Starea matematicii şcolare (1) – Elevii şi familiile lor

Cu orice ocazie, mică sau mare, toată lumea se apucă de comentat şi de analizat, încercând să desluşească cine este de vină legat de “starea actuală a învăţământului românesc”, şi întotdeauna “ceilalţi” sunt de vină.  Dacă ne uităm la matematică putem constata acelaşi fenomen. În prezenta serie m-am hotărât să iau spre analiză toţi factorii implicaţi şi aş dori să încep cu principalele categorii: elevii; profesorii; autorităţile naţionale (cei care decid ce matematică facem în şcoli).

Personal, aş începe cu profesorii, dar logica îmi spune să “o iau de jos”, de la baza învăţământului, adică de la elevi. Un argument suplimentar în acest sens ar fi că astfel aş evita să vorbesc din start de grupul celor care formează blocul principal al cititorilor pentagonia.ro. Astfel – cel puţin pentru început – mă voi folosi de eficienţa metodei bazată pe vorba “persoanele de faţă se exclud”. Profesorii vor putea vedea că îi iau spre dură analiză şi pe alţii, şi poate vor înţelege din start că încerc să fiu obiectiv.

Elevii au însă întotdeauna o familie “în spatele lor”, de obicei familia fiind cauza celor mai multe “hibe” cu care ne confruntăm la ei (hibă: cusur, defect, deficienţă, imperfecţiune, insuficienţă, meteahnă, neajuns, păcat, slăbiciune, viciu; în cazurile în care nu există o familie în jurul copilului, persoanele care îngrijesc de acesta se dovedesc de obicei oricum mult mai responsabile). Familia este cauza celor mai multe hibe, fie ca sursă directă (de obicei total involuntară), fie datorită incapacităţii de prevenţie şi de protecţie împotriva aspectelor dăunătoare cu care îi agresează pe copii lumea şi societatea înconjurătoare. Aşadar, să pornesc cu abordarea subiectului elevilor.

Din start trebuie să precizez că extrem de rar mi-a fost dat să întălnesc cazuri la care să pot susţine că elevul “este de vină”; de fiecare dată când aveam probleme cu un elev, căutând cu atenţie şi după suficient timp, am ajuns să aflu (să aflăm împreună cu colegii) că “în spate” exista ca sursă originală părintele şi acţiunile sale. Am spus aici că extrem de rar mi-a fost dat să întălnesc elevi la care să pot susţine că sunt ei personal de vină; aceasta a fost o afirmaţie reţinută, dar de fapt nu am în minte nici măcar un astfel de exemplu. De fiecare dată, după suficiente căutări, am reuşit să găsesc sursa comportamentului negativ în familie. Cu alte cuvinte: după experienţa mea, copiii nu pot să fie de vină; ei şi comportamentul lor reprezintă întotdeauna rezultatul situaţiei din familie, în mod direct sau eventual indirect (atunci când familia îi permite minorului să fie influenţat de un anturaj nepotrivit).

Mass-media scoate în evidenţă în acest sens situaţii din următoarele categorii: copii “abandonaţi acasă” de către părinţi disperaţi plecaţi la lucru în străinătate; copii supuşi violenţei domestice; mame copii (fete rămase însărcinate la vârste mult prea mici); copii ajunşi sub influenţa diferitelor elemente negative (droguri, prostituţiţie etc.); copii abandonaţi cu totul de către părinţi, ajungând în diverse forme de instituţionalizare etc.

În eseul de faţă m-aş concentra asupra unor aspecte cu care mă confrunt eu personal, în jurul meu (Cluj-Napoca, în buricu’ târgului), scoţând în evidenţă gafe educative neforţate, uneori făcute chiar din convingere de către părinţi. Cel mai bine ne vom edifica aici pentru început prin prezentarea câtorva situaţii întâlnite (cu legătură directă sau indirectă spre matematică). Cu cât voi da mai multe exemple, cu atât ne va fi mai clar acest tablou în care de multe ori se naşte impresia că familia lucrează împotriva educaţiei profesorului. Aşadar să pornim cu câteva exemple concrete.

1) Începem cu unul mai liniştit: un elev primeşte o temă de 35 de pobleme cu calcul de expresii algebrice fără fracţii (renumitele exerciţii cu E(x) din testele de antrenament pentru EN 2020 în formatul vechi, Subiectul II, ex. 5). Pentru prima oră acesta poate prezenta primele 20 de exerciţii, unele făcute, altele greşite, altele neştiute. Pentru următoarea oră nu a făcut nimic pentru că “mama a zis să mă odihnesc”. Desigur că odihna însemna în acest caz stat pe jocuri de calculator. Halal odihnă a creierului şi halal pregătire pentru examen.

2) Un băieţel de clase primare (2-3) ajungea aproape zilnic în conflict cu colegi, de obicei conflictele degenerând violent, băiatul ajungând să se bată cu anumiţi colegi (ceilalţi colegi nu se băteau între ei). De fiecare dată învăţătoarea vedea că de fapt violenţa venea din acest băieţel şi, ca urmare purta dese discuţii cu mama copilului, cerându-i să nu-l mai lase la desene animate, de unde bănuia că acesta se impregna cu impulsuri agresiv-violente. Şi de fiecare dată mama îi garanta că acesta nu se uită aproape defel la desene animate, având program doar o oră pe săptămână (cândva sâmbăta la prânz). Ca director am auzit discuţia asta de multe ori, până când invăţătoarea a venit victorioasă: aflase la o discuţie extinsă că tatăl copilului se uita împreună cu acesta, ca “între bărbaţi”, la filmele violente ce se dădeau seara la televizor (cu Schwarzenegger, Stallone, Van Damme, Bruce Willis, Chuck Norris şi alţi minunaţi din acele vremuri). Da, desenele nu erau defel vinovate (deşi vestea a fost atât de şocantă încât nici nu am mai apucat să mă interesez la ce desene animate se uita acest copil). Nu are rost să vă mai precizez că acest băiat avea mari probleme la învăţătură, inclusiv la zona matematică.

3) Un alt băiat creştea doar cu mama sa. Aceasta, destul de tânără fiind, şi dorind a-şi reface viaţa cu un alt partener, îl neglija masiv, după principiul “sunt tânără, am şi eu viaţa mea!”. Ca urmare copilul petrecea tot timpul nesupravegheat în faţa ecranului (televizor, calculator, jocuri electronice, “deşteptofon”). Mutarea bunicului la ei a reprezentat un pas pozitiv, vizibil într-o relativă redresare, dar din păcate acesta a decedat după mai puţin de un an. Femeia îşi uita copilul cu zilele (la propriu), uneori chiar cu săptămânile, la diferiţi cunoscuţi care îl mai luau la ei (vorbesc foarte serios). Rezultatul a fost o stare profundă de dislexie, dar şi de discalculie. Nu aveai ce să faci cu el la matematică; NIMIC!

4) La un “banchet” de clasa a 8-a trei “mândre cucuiete” pe tocuri înalte şi cu rochii superelegante de seară, tăiate lateral pe toată lungimea piciorului, s-au îmbătat masiv. Nimic nu-i mai dezgustător decât o “ţoapă” îmbătată şi care se împleticeşte masiv în timp ce încearcă să danseze, căzând de pe tocurile acelea înalte. dezvelindu-şi picioarele până sus (mi-a rămas pe veci în memorie amintirea cu una din ele căzută pe jos printre cei care dansau; doar de vomitat am fost scutiţi). Eram într-un loc superizolat şi nu ar fi avut de unde cumpăra băutură. Am aflat repede unde s-au ascuns să bea, dar de unde avuseseră berea şi ce-au mai consumat acolo? Până la urmă am stabilit: cele trei mame le-o dăduseră “că acum sunteţi mari” şi le aduseseră direct cu băutura în geantă (despre una din cele trei mame ştiam şi că fuma împreună cu fiicele ei). Desigur că pentru rezultatele sub aşteptări la examene, tot noi profesorii am fost de vină.

5) Predând într-o şcoală alternativă, încerc să înţeleg faptul că unii elevi nu reuşesc să facă pasul spre învăţarea matematicii chiar din clasa a 5-a (mulţi acuză nivelul prea dur, prea riguros, prea ridicat al matematicii chiar din clasa a 5-a şi se ascund în spatele acestei realităţi, folosind-o ca scuză pentru neînvăţare). În plus ne trezim cu elevi transferaţi de la alte şcoli, elevi care nu ştiu nimic la matematică. Acestora încerc să le dau o “perioadă de graţie” în funcţie de particularul situaţiei. Totuşi, am şi eu limitele mele, şi chiar dacă este împotriva politicii tradiţionale a sistemului Waldorf, încep să folosesc corigenţa în clasa a 7-a, acolo unde este cazul. Într-o astfel de situaţie, de elev care nu făcea nimic, corigent deja pe primul semestru, mama acestuia a venit pe la jumătatea lunii mai cu următoarea argumentaţie (ca să-l trec degeaba): copilul urma să zboare cât de curând în SUA la tatăl acestuia şi probabil va rămâne acolo la şcoală; oricum, şi dacă se întoarce va fi undeva la sfârşitul lui septembrie şi “să nu rămână repetent”, aşa că cel mai bine să nici nu-l las corigent. În dezbaterea ce a urmat, în care eu susţineam că “nici vorbă!”, ea a scos argumentul suprem: nici ea n-a învăţat matematică defel şi uite ce “bine-mersi!” o duce. Într-adevăr, nici nu are rost să vă descriu cât de mare era BMW-ul ei cu prea multe X-uri (“cel mai tare din parcare” la propriu; cred că o anvelopă pentru acea maşină costa cât toate anvelopele pentru Ford-uleţul meu).

Trebuie să vă prezint pe scurt şi finalizarea situaţiei. Dacă tot avea atâţia bani, i-am recomandat o “doză şoc” de meditaţii (zilnic timp de o săptămână), în care “profesorul” găsit de ea “prin târg” să-l dreseze pe câteva probleme şi exerciţii elementare date de către mine. Precizez clar că am refuzat să mă ocup eu de copil (aşa cum a şi sugerat foarte abil); am refuzat chiar şi să le fac o recomandare a unui anumit profesor, ca nu cumva să pot fi acuzat ca aş avea şi cel mai mic interes personal. Până la urmă mama a găsit pe cineva, iar eu am avut o scurtă discuţie telefonică edificatoare cu acel profesor. Au avut loc de fapt doar 4 întâlniri, iar la testul super-uşor ce l-am dat elevul a reuşit chiar de nota 8. Ca urmare i-am dat media 6 pe sem. II şi copilul a putut zbura liniştit în America. Nici nu are rost să mai precizez că în toamnă era prezent din nou în clasa noastră. Însă în urma acelei lecţii, atât băiatul cât şi mama sa au înţeles “că se poate învăţa matematică şi că-i musai să o faci până la un anumit nivel minimal de bază!”. De fapt copilul nu avea nici cea mai mică vină; mama era cea care-l încuraja spre neînvăţare totală.

Totuşi, acestea sunt exemple punctuale, unele dintre ele cu implicare doar indirectă înspre neînvăţarea matematicii (putem continua şi cu altele, dar nu-i văd sensul). Aş dori să trecem însă la câteva situaţii des întâlnite de comportament general al părinţilor. Le voi numi modele educativ-comportamentale (trebuia să le spun cumva, să aduc diverşii factori de influenţă la un nume comun) şi voi folosi pentru enumerare prescurtarea MEC, ca o aluzie clară la una din denumirile Ministerului nostru, cu gândul conştient că influenţa părinţilor asupra procesului de învăţare este cel puţin la fel de importantă ca şi influenţa Ministerului de resort. Ordinea prezentării modelelor educativ-comportamentale, ordinea în care le voi scrie nu reprezintă neapărat şi o ordonare a importanţei acestora (onoraţi cititorii îşi pot stabili propria ordine). Totuşi, veţi vedea că există o logică a acestei ordini.

