supusă cerinţelor teoretice de origine universitară; lecţiile au fost coborâte în clase mai mici şi au fost încărcate cu aspecte specifice matematicii de olimpiadă. Iniţial, majoritatea profesorilor s-au opus, unii mai pe faţă, alţii mai pe ascuns, predând în continuare, ani buni, aşa cum ştiau dinainte, cu respect faţă de elevi. Anii ’80 au reprezentat o perioadă neagră pentru arta predării matematicii, ani în care prin inspecţiile la clasă a fost vânată nesupunerea de stil vechi şi încet dar sigur a fost eradicată rezistenţa profesorilor la noile metode de tip prelegere universitară. Astfel, la schimbările din 1990 majoritatea profesorilor fuseseră “traşi pe calapod” conform noilor principii. Treaba mergea strună, toţi erau preocupaţi de rigurozitate şi de rezultate la olimpiade. Ce mai, deşi Ceauşescu fusese lichidat, visul său despre noua formă a învăţământului era implementat şi nu mai avea opoziţie.

Lucrurile chiar au mai crescut pe această linie şi prin reforma din 1997 în care s-au introdus manualele alternative. De abia după 2000 societatea a prins glas şi a început să strige tot mai tare că “ce-i prea mult îi prea mult”. Aceste glasuri de revoltă au crescut tot mai puternice şi datorită faptului că pe copii se vede tot mai mult incapacitatea de a învăţa matematica, datorată distrugerii atenţiei prin folosirea tot mai excesivă şi mai timpurie a ecranului în toate formele sale (în ordinea apariţiei: televizorul, jocurile de calculator, internetul şi smartphone-urile). Tot mai puţini copii reuşesc “să ducă” nivelul înalt al predării şi al problemelor din această predare mult prea agresivă.

Buuun! Şi ce se întâmplă acum, când nu se mai poate sta în această formă veche (de 35 de ani) şi în sfârşit vine cineva şi propune o reformă de adaptare la nevoile şi la realităţile elevilor? Exact ceea ce era de aşteptat: unii profesori se opun, pentru că nu înţeleg despre ce-i vorba, nu doresc să iasă din “zona de confort”, din forma de gândire şi de predare cu care sunt obişnuiţi. Cum să predai din clasa a V-a fără mulţimi, fără ecuaţii, fără m-ul de la măsura unghiului, etc.? Este absolut normal ca dascălii să comenteze pe faţă sau pe la colţuri. La fel ca la începutul anilor ’80, este de aşteptat ca profesorii să refuze schimbarea. Este mai uşor aşa. Decât să te chinui să înţelegi la ce folosesc problemele “acelea stupide” cu diferitele lor metode aritmetice, mai bine le pui pur şi simplu în ecuaţie.

După acest exil ideologic de peste 35 de ani, predarea intuitivă, prin care au învăţat matematica gimnazială toţi cei de peste 50 de ani, nu este primită înapoi cu gânduri bune. Dimpotrivă, fiind neînţeleasă, este respinsă în prima instantă, uneori chiar brutal, zeflemist şi cu sarcasm. Aceasta este realitatea: deşi vrem schimbare, mulţi nu suntem încă dispuşi să părăsim “zona noastră de confort” a felului în care ne-am obişnuit să predăm matematica.

P.S. Pe când “mă perpeleam” cum să scriu mai delicat cele de mai sus, a avut loc emisiunea Avocatul diavolului la Europa FM, cu domnii Vlad Petreanu şi Cristian Tudor Popescu, de vineri, 6 Oct. 2017, în care un ascultător intrat în direct, Cătălin, „a pus punctul pe i” descriind magistral situaţia: Profesorii români sunt extraordinar de mulţumiţi de ei; (…) dar nu poţi să progresezi, nu poţi să-ţi îmbunătăţeşti activitatea dacă ai imresia că tu eşti fantastic!

Într-adevăr, dacă nu eşti în stare să te pui zilnic sub semnul întrebării, pe tine ca profesor, cu toată activitatea ta, cu felul cum predai şi cum se petrec orele tale, atunci sigur nu ai şanse prea mari de a găsi căi mai bune de a preda. Dacă tu te crezi „atât de bun”, atunci, întotdeauna vor fi alţii de vină pentru nemulţumirile ce le resimţi în activitatea zilnică; întotdeauna alţii, dar nici măcar o dată tu însuţi. Autosuficienţa reprezintă prima piedică în progresul unei persoane.

CTG, la începutul anului şcolar 2017-2018

De ziua educaţiei

Citez din emisiunea Deşteptarea de la Europa FM de joi 5 oct. 2017, cu domnii Vlad Petreanu şi George Zafiu.

  • Fireşte că de ziua educaţiei nu se face educaţie, dar nu peste tot. În Bucureşti, în Giurgiu şi pe la Brăila nu se merge la şcoală, nu se face educaţie. În altele, în restul judeţelor, elevii merg la şcoală, dar nu fac ore. E ca la bugetari: nu muncesc, dar se duc la muncă. (…)
  • Pentru noi bucureştenii e o zi mare, poţi să circuli în voie, pentru că nu se duc elevii la şcoală (…).
  • În celelalte judeţe se vor face alte activităţi, vizete la muzeu etc. Deci, o să fie aşa, fiecare cum poate; (…) o să fie un haos de ziua educaţiei cam cum e educaţia în România (…)
  • Dacă aveţi, dragi copii, diriginte care predă matematica, domnu’ sau doamna dirigintă o să zică “hai să profităm de ziua de azi şi să facem 3-4 ore la rând de matematică”; (…).

Cu alte cuvinte, de ziua educaţiei mulţi copii au avut ocazia să se educe din plin, acasă pe tablete, sau la şcoală pe smartphone (fără să-i luăm în calcul, desigur, pe cei care au făcut matematică din belşug). Poate, voi avea timp cu altă ocazie să pun în discuţie conexiunea dintre scăderea constantă a atenţiei şi a capacităţii de a face matematică la elevi, pe de o parte, şi rolul tot mai mare şi mai timpuriu al ecranului în viata copiilor, pe de cealaltă parte. Până atunci, cu stima cuvenită (în funcţie de câtă matematică aţi făcut de ziua educaţiei), acelaşi CTG.