MEC1) Primul ar fi acela când părintele se exprimă acasă cu nonşalanţă că “nici el nu a fost bun la matematică“. Această afirmaţie spusă deschis în mediul familial – de faţă cu copilul – acţionează ca o dispensă: “da copile, nu-i nevoie să te oboseşti, ai tot dreptul să nu înveţi la matematică; eu voi fi aici pentru tine şi te voi apăra de ticălosul/ ticăloasa aia (de mate), nişte gunoaie care chinuie copiii cu prostiile alea!”, eventual cu extinderea “eu n-am învăţat matematica şi uite ce bine m-am ajuns!”. Confruntaţi cu note proaste, în cel mai bun caz aceşti părinţi vor apela la meditaţii, dar atmosfera generală rămâne. În astfel de situaţii, singura vină ce i-am putea-o imputa profesorului este acea de a nu fi depus strădanii suplimentare şi de a nu fi discutat îndelung cu părintele pentru a-l convinge de contrariul, dar orice persoană cu experienţă ştie că de fapt demersul este de obicei sortit eşecului: adultul din faţa ta are deja o poziţie de viaţă stabilă şi nu-i explici tu lui “cum stau lucrurile”. Eventual vei primi o replică de felul “doamnă, eu pentru banii care-i primeşti matale nici nu mă dau jos din pat!” (a trăit-o soţia mea).

Lărgind oarecum spectrul, putem observa desigur nivelul general de cultură al unei familii pe baza numărului de cărţi existent într-o casă, a cititului respectiv a necititului de cărţi, deşi acest criteriu nu este întotdeauna unul corect (nu întotdeauna, dar tot mai des, ca să parafrazez o reclamă nemţească la o bere fără alcool). Pe vremuri existau multe situaţii de elevi care ajungeau să exceleze la învăţătură deşi proveneau din familii cu un nivel limitat de cultură. La ora actuală asta se întâmplă însă tot mai rar, iar una din cauze ar fi că indiferent de nivelul cultural sau financiar al familiei, până la urmă toţi copiii ajung să aibă acces la influenţa ecranului (măcar televiziune cu multiple canale, cât şi smartphone). Dar despre acest subiect vorbim la categoria următoare, care este mult mai răspândită.

MEC2) Al doilea factor major, devenit la ora actuală un adevărat model educativ-comportamental al prezentei generaţii de părinţi, este “educarea cu ecranul”. Copiii ajung de mult prea mici în faţa ecranelor (TV, smartphone, calculatoare, existând chiar şi etc.-uri, de pildă ecranele din tetierele unor maşini). Toate acestea au influenţe puternice asupra evoluţiei copiilor; majoritatea părinţilor habar nu au despre mecanismele prin care folosirea diferitelor ecrane le distruge copilul. Am mai descris aceste aspecte şi mecanisme, dar încerc să o fac pe scurt încă o dată.

Ecranul, deoarece prezintă lucrurile direct în imagini nu antrenează capacitatea de imaginare a copilului (evit cuvântul “imaginaţie” deoarece mulţi înţeleg altceva prin imaginaţie). Cu cât acesta stă mai mult în faţa unui ecran, primind poveştile direct “arătate”, cu atâta el va citi tot mai puţin, procesul de a-şi imagina întâmplările descrise în text devenind tot mai dificil. Pentru un astfel de elev subiectul ascultat sau lecturat devine tot mai greu de imaginat, cititul unei cărţi ajungând să “îl doară”. Evident că peste ani un astfel de copil va avea dificultăţi reale în a-şi imagina situaţia descrisă într-o problemă de matematică.

Ecranul, prin succesiunea de imagini cu care “ne bombardează”, exercită a atracţie deosebit de puternică. Supunând un copil constant acestei forţe de atracţie, acesta nu mai ajunge să-şi exerseze atenţia conştientă într-o direcţie. Ulterior, la şcoală, deoarece subiectele şi ritmul prezentărilor nu au acelaşi nivel de atractivitate ca filmuleţele de pe ecran, elevul nu este antrenat să dea atenţie conştient şi constant unui discurs din partea unui dascăl. Deducem deci că folosirea în exces a ecranului cu scop distractiv slăbeşte capacitatea de atenţie a elevilor.

Deoarece folosirea ecranului cu filmuleţe este una pasivă, adică nu are loc un real dialog între aparat şi privitor, deducem că nici gândirea privitorului nu este şcolită de fapt. Chiar şî dacă privitorul dezvoltă gânduri iniţiale în urma unei idei sau întâmplări văzute pe ecran, el nu are de obicei posibilitatea de a întrerupe “filmul” şî a comenta pe baza gândurilor proprii (chiar şi dacă ar avea posibilitatea, probabil că tot nu ar face-o deaorece este demult obişnuit cu starea de pasivitate). Deducem că procesul de gândire, chiar şi dacă acesta apare în stare incipientă, de fapt nu duce la o gândire adevărată. Pe durată lungă, copilul utilizator de ecran comercial nu poate dezvolta o gândire stabilă sănătoasă. Am folosit expresia de ecran comercial incluzând în aceasta cam tot ce are interesul a te ţine captiv: toate televiziunile în afar de cele naţionale, care îşi au în menire a fi educative (de exemplu TVR la noi); tot ce circulă pe internet, jocurile pe calculator etc.

Ca să rezumăm, cu alte cuvinte, neformarea tripletei atenţie-imaginaţie-gândire absolut necesară în procesul matematic, neformarea acestora prin folosirea îndelungată a ecranului duce evident la un handicap major în procesul de învăţare a matematicii. Copilul nu se poate concentra asupra procesului de gândire din cadrul unei probleme, nu poate fi atent şi nu înţelege, nu îşi poate imagina mesajul scris al problemei sau mesajul vorbit al profesorului, care oricum foloseşte anumite noţiuni neobişnuite faţă de cele din viaţa de zi cu zi.

Dau aici un sub-exemplu cu care m-am confruntat în ultima vreme. Până la vârsta de 6-7 ani copilul învaţă exclusiv prin intermediul imitaţiei. De la impulsul uimitor de a se ridica în picioare, la vorbirea articulată şi până la modul de gândire şi raţionare, copilul preia totul prin imitaţie, avându-i pe cei din jur ca model (responsabili pentru acest mecanism sunt neuronii-oglindă, descoperiţi cu în anii din urmă). Ce nu-şi dau seama părinţii este faptul că forţele de imitaţie acţionează şi atunci când copilul stă prea mult în faţa ecranelor, urmărind un anumit tip de comportament. De pildă, putem privi modelul clasic Tom şi Jerry (“Da’ ce-are?! Da’ şi ăia-s răi?”). Acele filmuleţe aparent foarte simpatice reprezintă modelul tipic de agresiune constantă între “prieteni”. Impregnarea acestui model comportamental în sufletul băieţeilor (mai ales) duce ulterior la deja cunoscuta stare de bullying la adresa celorlalţi, agresarea constantă a celorlalţi ca formă obişnuită de socializare. Nu mi-am propus aici să explic şi felul cum această apucătură împiedică inclusiv învăţarea de pildă a matematicii (în timpul orei unii sunt mai atenţi la agresarea colegilor decât la urmărirea fenomenelor studiate).

În cazul în care într-o clasă există cazuri extreme de astfel de comportament, modelul de socializare se imprimă asupra tuturor şi, chiar dacă elevii sursă a acestui comportament sunt mutaţi din clasă, modelul agresiv de socializare înrădăcinat în acel colectiv merge mai departe. Mai mult, în cazul şcolii online am putut observa cum fenomenul s-a accentuat şi s-a stabilizat puternic, învăţarea matematicii fiind perturbată la cote nemai-întâlnite.

Revenind la folosirea ecranului, chiar mai mult, dacă copilul “este parcat” în faţa televizorului, la început pe desene animate, sau i se dă smartphone-ul oricând este nevoie “să stea liniştit” etc., urmările vor fi năucitoare, apariţia stării de ADHD în aceste condiţii fiind o garanţie. Din păcate, pe când boala respectivă este diagnosticată, cu greu se mai poate face ceva, iar tratamentul medicamentos sigur nu reuşeşte mare lucru înafară de accentuarea situaţiei din punct de vedere neurochimic. Vă daţi seama că astfel de copii nu au nici cea mai mică şansă la orele de matematică unde este nevoie de o concentrare şi o atenţie bună.

Am folosit la început denumirea de “educare cu ecranul”, dar de fapt părinţii nu-i lasă pe elevi la televizor cu gând educativ, ci de obicei, mai întâi îi pun şi se bucură că se uită, apoi îi lasă pentru că stau liniştiţi (nu-i mai bat la cap), iar pe când observă primele simptome, nici nu înţeleg ce se întâmplă, dar nici nu ştiu ce să facă. De fapt ar fi trebuit să folosesc expresia “antieducarea cu ecranul“. Eu păstrez totuşi expresia “educarea cu ecranul” în sensul că până la 6-7 ani educarea are loc doar ca învăţare prin imitaţie. În primii ani de viaţă educarea are loc sănătos doar alături de ceilalţi oameni – adică fizic, nu prin intermediul unor imagini – iar înlocuirea modelelor comportamentale ale celor din jur (adulţii din familie, fraţii mai mari, educatoare etc.) cu personajele din filmuleţe (nu doar din desenele animate) duce la nişte rezultate absolut nedorite ale “educaţiei”. Astfel, se obţine deseori un fel de caricaturizare a educaţiei, aşa cum filmuleţele – pe care copilul este lăsat să le imite – prezintă de fapt o caricaturizare a realităţii. Adică, în loc să stai tu lângă copil şi să-l “educi” lăsându-l să imite propriul tău fel de a fi, tu preferi să îl laşi “să absoarbă” modelele comportamentale de pe ecran.

După desenele animate de la vârstele mici, copilul intră cu timpul într-o vrie a nevoiei de senzaţie, către stimuli tot mai puternici, pe o “spirală a excitabilităţii”, având nevoie de senzaţii tot mai tari, făcând încet dar sigur pasul spre filmuleţe tot mai dure şi mai violente, spre jocurile de calculator (fetiţele spre platformele “de socializare”, în direcţia lăudăroşenie şi bârfă). YouTube-ul, TicTok-ul şi toate rudele acestora contribuie masiv la agravarea situaţiei prin rapiditatea celor prezentate şi prin posibiilitatea de creştere aproape incontrolabilă a senzaţiilor oferite. Nu rar copiii fac şi pasul către filmuleţele pentru adulţi.

De curând mi-a fost dat să cunosc un caz extrem de grav de copil distrus pe aceste baze (după afirmaţiile sale “Nu stau tot timpul pe jocuri de calculator; am doar 8 jocuri pe desctop-ul calculatorului personal”; îşi dădea şi el seama de gravitatea situaţiei şi încerca să glumească pe baza sa). Starea constantă de bullying la adresa oricui şi un ADHD profund îl împiedică de obicei pe acesta la învăţarea matematicii, deşi tehnic este un copil destul de inteligent.

Şi cine este de vină în astfel de situaţii? Este foarte greu să le explici asta părinţilor, să-i confrunţi cu realitatea faptului că ei, din prea multă dragoste, ei i-au cumpărat “toate-n lună şi în stele”, asigurându-i autodistrugerea garantată. În general, cu cât situaţia materială cu care este înconjurat copilul este mai opulentă, la început cu toate jucăriile posibile, dar apoi mai ales în zona device-urilor cu ecran, cu atât strădaniile sale spre învăţătură vor fi mai slabe, lipsindu-i motivaţia elementară spre mai bine.

Lucrurile se întâmplă similar şi în capătul celălalt al spectrului social. În cazul unor părinţi ce au plecat la lucru în străinătate, lăsându-şi copilul acasă, de pildă cu bunicii, apare un submodel educativ-comportamental interesant. Poate din dorinţa de a-şi arăta dragostea de la distanţă, poate din impulsul de a dovedi succesul financiar al plecării, dar oricum de obicei din dorinţa de a păstra şi un contact vizual, nu doar telefonic cu puiuţul, în majoritatea cazurilor copilul de acasă “primeşte”, adică este dotat destul de repede măcar cu un smartphone, dacă nu şi cu un laptop cu acces constant la internet. Bunicii sunt total nepregătiţi faţă de ce urmează, iar familia habar nu are ce mai face copilul cu timpul pe internet.

Generarea unei stări de dependenţă este cea mai des întâlnită situaţie după ce copilul este conectat cu ecran la internet. Unii părinţi observă asta şi apare ca reacţie limitarea timpului de petrecut conectat. Am dubii că şî funcţionează întotdeauna treaba asta. Un caz particular este trecerea copilului de a 8-a pe telefon mobil cu butoane până la examen; nu ştiu cât este de eficientă metoda, dar sigur este însoţită printre altele de înjosirea acestuia faţă de colegii săi.

MEC3) O a treia categorie de factori antieducativi (cu care mă confrunt eu uneori) ar fi chiar felul în care părinţii se implică în tot ce influenţează activitatea şcolară de învăţare. De multe ori părinţii (sau bunicii) îi învaţă pe elevi metode diferite decât ce le arăt eu la clasă. Uneori acestea pot fi folositoare, dar alteori acestea duc doar la perturbarea înţelegerii matematice a elevilor. Poate voi reveni la acest subiect când voi analiza activitatea profesorilor, pentru că de obicei aceste perturbări au ca sursă tot un profesor de matematică (particular sau rudă). Privind din punct de vedere al matematicii, pe mine personal mă deranjează mai puternic următoarele aspecte.

Primul ar fi “împingerea” elevilor spre învăţarea modelelor de rezolvare pe de rost (şi anumiţi profesori fac chestia asta). Rareori învăţarea rezolvărilor pe de rost are ceva pozitiv de-a face cu gândirea. Dacă-i dai unui astfel de elev o problemă puţin prea tare modificată faţă de cea “tocită” acasă l-ai “încuiat”, blocându-l definitiv. În plus, negândind, copilul nu este deseori capabil să aleagă cea mai uşoară cale de rezolvare sau demonstraţie pe o situaţie concretă. Am întâlnit cazuri când acesta alege o rezolvare foarte alambicată, doar pentru că aceasta a fost exersată masiv acasă (ca pregătire a unor posibile probleme de nivel foarte ridicat). În această categorie se încadrează şi învăţarea pe de rost a teoremelor sau a definiţiilor.

Un al doilea aspect ce mă deranjează îl reprezintă parcurgerea lecţiilor în avans. Eu lucrez foarte mult prin problematizare, încercând să generez şi să educ gândirea copiilor prin procesul de descoperire a elementelor lecţiei la clasă (descoperire însoţită). Or, un elev care vine cu lucrurile deja cunoscute are din start sabotată formarea gândirii la el însuşi, dar prin răspunsurile sale mult prea rapide sabotează procesul de gândire şi la colegii săi. Dacă eu nu intervin decisiv, pe lângă distrugerea procesului de gândire a celorlalţi mai are loc pe durată şi un fenomen de imitaţie în cascadă, acesta devenind modelul de urmat şi de către alţii (ca să aibă şi ei succes la oră). Mulţi profesori sunt desigur mulţumiţi de o astfel de situaţie, stimulând-o chiar, dar eu nu o gust deloc, pentru că învăţarea matematicii nu mai merge în direcţia pe care eu o consider sănătoasă.

Din păcate modelul respectiv are loc deseori chiar şi în formă organizat retribuită: mulţi meditatori particulari consideră că este absolut normal să parcurgă lecţiile în avans cu copilul, pentru că atunci apar destul de repede şi rezultatele bune la şcoală. Faptul că aceste rezultate apar pe o fundaţie instabilă, asta nu-i deranjează defel pe aceşti “colegi”: realizările copilului respectiv vor decădea imediat ce s-ar opri lecţiile antemergătoare. Un astfel de copil nu invaţă de fapt gândirea matematică, ci primeşte doar “povestit filmul” în avans, pe baza banilor plătiţi de părinţii săi. Aceşti colegi generează doar o dependenţă a elevilor de propria persoană, asigurându-şi în acest fel încasări constante.

Anul acesta am avut un astfel de caz într-o clasă: un copil care venea cu lecţiile deja ştiute “de acasă”, răspundea corect şi repede în dialogul de generare a lecţiei, “rupând gura târgului”, iar apoi folosea situaţia cu scop de bullying, ca înjosire a colegilor săi. Desigur că, acest comportament devenind repetitiv, l-am taxat în media finală.

Cred că mă opresc aici cu prezentarea acestor modele educativ-comportamentale ale părinţilor, fără însă a avea pretenţia epuizării subiectului. Cu acestea trei m-am confruntat eu până acum; prima mai rar, ultima din când în când, iar cea de-a doua aproape tot timpul. Desigur că onoraţii colegi cititori ar putea să găsească şi alte exemple în acest sens.

Analizând ordinea celor trei modele educativ-comportamentale prezentate mai sus vedem cum totuşi există o logică pentru această ordine. Prima categorie implică a poziţionare din partea părintelui conştient agresivă împotriva învăţării. A doua categorie este una în care poziţia părinţilor este una neutră, aceştia făcând rău învăţării inconştient prin modernizarea incontrolată a vieţii private cu ajutorul multelor ecrane. În exemplele din a treia categorie putem vedea chiar o implicare pozitivă a părinţilor în sprijinirea procesului de învăţare a matematicii, doar că aceştia greşesc fără să-şi dea seama şi perturbă de fapt învăţarea.

În textul de mai sus am prezentat aspecte din care reiese clar cum deficienţe ale comportamentuui elevilor au ca sursă clară familia copilului. Există însă şi un aspect negativ deosebit de răspândit la elevi, ce nu-şi are ca sursă familia (cel puţin nu ca sursă principală), iar o prezentare cinstită nu-l poate ocoli: este vorba de şcolirea furtului prin copiere în învăţământul românesc. Avem în primul rând categoria furtului sub formă de copiere a temelor, de copiere la lucrări de control şi teste, apoi mai târziu la examene. În aceste forme copilul se obişnuieşte cu preluarea necinstită a unor sarcini gate rezolvate de la alt coleg, fără a fi depus singur efortul de a le îndeplini. Părinţii ar putea fi acuzaţi doar în cazul temelor făcute de acasă de către ei sau de către altcineva decât copilul însuşi (uneori profesorii particulari preiau această sarcină). Despre copiatul la teste nici nu are rost să mai vorbim.

Dar de unde vin însă toate acestea? Care ar fi sursa faptului că în ţara noastră “se copiază la greu” oricând se iveşte o oportunitate? La astfel de întrebări nu pot răspunde cu exactitate, dar am oarece experienţe în combaterea acestui flagel. Părerea mea este că subiectul e de domeniul psihologilor; poate un specialist ca Paul Olteanu să fie în stare a desluşi suficient de clar acest subiect (dacă cumva încă n-a făcut-o). Subiectul are desigur şi o componentă istorică, în România meteahna respectivă evoluând încet dar sigur către statutul de flagel pe parcursul ultimei jumătăţi de secol. Eu pot însă povesti doar despre experienţele mele în acest sens în ultimii 25 de ani.

Pedagogia Waldorf “la ea acasă”, acolo unde nu este şcoală de stat, nu foloseşte notele (deloc!), pe tot parcursul celor 12 ani de şcoală. În România şcolile Waldorf trebuie să încheie semestrial medii (de pildă pentru a fi posibile transferurile), aşa încât trebuie să dea şi note. Noi profesorii încercăm în aceste condiţii “să împăcăm şi capra şi varza”. Concret, eu mă feresc să folosesc notele ca mijloace de impulsionare sau de pedeapsă (desigur că bursele şcolare nu ne ajută în acest sens). O atmosferă empatică şi constant obiectiv justificată îi face pe elevi să conştientizeze realitatea şi să pună mai presus de orice atitudinea de a fi cinstit. Poate ajută şi faptul că extrem de rar folosesc instrumentul corigenţei înaintea clasei a 7-a (iar atunci o fac explicând foarte clar motivaţia schimbării paradigmei). Nu ştiu clar ce să spun, dar realitatea este că mă confrunt cu fenomenul copiatului foarte rar, şi atunci doar în cazul unor elevi veniţi noi în şcoala noastră; fenomenul apare de obicei la elevi slabi veniţi în clasa a 8-a sau la “şmecheri” de a 9-a (există desigur şi excepţii interesante în acest sens). Pe de-o parte faptul că elevii văd că nu sunt pedepsiţi exagerat după o lucrare ratată, pe de altă parte o argumentare deosebit de riguroasă şi clară, dar fără de scăpare, pentru cei vinovaţi de o copiere (deci, nu o pedepsire!), aceste două atitudini hotărâte, dar pline de empatie, duc la faptul că elevii nu mai copiază.

Preventiv însă, nici nu prea le ofer ocazia. Fie că dau teste pe rânduri, astfel încât să nu încurajez copiatul simplu, fie că dau un singur test, dar atunci stau în poziţia “gardian” în faţa clasei, ca nici măcar să nu aibă gândul de a copia. Da, iar în cazul unui test pe un singur set de subiecte, la sfârşitul testului lucrările rămân pe bancă şi le strâng eu astfel încât să pot verifica ulterior dacă apar aspecte “dubioase” (ştiţi, elevii se mai mută între ei).

În contextul copiatului merită să amintesc o situaţie interesantă: o elevă de clasa a 10-a, care venise la liceul nostru (clasă de socio-uman) cu pretenţia că ea nu poate matematică, iar eu trebuie să o trec din oficiu, şi cu care mă luptam din clasa a 9-a ca să facă şi ea măcar de un nivel minimal. În decembrie 2019 a avut un test de nota 6, care mai avea şi încă un exerciţiu bine rezolvat de 1p, dar şters, sub care pusese o rezolvare greşită copiată de la o colegă. Gândul că a fost atât de aproape să ia chiar 7, coroborat cu conştientizarea prostiei de a fi copiat o rezolvare greşită, când ea de fapt făcuse singură corect, a dus la un plâns puternic, în care totuşi predomina bucuria faptului că văzuse că şi ea “poate”, că nu-i proastă. Cât despre mine, mai câştigasem lupta cu un copil.

Odată obiceiul “furtului” intelectual format, conştiinţa individului “nemai protestând” la furt, elevul începe să primească proiecte şi nu vede nici cea mai mică problemă în a prelua de undeva un text, susţinând că el este autorul. Aici am putea să găsim o oarecare vină părinţilor, la realizarea primelor “proiecte” în clasele mici, unde copilul habar nu are ce trebuie să facă, aşa că este ajutat cu generozitate de către părinţi, care îi arată “cum se face”. Din gimnaziu, dar mai ales în liceu vina este însă cu totul a profesorilor care nu-i educă pe elevi spre cinste (biblografie, prezentarea cinstită a textelor preluate etc.), dar şi al societăţii care le oferă cu generozitate astfel de oportuniţăţi (toată lumea cunoaşte posibilitatea selectării de proiecte “pentru nota 8”, ştiţi, “că atâta îmi trebuie ca să trec”). După antrenarea şi exersarea acestui gest în timpul şcolii, procesul culminează cu furtul constând în plagiat, întâlnit de la nivelele de bază şi până “sus” la lucrări de doctorat.

Povestind despre acest articol cu un părinte (care-şi adusese puiuţul la corigenţă), acesta a făcut următorul comentariu: Da, este interesant cum la începutul anilor ’90, student fiind, protestam pe stradă împotriva furtului din avuţia statului de către potentaţii vremii, dar nu vedeam nici cel mai mic conflict cu ideea că toţi copiam cum puteam de tare cu orice ocazie. Q.e.d. În acel moment istoric postrevoluţionar, alte ţări din fostul bloc comunist au încercat măcar un proces de resetare a societăţii, Noi? Dă-i înainte cu “olimpicii noştri” (la sport, la mate etc.). Subiectul fraudărilor, niciunde! (“ce-i aia?”). Constantin Titus Grigorovici

P.S. (încă un exemplu magistral) Subiectul ales este fără capăt şi nu doresc să-l dezbat cu exemple la nesfârşit. Totuşi, în contextul discuţiilor din mass-media despre vacanţe (când, cât şi unde?) mi-am adus aminte de un exemplu flagrant în care părinţii interferează puternic şi pe durată cu procesul de învăţământ. Este vorba despre fenomenul prin care familiile încurajează lipsa de la şcoală. Acestsa este un subiect vast în sine, acum dorind doar o scurtă atingere a sa. Eu observ acest fenomen în două momente speciale: la sfârşitul perioadelor de şcoală (adică înainte de vacanţă), dar şi oricând în timpul şcolii. Să le analizăm pe rând.

Părinţii sunt obişnuiţi din timpul şcolii lor că în ultima, chiar în ultimele zile înainte de vacanţă nu se mai făcea nimic (după încheierea mediilor, deci, care trebuie raportate la un moment dat de către profesori). Ca urmare, ei proiectează această idee şi asupra copiilor personali (nu că în zilele noastre tare mult s-ar lucra în şcoli până în ultima clipă: asta este însă o altă discuţie ce am putea-o avea la analiza activităţii profesorilor). Faptul că actualmente unii colegi profesori încheie mediile chiar din penultima săptămână ajută la extinderea periodei de “netrimis copilul la şcoală” în ultima săptămână. Acelaşî fenomen se întâmplă şi în cazul săptămânilor “Şcoala altfel”, care în multe şcoli este ultima înainte de vacanţa de Paşte: mulţi părinţi, mai ales din clasele primare îşi duc copiii înaintea acelei săptămâni la bunici sau în tabere private (sau îi ţin acasă, că “la şcoală nu se mai face nimic”). Fenomenul este vizibil de pildă în marile oraşe, când cu 1-2 săptămâni înaintea vacanţelor începe să se relaxeze traficul de dimineaţă, semn că părinţii celor mici nu-şi mai duc puiuţii la şcoală. Dreptul părinţilor de a motiva un anumit număr de absenţe încurajează fenomenul.

Legat de acest subiect, în puţinele ocazii în care am putut, m-am interesat cum are loc acest fenomen în “ţările civilizate” (Anglia, Franţa, Germania etc.): nu are loc defel! Se merge la şcoală până în ultima zi, până la ultima oră. Este clar că la noi sursa iniţială a fenomenului este în şcoală, dar la ora actuală familiile au preluat de mult iniţiativa în această direcţie.

Fenomenul a ajuns să funcţioneze însă şi în orice alt moment şcolar, prin faptul că părinţii îşi programează concedii în timpul şcolii, atunci când desigur preţurile de cazare sau de transport sunt mult mai mici. “Vacanţe” de 1-2 săptămâni în Malta,, în Grecia, la Paris, sau chiar şi numai la schi pe plaiuri mioritice, toate în timpul şcolii, au ajuns la ordinea zilei. De curând a făcut valuri prin mass-media noastră situaţia unei familii care era “în vacanţă bine-mersi” prin Germania şi pe care i-a luat poliţia la întrebări că de ce copiii nu sunt la şcoală (Die Polizei verificând instant că în România nu era vacanţă). Nici nu mai contează ce s-a întâmplat cu amenda uriaşă ce o risca familia respectivă. Faptul că aceste familii îşi învaţă de mici puiuţii că se poate lipsi de la datorie, asta desigur că cei mai mulţi nici măcar nu se gândesc.

Starea matematicii şcolare (0) – Cine e de vină? Adevărul este undeva la mijloc?

Cu orice ocazie, mică sau mare, toată lumea se apucă de comentat şi de analizat, încercând să desluşească cine este de vină legat de “starea actuală a învăţământului românesc”.  Întotdeauna cei care scriu sau vorbesc “ştiu foarte bine”, arătând “cu degetul” spre diverse puncte problematice, dar întotdeauna, fără excepţie, fiecare arată spre greşelile altora. Pe scurt, întotdeauna ceilalţi sunt de vină! Nici măcar o dată nu am văzut un dascăl să iasă “la ramp㔺i să recunoască greşelile profesorimii, sau un părinte care să recunoască ce şi cât a greşit la copilul personal, sau un oficial care să-şi depună demisia, spunând “pe post” că a făcut-o “de cacao” (asta tare ne-ar place nouă, celorlalţi).

Totuşi, trebuie să recunosc: dacă mă gândesc bine, de fapt am un contraexemplu la afirmaţia din această megafrază de patru rânduri.  Da, în finalul lui 2019, într-o discuţie cu un părinte a doi copii, acesta mi-a recunoscut ad litteram (însă doar între patru ochi): “fuck, I screw it twice!” (refuz să traduc asta). Dar asta reprezintă probabil rarul contraexemplu care mai degrabă confirmă magnitudinea şi gradul de adevăr apropiat de 100% al afirmaţiei de mai sus. Această afirmaţie se poate rezuma pe scurt astfel: da, toată lumea “e de vină”, toţi greşesc, însă fiecare vede doar greşelile celorlalţi. Nu cred că ar avea sens să încep eu aici cu greşelile mele, dar în finalul acestei serii (care nu ştiu cât va dura; poate mă voi întinde pe toată vacanţa), în final sper să am forţa şi să pot face şi o analiză a greşelilor mele (măcar a câtorva); asta aşa ca un fel de exemplu de “bune practici” în subiectul de faţă, cu speranţa că poate încep şi alţii acest proces de autoanaliză.

Dar să revenim la subiectul nostru. Sigur că nu-mi propun aici o analiză a întregului învăţământ. Voi fi mulţumit dacă voi putea atinge situaţia măcar a tuturor actorilor principali sau din linia a doua, implicaţi în starea matematicii şcolare româneşti, domeniu în care cât-de-cât mă simt mai “acasă”.

Dacă ne gândim la starea matematicii şcolare româneşti, atunci observăm uşor că toţi “actorii” implicaţi se pot grupa în câteva mari categorii: o primă astfel de categorie ar fi elevii şi familiile lor; o alta ar fi profesorii şi autorităţile cu care profesorii interferează direct; o altă mare categorie ar reprezenta-o autorităţile superioare, cei care oarecum dau direcţia generală. Pe lângă aceste trei mari categorii, sigur că mai există şi altele, care nu pot fi ataşate eficient şi complet logic primelor: astfel, am putea trata influenţa editurilor şi a autorilor de manuale şi / sau de auxiliare; ar merita discutat despre şcolirea viitorilor profesori de matematică de către facultăţi, dar şi formarea continuă prin diferitele forme; e clar că trebuie să discutăm despre influenţa societăţii sau a noilor tehnologii asupra rezultatului procesului educativ etc. Cred că începeţi să prindeţi ideea: tema propusă spre analiză este una căreia cu greu i se poate întrevedea un final (sigur este doar începutul!). Nu am pretenţia unei analize exhaustive, dar îmi propun să ating cât mai mulţi dintre factorii ce influenţează starea jalnică la care s-a ajuns. Consider că aceasta este singura cale pentru a ieşi din actuala situaţie în care fiecare găseşte de cuviinţă doar să scoată în evidenţă “vinile” celorlalţi, muşamalizând prin omisiune propriile greşeli, respectiv, greşelile “taberei” din care face parte.

Trebuie să ieşim din această stare în care doar “ascundem sub preş” propriile mizerii. Noi trebuie să întoarcem sensul acestui “vector de învinovăţire” care arată actualmente întotdeauna înspre altul, înspre ceilalţi, astfel încât fiecare individ, respectiv fiecare categorie să ajungă a începe un proces de autoanaliză pe baze cât mai obiective, pentru a porni un proces de însănătoşire. Iar dacă politicul nu reuşeşte încă să o facă, asta e; va trebui să începem acest proces noi, ceilalţi, după principiul “fi tu schimbarea care vrei să o vezi în lume!”. Postarea de faţă se doreşte startul într-un astfel de demers de analiză (post-pandemică) a stării matematicii şcolare româneşti.

*

Da, şi – pe post de încălzire în acest proces de analiză – începutul aş dori să-l fac de la Paul Olteanu, care într-o discuţie cu Cătălin Striblea la Mind Architect powered by Europa fm a analizat vorba românească “adevărul e undeva la mijloc“. Puteţi asculta această discuţie de câteva minute la adresa https://www.youtube.com/watch?v=C1KVsBF2DWI . Nu o voi relua aici, ci doar voi povesti pe scurt despre afirmaţiile susţinute acolo. Astfel, Paul Olteanu evidenţază că felul în care un om vede o situaţie este dependent de punctul lui de vedere, de istoricul său experienţial, că practic fiecare este într-adevăr “cu adevărul său”. Ca urmare, într-o situaţie cu doi subiecţi (doi oameni, două grupări etc.) adevărul nu este “undeva la mijloc”. Nu, mai degrabă adevărul este în ambele capete, pentru că de fapt există “mai multe adevăruri” (am putea folosi şi expresia “adevăruri multiple”).

Ca matematician, pentru mine aceste afirmaţii au avut un dublu efect. În primul rând că – Da! – adevărul nu este “undeva la mijloc” (chiar în sensul de medie aritmetică, eventual ponderată pe diferite criterii). Eventual, am putea spune că “adevărul, ca rezultat al negocierii” între cele două persoane, fiecare cu adevărul său, acest “adevăr negociat” se situază undeva la mijloc între cele două “adevăruri individuale“.

Însă afirmaţia că “adevărul e undeva la mijloc” este doar de faţadă, fiind spusă cu unul din următoarele două scopuri posibile. Astfel, uneori acest lucru este susţinut de către unul din combatanti sau de către cineva colateral doar ca modalitate de detensionare a “conflictului de negociere” ce începe să escaladeze. Alteori vorba respectivă este aruncată de către unul din combatanţi cu scop strategic, anume de a destabiliza poziţia celuilalt în argumentaţia sa, pentru a opri avansarea logică a celuilalt combatant (ceva de genul: nu te mai lupta atât de înverşunat, că oricum sigur n-ai dreptate, oricum “e cunoscut că adevărul e undeva la mijloc, deci nu poate fi pe poziţia ta”). În acest context, “adevărul e undeva la mijloc” este o afirmaţie parţial corectă, poziţia “adevărului” nefiind una obiectivă – aşa cum ne-am aştepta din folosirea cuvântului “adevăr”. Mai degrabă stabilirea poziţiei adevărului este rezultatul unei negocieri, deseori a unei lupte, în care desigur cel mai puternic, poate cel mai abil, trage “adevărul” cât mai spre poziţia sa, chiar şi prin gesturi “murdare”, cum am descris aici.

În al doilea rând, vedem cum cuvântul “adevăr” este de fapt subiectivizat, acceptându-se pierderea obiectivităţii, pierderea acestei caracteristici esenţiale a noţiunii de “adevăr”. Da, Paul Olteanu ne spune de fapt că oamenii au tendinţa naturală să pervertească “adevărul”, poziţionându-l de la sine înţeles în propria persoană (numită deseori “buricul pământului”), mai general în zona propriului interes. O concluzie interesantă a acestei realităţi apare atunci când cineva spune că de fapt “nu există adevărul adevărat!”. O formă mai filozofic-umoristică era vorba unui prieten drag, care atunci când o discuţie nu ajungea repede la concluzie, spunea că “adevărul e că se fură” (pe când eram în facultate, în anii ’80, dar este la fel de valabilă şi acum).

Totuşi, faţă de teoria prezentată de către Paul Olteanu (pe care nu o contest defel), eu am mai făcut încă un pas în plus. Deci, dacă “adevărul” de care vorbim este oricum subiectiv, constând în aspectele ce “ne plac nouă”, aspectele ce ne convin sau care ni se potrivesc, atunci putem inversa logica şi – în loc de afirmaţia că ” adevărul este în ambele capete” – putem la fel de bine considera că “ambele capete greşesc” în punctul lor de vedere (cel puţin parţial).

Din păcate, lumea nu reuşeşte să facă acest pas logic complet. Cei mai mulţi fac doar o jumătate de raţionament, anume, gândind că: dacă reuşesc să dovedesc că “celălalt greşeşte”, atunci, prin cale de consecinţă “este clar” că eu am dreptate (într-o competiţie a punctelor de vedere fiind deci eu cel mai bun). Oamenii fac acest raţionament atât în acţiune (ca şi “combatant”, de pildă ca politician), cât şi pasiv (ca şi “spectator”, de pildă ca votant). Acesta este felul în care funcţionează “politica mioritică” şi nu doresc să intru aici într-o analiză a urmărilor acestui fel de a gândi asupra vieţii noastre.

Acesta este momentul logic ce duce spre starea actuală a societăţii româneşti (în general), respectiv a stării matematicii şcolare (în particular, şi acum revin la subiectul nostru): dacă reuşim să atragem atenţia asupra greşelilor celorlalţi “actori matematici”, atunci “noi” suntem protejaţi într-un proces de analiză a surselor situaţiei. Se pare că majoritatea gândesc astfel. La acest obicei m-am referit în introducerea acestui preambul.

Mai degrabă mă gândesc că am putea trage discuţia într-o formă de filozofie de tip asiatic: după cum am spus şi mai sus, odată ce facem o analiză în care vedem cum şi unde greşeşte fiecare, ar trebui să ajungem la gânduri de felul “fi tu schimbarea pe care vrei să o vezi în lume!”. Cu alte cuvinte, ar trebui să facem o analiză realistă a felului în care fiecare parte greşeşte, ca un prim pas spre o mult dorită vindecare pornită ca acţiune de autovindecare a fiecăruia.

Dar, atâta vreme cât ne rezumăm la a evidenţia ce şi unde greşesc cutare sau cutare, şi nu ajungem să discutăm şi despre greşelile noastre – personale sau de grup – atâta vreme cât procedăm aşa, trăim automat impresia că noi nu greşim, şi ca urmare nici nu avem ce să corectăm la poziţia noastră (o atitudine de tipul “noi întotdeauna suntem perfecţi!”). Înţelegeţi acum de ce este nevoie de o discuţie care să cuprindă toate grupurile ce influenţează starea matematicii şcolare din România. Numai aşa, ajungând să recunoască fiecare unde greşeşte, respectiv unde trebuie să-şi schimbe poziţia, atitudinea, acţiunile, numai aşa vom putea porni pe un drum reparatoriu.

Să rezum raţionamentul de până acum: plecând de la vorba că “adevărul este undeva la mijloc”, Paul Olteanu a susţinut că “adevărul este de fapt în ambele capete”. De aici, eu am mai făcut un pas şi am concluzionat că de fapt “şi unul şi celălalt greşesc”, şi că singura cale spre rezolvarea sănătoasă a situaţiei este dacă ambii trec printr-un proces de autoanaliză, îşi recunosc punctele slabe, greşelile, iar apoi fiecare trece la un proces de autocorectare, fără să se tot uite la “ghimpele din ochiul celuilalt”.

Lucrând la acest material mi-am dat seama că de fapt s-ar mai putea urca un pas la nivel filozofic, făcând încă un pas în plus: anume că dacă ne “ridicăm” mult, muuult mai sus şi, privind lucrurile de acolo de sus “din balon” (sau “din dronă”, dacă preferaţi), trebuie să acceptăm că tot ce am analizat compune “marele şi completul ADEVĂR“. Da, şi putem ajunge la acesta doar analizând şi luând în calcul, adică acceptând toate aspectele implicate. Cu alte cuvinte, ADEVĂRUL reprezintă totul şi nu doar părţile care ne convin personal, individual.

În această analiză ce se doreşte una reparatorie, trebuie să punem însă accent mai ales pe aspectele negative (că despre cele pozitive oricum ne lăudăm de decenii); trebuie să ne uităm mai ales la tot ce se greşeşte, pentru că doar prin corectarea, măcar restrângerea acestora, se poate porni un proces de refacere sănătoasă a situaţiei matematice preuniversitare. Pentru a putea corecta ceva, un obicei negativ, o apucătură greşită, trebuie mai întâi să-l recunoaştem, să-l scoatem “la lumină”. Atâta vreme cât negăm un anumit aspect, nici vorbă ca acesta să poată fi corectat. Am precizat acest aspect pentru că se găseşte întotdeauna “câte un deştept” care să susţină că eu scot în evidenţă doar părţile negative, că nu sunt “pozitiv”, că nu sunt măcar cel puţin echilibrat. De zeci de ani mă străduiesc să fiu echilibrat, şi ce am rezolvat? “Răul” se dezvoltă bine-merci la umbra atitudinii de “politically-correct”.

De aia trebuie să facem această analiză. De vreme ce nimeni nu se apucă de aşa ceva, m-am gândit să o fac eu, aşa cum m-oi pricepe, de la nivelul meu “de jos”, cu datele şi exemplele pe care le am la îndemână în poziţia mea de la catedră. Îmi doresc să nu o fac agresiv, dar este evident că voi călca pe multă lume “pe bombeu”; sau să spun mai bine “pe băşici”? (cred că ambele expresii surprind aspecte importante ale situaţiei). Sper însă să beneficiez de o minimă înţelegere, de o oarecare clemenţă, iar obictivul general propus să acţioneze ca o “circumstanţă atenuantă” în această încercare. Ca să rămân încă puţin în atmosfera emisiunilor de la Mind Architect powered by Europa fm din acesr sezon (ianuarie – iunie 2022) sper că “scopul să scuze mijloacele”. Cu alte cuvinte, îmi cer scuze a priori pentru toate ce le voi spune în această serie de analiză ce o pornesc aici.

Mai am de precizat un aspect legat de aceste gânduri. Toată teoria este prezentată de către Paul Olteanu în forma unui “segment” cu capetele în cele două “persoane” X şi Y care-şi dispută “adevărul”. Dar dacă mai apare o “persoană” pe o a treia poziţie Z, atunci avem un adevărat triunghi confruntaţional. Cum am spus la început, situaţia matematicii şcolare poate fi rezumată pe scurt la intreferenţa acţiunilor a trei mari grupuri, dar de fapt sunt mult mai mulţi “actori” care o influenţează. Cu alte cuvinte avem un adevărat poligon, inclusiv toate diagonalele acestuia. De vreme ce pornim de la premisa că în matematica noastră actuală şcolară, în fiecare vârf al acestui poligon se greşeşte, pentru a se proteja este evident de ce fiecare încearcă să scoată în evidenţă greşelile “celorlalte vârfuri”. O astfel de atitudine însă, nu ne ajută la o autoanaliză şi la pornirea unui proces de reparare.

*

Desigur că tot acest proces de analiză şi autoanaliză, în vederea unei reparări şi autoreparări, s-ar face cel mai civilizat în urma unui dialog, un dialog aşezat şi civilizat, dar experienţa ne arată că “nici vorbă de aşa ceva!”. Nici vorbă să vedem curând în societatea noastră a porni încet, chiar şi timid, dar totuşi cât-de-cât hotărât un proces de dialog. Mentalul societăţii noastre nu este setat pentru aşa ceva, iar pandemia doar a exacerbat această apucătură individualistă de genul “eu cu mine şi cu Titus am discutat aşezat şi îndelung şi toţi trei am fost de acord şi am stabilit că …” (cred că în izolarea din pandemie, toţi “am discutat în minte” foarte mult despre subiectele ce ne preocupă). La ora actuală, oamenii când vin cu o propunere, vin de fapt şi cu decizia luată, ei apărând cu propunerea lor setaţi totodată să se şi lupte la nevoie “până în pânzele albe” pentru aceasta, pentru ideea ce este deja de mult decisă. Iar la asta lumea se pricepe foarte bine.

Am vorbit de reparare şi autoreparare, dar – ţinând cont că societatea este un adevărat organism; la fel şi matematica şcolară – ar fi total justificat să vorbim de vindecare şi autovindecare, atât în cazul societăţii, cât şi respectiv în cazul matematicii şcolare româneşti. De fapt, la un moment dat, titlul acestei noi serii se conturase în mintea mea ca “Matematica şcolară într-o societate bolnavă“. Reluând o idee de mai sus, am putea spune că în societatea noastră obiceiul este de a evidenţia, chiar a exacerba aspectele pozitive ale propriei activităţi, pe cele negative “împingându-le sub preş”, pe cât se poate chiar negându-le. Eu voi încerca să scriu în următoarele articole despre diferite aspecte negative ce le-am putut  observa singur sau mi-au ajuns la ureche, dar desigur că şi onoraţii cititori vor putea venii cu propriile observaţii din jurul lor. Te cruceşti despre ce auzi şi despre ce vezi la cei din jur (pentru că propriile greşeli nu prea se văd, desigur), aşa încât acest titlu nici n-ar fi fost prea deplasat. Totuşi, nu l-am ales deoarece are o clară tentă agresivă (părând că am tras concluzia din start), şi numai asta nu-mi trebuia la un demers în care oricum voi scoate foarte multe aspecte negative în evidenţă. Am ales un titlu mai neutru şi vă rog: “ţineţi-mi pumnii” să iasă bine!  Constantin Titus Grigorovici

In Memoriam Anca Olariu Vasian

Începutul proiectului pentagonia avea loc în toamna anului 1997, când încercam să pun bazele unei reviste de matematică prin care să diseminez multele lucruri interesante găsite în cadrul primului an de activitate şi de şcolire în pedagogia Waldorf. Ideea a apărut în contextul în care de fapt multe lucruri găsite la aceste cursuri erau pentru noi doar regăsite (pentru mine şi soţia mea), adică erau elemente pe care amândoi le cunoşteam din timpul şcolii. Waldorf-ul reprezenta doar scânteia de pornire a acestui proiect; ideile din pedagogia Waldorf urmau să rămână a însoţi proiectul doar “din umbră”, ca o bază profundă de înţelegere, majoritatea intenţiilor bazându-se pe elemente din matematica şcolară românească dinainte de 1980, sau pe elemente găsite în străinătate, menite să completeze, să întregească o formă mai sănătoasă de matematică şcolară. Aceasta era intenţia. Pentru materializare trebuiau depăşite însă multe obstacole de toate felurile.

Simţind un pericol deosebit, specific societăţii “postcomuniste”, am primit un sprijin nesperat din partea D-nei Anca Olariu, fostă profesoară de matematică, colegă cu soţia mea la începutul anilor ’90 la Şcoala Nr. 11, actualul Liceu Eugen Pora din Cluj,  cu care întreţineam o prietenie caldă. Demersul dânsei a reprezentat scutul necesar pentru a avea asigurată liniştea pornirii proiectului nostru, unul total neobişnuit şi surprinzător în comunitatea matematică şcolară a acelor ani. Dânsa mi-a zis atunci: după cum te ştiu, vei ajunge să spui anumite lucruri, iar în acele momente va trebui să fi protejat. Da, şi planul de protecţie gândit de dânsa a funcţionat, Caietele de matematică P3NT4GON1A au existat timp de 5 ani; ulterior a apărut şi Concursul de matematică P3NT4GON1A, ce a avut şase ediţii. Pot liniştit spune că Anca Olariu a fost îngerul păzitor al naşterii acestui proiect.

Cel mai important aspect al ideii de P3NT4GON1A este faptul că în comunitatea matematică şcolară s-a deschis spre gândurile despre o matematică alternativă faţă de unica formă propovăduită prin intermediul manualelor oficiale, colegii putând vedea şi vieţui că există şi altceva dincolo de acestea. În 2015 proiectul P3NT4GON1A a putut reporni, de data asta pe internet, bazându-se pe încrederea construită şi dobândită în anii 1998-2002, pe aura de matematică pentru suflet ce însoţea acest nume.

Revenind în zilele noastre, mult prea repede a venit vestea plecării dintre noi a dragii noastre prietene Anca Olariu. Vestea a căzut ca un fulger şi doar munca intensă mă va putea linişti. Bucuria de viaţă ce ne-o dădea la orice întâlnire era de o valoare nemăsurabilă, plecarea ei dintre noi lăsând un gol imens. Deşi în urma pornirii proiectului nostru, întâlnirile comune au ajuns sporadice, doar gândul la draga de Anca Olariu ne dădea încredere şi siguranţă. Într-adevăr, chiar şi numai gândul scurt la ea mă încărca şi îmi dădea putere pentru a merge mai departe: Anca mi-a zis că pot!

De pildă, în toamna lui 2009 când am fost numit director la Liceul Waldorf, noua clădire fiind pregătită pentru a ajuta la refacerea acestei instituţii alternative de învăţământ ajunsă la un nivel minim de 78 de elevi, am sunat-o (de ce oare?) iar ea mi-a spus astfel: mă bucur foarte mult pentru tine; de-acum uşile ţi se vor deschide mult mai uşor în munca ta (de a aduce înnoire în şcoala românească). Dânsa ştia cât de mult muncisem în toate direcţiile pentru a genera apariţia acelei clădiri şi este uimitor cum, cu o aşa de scurtă afirmaţie a reuşit să-mi dea o atât de mare doză de încredere şi de nouă energie pentru acei ani.

Acum, odată plecată dintre noi, nu-mi rămâne decât să mă gândesc în continuare cu drag la ea, ştiind că de acolo, de sus, ea va veghea şi asupra demersului nostru, aici în această lume nebună. De fiecare dată când voi mai reuşi un pas în acest proiect (de a contribui spre o matematică şcolară mai sănătoasă în ţara noastră), o parte din recunoştinţa mea se va îndrepta şi înspre memoria sa. Odihneşte-te în pace, suflet drag Anca Olariu Vasian. CTG

Profesorul Hollinger ca inspiraţie pentru vindecarea predării matematicii (3)

La începutul acestui an şcolar am pornit un document pentru un articol (documentul arată 22 sept. 2021). Gestul, impulsul de preocupare pentru subiectul gândit au fost depăşite ca importanţă de alte gânduri şi articole, dar a ajuns să se materializeze în două postări interesante pornind de la prefaţa unei culegeri: http://pentagonia.ro/profesorul-hollinger-ca-inspiratie-pentru-o-noua-lectie-1/ şi respectiv http://pentagonia.ro/profesorul-hollinger-ca-inspiratie-pentru-o-noua-lectie-2-fractiunile/ (martie-aprilie 2022). Apoi a venit peste noi un articol deosebit de important, ce “s-a cerut în faţă”, aşa încât analiza respectivului text – prefaţa lui Hollinger – a rămas neterminată. Pentru decenţa situaţiei, pentru valoarea textului, dar şi din respect faţă de ideea de lucru dus la un bun sfârşit, doresc prin prezenta postare să finalizez analiza respectivă.

În continuarea articolelor despre inspiraţia găsită în prefaţa ultimei lucrări semnată de Profesorul A. Hollinger (Probleme de geometrie pentru clasele VI-VIII, Ed. Didactică şi Pedagogică, 1982), am decis să mă concentrez asupra analizei celor găsite acolo, aspecte ce capătă astfel o sonoritate de adevărat testament metodico-didactic despre felul cum ar trebui noi să predăm matematica în şcolile româneşti de masă. În acest sens mi-am permis să modific puţin titlul acestei a treia părţi (devreme ce oricum am întrerupt şirul datorită demonstraţiilor teoremei lui Pitagora).

Culegerea respectivă a fost una de geometrie, dar aspectele din această prefaţă pot fi studiate evident şi prin prisma aritmeticii sau a algebrei. Rândurile sale sunt redactate în trecut, cu adresare către problemele şi problematica orelor de geometrie, dar de fapt aspectele cuprinse în această prefaţă aduc argumente în favoarea perioadei metodico-didactice a anilor ’60 -’70 în general (deci şi aritmetico-algebrice). La momentul respectiv (~1980-81) Profesorul Hollinger cunoştea desigur încotro urma să se îndrepte politica metodico-didactică a matematicii şcolare începând din anii ’80, linia păstrăndu-se cu mare mândrie şi în anii ’90 (nimeni nu a luat-o spre analiză după eliminarea dictatorului ce o impusese).

Eu predau din 1990 şi destul de repede am început să studiez această culegere. Prefaţa respectivă îmi sună de fiecare dată proaspătă şi logică, mai ales începutul acesteia: noi trebuie să venim în întâmpinarea elevilor obişnuiţi (a elevului mijlociu, cum spunea Hollinger), pentru sprijinirea înţelegerii matematicii. În precedentele două părţi am studiat primul aliniat al acestei prefaţe (cca. 1 pag.), venind totodată cu ideea de cum pot acele rânduri să ne inspire la generarea de noi lecţii prin care să venim în întâmpinarea nevoilor elevilor. Prefaţa respectivă este însă mai lungă (are peste 3 pag.); merită să aruncăm o privire şi pe restul gândurilor exprimate acolo. Aşadar, să continuăm lectura acestor rânduri, cu următorul aliniat. Iată ce ne spune Profesorul Hollinger:

  1. O altă idee a fost de a compune perechi sau chiar grupuri de probleme asemănătoare. La prima vedere ele par a fi repetiţii, poate chiar inutile. Ele sunt puse intenţionat, cu scopul următor: una din ele se rezolvă în clasă şi cealaltă sau celelalte se dau ca temă pentru acasă. Am motive să cred că elevul mijlociu va putea să-şi facă singur aceste teme, fără ajutorul părinţilor sau al meditatorilor. În felul acesta elevii învaţă treptat să facă demonstraţii în loc să înveţe soluţii, ei au succese iar succesul încurajează. În general, am căutat – şi sper că am reuşit în mare măsură – să propun probleme mai uşoare decât cele care se găsesc în lucrările similare.

În al doilea aliniat al citatului apare ideea de a confrunta elevul cu situaţii asemănătoare, similare, pentru ca acesta să poată face transferul unui aspect nou învăţat. Profesorul Hollinger susţine această idee prin faptul că una din probleme este prezentată la clasă, iar cealaltă/ celelalte sunt date apoi ca temă, elevul putând asfel să-şi facă mai uşor tema, fiind confruntat acasă cu aspecte deja cunoscute. Pe lângă acest fapt care este “la mintea cocoşului”, eu aş mai evidenţia unul: chiar şi ora următoare merită a elevul să fie confruntat cu aspecte deja cunoscute, cel puţin la începutul acestei a doua ore. Această metodă acţionează încurajator, elevul vede că ştie şi automat matematica îi devine atractivă: el recunoaşte situaţia, iar aceasta i se înfăţişează ca “un vechi prieten”.

Aţi putut vedea cum folosesc eu acest aspect în a doua parte a eseului precedent (postarea despre fracţiuni din 21.04.2022, în această serie), anume cum am făcut părţi similare de reprezentare grafică, atât la începutul lecţiei despre fracţiuni, cât şi apoi în ora următoare la începutul studiului despre fracţii (în varianta cu parcurgerea în două ore consecutive).

În altă ordine de idei, desigur că au fost doi-trei elevi care mi-au atras atenţia de la început că ei le cunosc deja aceste reprezentări din clasa a 4-a; le-am răspuns că sunt conştient de asta, dar totodată şi de faptul că probabil sunt colegi care încă nu le-au pătruns cum trebuie şi că face întotdeauna bine şi o mică recapitulare. Ce nu le-am spus elevilor nici măcar ulterior, a fost că astfel în diferite momente chiar şi cel mai slab elev din clasă înţelegea tot ce facem, iar asta se întâmpla pentru că la început am “luat-o încet”, adică reluând anumite informaţii.

Un alt aspect interesant, ce se poate citi printre rânduri în prefaţa lui Hollinger, este faptul că tema la matematică trebuie să conţină exerciţii de tipul celor predate la clasă. Din păcate, întâlnesc din când în când şi situaţii în care profesorii de matematică nu respectă deloc acest principiu elementar. În legătură cu acesta mai apare încă un alt aspect: cel puţin o parte din temă trebuie să fie la un nivel accesibil “elevului mijlociu”. Hollinger face referire la faptul că problemele sale sunt mai uşoare decât cele ce se găsesc în lucrări similare. Chiar şi acum, când mă gândesc la problemele de geometrie din culegerile lui Grigore Gheba, mă ia durerea de cap la cum le receptam atunci, în copilărie: la vremea respectivă îmi dădeau senzaţa că sunt prost; în memoria mea s-au păstrat cu o imagine de probleme monstruase (poate n-or fi fost toate aşa, dar aşa mi-au rămas mie în amintire). Pentru elevul de rând, culegerile lui Gheba erau bune prin partea de aritmetică şi algebră; dimpotrivă, geometria lui Gheba acţiona înfricoşător (în culegerile Gheba din familia noastră se vede foarte clar cum acestea sunt “muncite”, rufoase doar în prima parte, cea cu exerciţii de aritmetică şi algebră, dar puţin muncite în restul culegerii, cea mai mare parte, cea care conţinea acele probleme de geometrie; din colegerea mea a lucrat ulterior şi fratele meu; din culegerea soţiei au fost cu totul trei fraţi care au lucrat).

În al doilea aliniat din prefaţa amintită, Hollinger atinge şi una dintre problemele cele mai grave ale învăţământului matematic românesc, anume că la noi elevii au nevoie de ajutor pentru a-şi face temele de casă, în ultimă instanţă pentru a învăţa şi a înţelege matematica. Dacă cei din generaţia părinţilor noştri în anii ’60 intrau la facultatea de matematică fără ore suplimentare, la sfârşitul anilor ’70 “se cereau” deja meditaţiile pentru admitere la facultate, dar nimeni încă nu se gândea să dea meditaţii pentru admiterea la liceu (deşi se pare că prin luna Mai 1981, în final de a 8-a fiind, eu i-am dat câteva ore de matematică de recuperare unei colege care vroia să intre la clasele de liceu pedagogic în germană la Sibiu; am uitat complet, dar ea mi-a amintit de curând că pe baza orelor mele a intrat unde şi-a dorit), la ora actuală la clasele sau şcolile cu pretenţie meditaţiile la matematică încep de obicei din clasa a 5-a, în multe cazuri chiar din ciclul primar.

Revenind la aspecte de o fineţe mai profundă din acel al doilea aliniat (uimitor cât de multe lucruri a reuşit Hollinger să ne transmită în doar câteva rânduri!), reiau următoarele idei: În felul acesta elevii învaţă treptat să facă demonstraţii (adică să gândească o situaţie) în loc să înveţe soluţii (adică pe de rost), ei au succese iar succesul încurajează. Dintr-o frază avem aici două idei magnifice. În primul rând faptul că există două feluri de a învăţa matematica, gândită şi înţeleasă pe de-o parte, respectiv învăţată mot-a-mot, adică pe de rost ca soluţie întreagă. Din păcate, mulţi consideră că această a doua variantă înseamnă matematica: să înveţi soluţiile pe din afară. Mulţi părinţi care aşa au învăţat matematica îşi îndrumă copiii pe aceeaşi cale; mai groaznic este că există şi colegi profesori care fac asta, chiar şi la clasele cu matematică mai serioasă din liceele de top. N-aş dori să mă lansez aici într-o discuţie “in extenso” despre această temă, dar este evident că şi Hollinger consideră prima variantă ca fiind cea dominant bună.

În al doilea rând, dânsul atinge aici un aspect psihologic de o importanţă deosebită, faptul că dacă le permitem elevilor să aibă reuşite în procesul de învăţare a matematicii, atunci aceasta se va reflecta desigur benefic asupra dorinţei lor de a învăţa în continuare, de a merge pe acest drum al gândirii matematice, în loc să se mulţumească în a învăţa soluţii pe de rost (cum, din păcate, este cazul la ora actuală la mulţi copii). Ne putem uita aici la modul aproape penibil cum americanii îşi laudă învăţăceii la primii paşi, în orice domeniu, dar profesorul Hollinger ne-a spus-o de atunci că ar fi bine ca măcar într-un mod decent să-i lăsăm să aibă succese facile, pentru că asta îi încurajează să meargă mai departe pe drumul deloc uşor al matematicii. Ce-am făcut noi însă ca breaslă în acest sens?

Vă las pe dvs., stimaţi cititori, să vă gândiţi la felul cum introducem o temă nouă şi câtă răbdare avem în primii paşi şi în primele aplicaţii, atât la clasă cât şi la teme, astfel încât elevul mijlociu să ajungă să aibă şi să acumuleze succese în învăţarea matematicii, ţinând cont că acesta înţelege şi “prinde” lucrurile, noile cunoştinţe, mai greu, mai încet decât elevii de vârf. Gândiţi-vă dvs. la exemple care ne scot în evidenţă impulsul de-a dreptul malefic (am pute spune) al unor colegi, de a le îngreuna cât mai mult elevilor accesul în lecţiile de matematică. Faptul că profesorimea a trăit şi a lucrat, nu ani, ci decenii la rând în paradigma “tot ce contează mai mult sunt rezultatele în domeniul excelenţei”, acest fapt a dus pe durată la consecinţa că elevul mediu “e prost” (de vreme ce el nu pricepe dintr-o predare mai rapidă), chiar că el nu contează în economia orei de matematică, că la acesta nu funcţionează decât frica, duritatea şi oricum, neapărat orele suplimentare particulare (că el prinde mai greu şi are nevoie de explicaţii individuale). Ce spuneţi de nivelul abrutizant de greu al felului cum unii colegi găsesc de cuvinţă să bombardeze elevii cu subiecte deosebit de grele în numele unei “strădanii spre excelenţă” prost înţeleasă (de multe ori subiectele la lucrările scrise conţinând DOAR probleme deosebit de grele)? Emană din astfel de exemple o răutate viscerală, ce mă duce cu gândul la răutatea manifestată în “acţiunea specială” reprezentată de trezirea din hibernare a Marelui Urs de la răsărit asupra vecinilor noştri.

Alteori acest sistem este practicat din motive mult mai pământene: mai ales în localităţile mici, câte un profesor practică această linie şi se trezeşte să “ţină ştacheta sus” doar pentru a avea clienţi la meditaţii private, urcându-se pe “un piedestal” local, construindu-şi astfel o. Faptul că autorităţile locale nu vânează astfel de situaţii – în care unii colegi îşi construiesc o aură de “profesor bun” – asta ne arată de fapt cât este de îmbibată societatea românească cu impulsuri fanariote.

Acestea au fost comentariile la aspectele ce pot fi găsite în al doilea aliniat al prefaţei culegerii respective. După câte idei am putut extrage din acest scurt text (7 rânduri pe setarea de A4 scris cu 12, respectiv 10 rânduri pe setarea mai îngustă din culegere), acest aliniat este fără îndoială unul dintre cele mai dense şi valoroase texte de analiză a şcolii româneşti posibil de făcut. Primele două aliniate, luate împreună, ar putea reprezenta liniştit materialul pentru un curs de studiu a felului cum ar trebui predată matematica în mod just în şcoli (despre felul cum a ajuns să fie predată matematica actualmente în şcoli, în realitatea de zi cu zi, singurul adjectiv cinstit ar fi că modul actual de predare este injust!).

Celelalte aliniate ale acestei prefaţe sunt mult mai sărace în nestemate metodico-didactice, dar merită să aruncăm şi peste acestea o privire, chiar şi doar din simplul impuls de a epuiza acest valoros text, pe care – cum am mai spus – eu îl văd ca pe un adevărat testament metodico-didactic al marelui metodist, Profesorul Abraham Hollinger. Aşadar, să continuăm cu unele din următoarele aliniate, din care voi cita doar parţial pasajele ce mă interesează pentru a le analiza. Iată ce ne spune în mai departe Dl. Profesor:

  1. Bineînţeles, nu m-am limitat la aceste probleme relativ uşoare. În lucrare se găsesc foarte multe probleme cunoscute, tradiţionale. La multe din ele m-am abătut de la forma uzuală: în loc de “să se demonstreze că …” am pus o întrebare sau am cerut să se compare două unghiuri sau două segmente. (…) prin aceasta, problemele devin ceva mai grele – elevul şiret va găsi uşor răspunsul – dar se stimulează mai mult gândirea elevilor. (…) În unele cazuri în care este vorba, în fond, de faptul că o anumită mărime este constantă, am cerut când este maximă sau minimă. (…)

Am întâlnit o idee similară şi la d-na Birte Vestergaard care spunea astfel: elevul “nematematician” se simte agresat de cerinţe de tipul “demonstrează că …”; mult mai paşnice sunt cerinţe de tipul “ce observi în situaţia …; poţi să explici de ce se întâmplă asta?”. Studiind problema în ultimul an, am observat că nu merge de fiecare dată, dar mă străduiesc în sensul de a găsi exprimări mai puţin agresive pentru cerinţele problemelor date. Hollinger nu da clar această nuanţă, ci exprimă gândurile mai mult în sensul unei cerinţe orientative, undeva “în zona” rezultatului gândit, dar lăsând elevului spaţiu pentru a descoperii el finalul parcursului demonstrativ. Practic, profesorul Hollinger ne sugerează ca măcar uneori să fim “mai vagi” în cerinţe, să-i lăsăm şi elevului paşi de descoperire. Aici gândurile se ating cu cele din titlul lucrării Descoperirea în matematică a lui George Pólya, întreaga respectivă carte fiind de fapt despre descoperirea rezolvării unei probleme.

De exemplu, în sensul celor spuse de Hollinger, eu de mulţi ani am modificat cerinţa unei probleme cunoscute: În triunghiul ABC oarecare (scalen, clar înclinat într-o parte) trasăm mediana AM. Care din vârfurile B şi C este mai apropiat de dreapta AM? Un alt exemplu deosebit de intrigant a apărut de curând în testul 5 de antrenament din 2022 (subiectul III, problema 5), unde se poate cere compararea segmentelor EF şi FD (chiar şi pe un desen construit superexact EF pare mai scurt, dar la calculul lungimii cele două se dovedesc congruente). Te poţi aştepta ca elevul să măsoare cu liniarul, dar şi aşa rezultatul dat de măsurătoare va părea că nu-i corect faţă de ce se vede cu ochiul liber.

Desigur că aţi putut observa cum am sărit elegant peste faptul că Hollinger precizează clar şi importanţa problemelor grele, pe care dânsul le numeşte probleme cunoscute, tradiţionale. Aici nu este nevoie să insist; profesorii din România sunt setaţi “de la natură” să dea elevilor cât mai multe probleme grele. Totuşi, eu văd şi aici o nuanţă ce ar trebui precizată.

Prin anii ’90 socrul meu a venit cu următoarea idee: ar trebui găsită o colecţie bine selectată de – să zicem – 100 de probleme de geometrie, pe care dacă elevul le-ar face serios, acesta să poată face apoi orice altă problemă. Eu personal am fugit multă vreme după acest deziderat, având uneori, după un sfert de secol de strădanii, impresia unei “Fata Morgana”. Alteori simt clar că reuşesc totuşi paşi clari în acest sens. La ora actuală m-am stabilizat pe poziţia că subiectul nu este deloc stabil; întrevăd însă posibilitatea unei ultime încercări în acest sens, undeva în viitor.

Trecând însă de această preocupare, este totuşi de remarcat faptul că sunt multe probleme edificatoare la orice nivel, iar faptul că mulţi profesori nu au preocupare în acest sens, nu le parcurg defel, dar au pretenţia ca elevii să le ştie, acest aspect este dureros. Eu personal o astfel de categorie de probleme aş aştepta să fie incluse în manualele de geometrie. Desigur că situaţia poate fi extrapolată şi la algebră. Dar, să continuăm cu analiza textului nostru:

  1. Spre deosebire de alte lucrări similare, am introdus multe probleme de maxim şi minim. Experienţa arată că elevii simt o mare atracţie către acest fel de probleme. (…) Ca grad de dificultate problemele de maxim şi minim sunt foarte diferite: dacă unele din ele sînt uşoare (exemple: (…), altele sînt deosebit de grele (exemple: (…). Deosebit de interesantă îmi pare problema (…).

Legat de acest aliniat doresc să exprim doar două scurte idei. Prima ar fi că ar trebui să ne concentrăm mai mult asupra reacţiei elevilor la matematica noastră: Hollinger ne vorbeşte despre faptul că elevii simt o mare atracţie către acest fel de probleme. Mai exact: experienţa arată că …, adică cineva a fost atent de-a lungul timpului la reacţiile elevilor şi a observat că …. .

Un al doilea gând este că putem găsi şi în zona temelor “exclusiviste” atât probleme grele, cât şi probleme uşoare. Putem traduce afirmând că şi temele acestea pot oferi probleme cu un grad bun de accesibilitate elevilor de nivel mediu. Hollinger vorbeşte de probleme de minim sau maxim, dar pe mine ideea respectivă mă duce gândul acum la problemele de colinearitate şi concurenţă. Să analizăm puţin istoricul prezenţei acestora în matematica de după 1990, ca o scurtă paranteză.

La începutul anilor ’90 concurenţa şi colinearitatea era la mare preţ şi nivel înalt de olimpiadă (prietenii Menelaos & Co. dădeau fiori tuturor în afară de cei “aleşi de soartă”). Apoi, brusc au fost scoase din materie şi au ajuns în uitare, chiar proscrise am putea spune. De pildă, în 2005 când am scris culegerea de geometrie de-abia am îndrăznit să pun două exemple de colinearitate supersimple. Desigur că nici la examene, nici măcar în materialele de pregătire, n-ai mai văzut aşa ceva timp de un sfert de secol. Lucrurile au rămas astfel până când la testele de antrenament din 2020 (în timpul primului lockdown) au început să apară cerinţe de colinearitate în subiecte, însă doar în forme elementare (o aliniere de 180o). Concurenţa din testul 5 de antrenament EN 2022 de zilele astea (subiectul III, problema 4) ridică însă din nou ştacheta. Părerea mea este că e OK aşa, atâta vreme cât fenomenul rămâne în parametrii controlabili. Copiii de nivel mediu merită să aibă contact şi cu teme exclusiviste, cu condiţia ca aplicaţiile acestora să fie păstrate la un nivel elementar. Să revenim însă la prefaţa lui Hollinger:

  1. Socot că un mod util de a folosi aceste exerciţii la Cercul de matematică este următorul. Profesorul indică unui elev un grup de probleme apropiate pe care să le studieze singur din carte şi apoi să le expună în faţa colegilor. Exemple: a) Probleme de concurenţă sau colinearitate bazate pe simetria paralelogramului: (…) b) Cîteva probleme de minim rezolvate pe baza simetriei: (…); sau cîteva probleme de maxim: (…). c) Cîteva demonstraţii ale teoremei lui Pitagora: (…).

Aici doresc doar să observ similaritatea sfaturilor cu cele întâlnite şi la profesori din stăinătate, de pildă exemplul d-nei Marisha Plotnik din America despre care am vorbit în analiza despre alegerea demonstraţiei teoremei lui Pitagora, dar şi la Birte Vestergaard din Norvegia. Trebuie însă să fim conştienţi că acest tip de activitate este mare consumator de timp. Hollinger vorbea despre Cercul de matematică; aşa da, pentru cine face aşa ceva, dar la orele regulate, la cât suntem noi de fugăriţi prin materie nu prea pot vedea cum să facem aşa ceva în mod regulat. Doar dacă este vorba de clasă cu copii buni şi de încredere. La o clasă cu copii de toate nivelele n-aş îndrăzni să generalizez o astfel de metodă. Dar, încă o dată, Hollinger vorbea despre cercul de matematică.

Cu aceste gânduri chiar am încheiat studiul meu. Există desigur posibilitatea ca la o analiză mai atentă să se găsească şi alte idei valoroase de scos în evidenţă din această prefaţă; eu nu vin aici cu pretenţia unei analize exhaustive. Sper însă să fi reuşit – prin analiza mea totuşi extinsă – să vă fi trezit curiozitatea pentru această culegere, dar şi pentru ideile exprimate acolo, chiar să vă fi dat de gândit asupra felului în care funcţionează (sau nu) matematica şcolară actualmente. Gândul că măcar unul dintre onoraţii cititori va prelua idei exprimate în această serie de postări, acest gând îmi dă speranţe. CTG

Fracţiile algebrice şi “experimentele” pe diferite generaţii (Programa de examen şi urmările acesteia)

La începutul anului 2022 reprezentanţii unui anumit partid parlamentar se plângeau destul de sonor legat de “experimentele ce se fac pe elevi” în contextul intenţionatei introduceri a studiului istoriei holocaustului în România. Eu nu doresc să tratez acest subiect, deşi ar fi foarte interesant; au făcut-o alţii probabil mult mai bine decât aş face-o eu. În schimb, doresc să propun aici o scurtă istorie a “experimentelor” făcute pe diferitele generaţii în domeniul matematicii. Ca să nu iasă incontrolabil de lungă mă voi rezuma la amintiri legate de acest subiect doar din domeniul evaluării la sfârşitul gimnaziului după 2000. Precizez însă (pentru cine s-ar face că nu ştie), precizez deci că evaluarea la sfârşitul clasei a 8-a, luată ca atare, este doar de faţadă: miza adevărată este desigur admiterea în clasa a 9-a la licee sau la clase cât mai bune. Deci, să pornim.

În vara lui 2006 cineva a reuşit să “pună mâna” pe subiectele pentru Examenul de Capacitate pentru clasa a 8-a la proba de Istorie şi le-a publicat imediat pe internet. Din câte ţin minte, vestea a picat în buletinele de ştiri cu câteva zile înainte de examenul de istorie, aşa încât s-a putut apela la subiectele de rezervă (ţin minte foarte bine pentru că … vezi P.S.).

Recunoscând că nu ne puteam apăra împotriva acestor tipuri de furt, sub conducerea ministrului din vremea aceea (nici nu mă interesează care a fost), în disperare de cauză, s-a luat o decizie năucitoare: pentru anul şcolar următor şi în vederea examenelor din 2007 se vor publica din timp câte 100 de variante de teste la fiecare materie, iar în dimineaţa examenului urma să se extragă dintr-o urnă, la vedere (adică la televiziune), numărul variantei ce se va da; deci numărul unei variante alese aleator din cele 100 deja arhicunoscute. Această metodă s-a aplicat la toate materiile, atât la Examenul de Capacitate cât şi la BAC.

Zis şi făcut: cândva după vacanţa de iarnă au fost publicate cele 100 de variante, inclusiv la matematică. Partea clar pozitivă este că prin această mişcare s-au tăiat din rădăcină gândurile de furt a subiectelor (cel puţin pentru moment). Haideţi să vedem însă care au fost celelalte urmări.

În primul rând, editurile erau toate pregătite, luând startul într-o cursă nebună: după cca. 3 săptămâni apăreau pe piaţă primele culegeri cu rezolvările acestor 100 de variante. Elevii, la rândul lor, erau pregătiţi de lucru. Ce fel de lucru? Care, cum.

Unii s-au apucat de învăţat cinstit şi cum trebuie. Alţii s-au gândit să o ia pe scurtătură: aveau toate răspunsurile pentru cele 100 de teste care erau astfel concepute încât puteai lua nota 6 doar cu partea de răspunsuri, fără să faci nici cea mai scurtă rezolvare sau demonstraţie. Oare câţi din acel an au mers la examen cu copiuţe minuscule (100 de copiuţe, dar minuscule)? Eu estimasem atunci că erau suficiente 10 hârtiuţe cât un bilet de autobuz, pentru a-ţi scrie răspunsurile de la părţile I şi II pentru toate cele 100 de variante. Rămânea doar să reuşeşti să scoţi hârtiuţa potrivită şi să apuci să-ţi treci răspunsurile pe lucrare. Tot în acel an apăruseră de vânzare pixuri din care se putea extrage o hârtie de cca 5×12 cm, care lăsată liberă se rula înapoi în pix, ca o ruletă.

Ca o paranteză fiind spus, faptul că prin această mişcare nu s-a rezolvat problema furtului la examene, ci doar s-a mutat la un alt nivel şi la o cu totul altă scară, acest fapt avea să fie recunoscut în următorii ani, astfel încât peste 5 ani aveau să se introducă camerele şi înregistrările pentru supravegherea examenelor. Nici acest mod de oprire a copiatului nu a funcţionat din prima, următorii ani aducând un proces de adaptare şi creştere a performanţei de supraveghere. La ora actuală, din punct de vedere a furtului la examene, lucrurile sunt cât de cât sub control. Dar să revenim la momentul celor 100 de variante.

Eu doresc să evoc o alt fel de întâmplare, un dialog de la o oră de prin primăvara lui 2007. Studiam un corp şi o situaţie pe o problemă anume. Ţin minte că era una din acele situaţii pe care le facem oarecum cu fiecare nouă generaţie pentru că din acea problemă se înţelege foarte bine sistemul de conexiuni ce apar în structura respectivei situaţii. În acest timp un elev, neobservat de mine, studia intens culegerea ce cuprindea cele 100 de teste. La un moment dat a ridicat mâna şi şi-a exprimat nedumerirea: de ce facem această problemă? Pentru că nu apare în teste, deci nu se va da la examen! Vă las pe dvs. să analizaţi felul în care gândea acel elev, cât şi situaţia în faţa căreia eram puşi noi, profesorii de acest fel de raţionament.

Se pare că mulţi gândeau aşa şi chiar la conducerea ministerului erau conştienţi de acest aspect, aşa încât în paralel s-a pornit sistemul tezelor unice pentru clasele a 7-a şi a 8-a. Mediile de la cele patru teze din aceste clase urmau să înlocuiască nota de la examen. Nici acest sistem nu s-a aplicat tare mult, pentru că şi în acest caz se putea frauda intens.

Din acei ani ţin minte cum o elevă foarte slabă copiase până la nota 9 de la un elev bun, doar pentru că a putut, pentru că a avut ocazia, supravegheată fiind de o pereche minunată de profesori (colegul de sport şi cel de franceză), ambii total neobişnuiţi în a supraveghea elevii disperaţi să copieze (numai Tudor Chirilă a copiat şi la mate şi la sport!).

Chiar mai mult, ţin minte discuţii din vremea respectivă, de tipul: să-l punem pe cutare la supravegheat, că ştie ceva matematică şi să-i poată ajuta pe elevi, ca să iasă lucrurile cât mai bine (pentru şcoală). Eu personal eram disperat când auzeam aceste idei; am aflat după o vreme că colegii o mai făceau pe ascuns, fără ştirea mea. Sunt sigur că în multe şcoli s-au întâmplat astfel de lucruri.

Eu însă, pentru altceva am amintit “experimentul” tezelor unice: pentru marele circ ce avea loc la nivel naţional înaintea fiecărei teze, anume până la ce lecţie urma să se dea la teza unică. Astfel, pentru teza din semestrul I avea loc o adevărată negociere în culisele bucureştene. Rezultatul a fost de fiecare dată astfel încât materia pentru teza unică era masiv redusă faţă de ce ar fi fost normal. Urmarea secundară era că restul materiei se reporta pentru al doilea semestru. Aceasta la rândul ei ducea la negocieri mai acerbe în vederea stabilirii materiei pentru teza unică pe ţară din semestrul al II-lea.

Şi care era urmarea finală? Pentru că, desigur, urmarea ar fi putut fi prevăzută de către orice minte raţională, chiar din toamnă, de la “negocierea” materiei pentru prima teză a anului.  Doi ani la rând capitolul despre cerc de la sfârşitul clasei a 7-a, dar şi corpurile rotunde din finalul clasei a 8-a, nu au fost incluse în materia pentru tezele unice. Şi ce se întâmpla în aceste condiţii? Aici am vrut să ajung: acolo unde profesorul era hotărât, se studia şi cercul după teză. În majoritatea cazurilor, însă, acele generaţii nu au învăţat lecţiile despre cerc, inclusiv despre numărul pi (un elev de-a 8-a mi-a răspuns atunci: 1,62?), desigur nici lecţiile despre corpuri rotunde.

Dar staţi liniştiţi, asta nu s-a întâmplat pe vremea când D-na Viorica era elevă, însă poate că perioada să coincidă cu vestitele ei meditaţii la matematică despre care s-a lăudat că le dădea. Rezumând: au fost două generaţii la rând fără aria şi perimetrul cercului, şi nimeni nu a trebuit să dea socoteală pentru acest lucru (aşa cum ar da socoteală un profesor dacă ar fi prins că nu a parcurs la clasă aceste lecţii deosebit de importante). Tot “sistemul” s-a făcut că nu vede şi “s-a uitat în altă parte”.

În altă ordine de idei (ca o paranteză fie spus), înţelegeţi aici de ce am spus de curând că eu mă bucur de renunţarea la teze, pentru că mult circ şi zdroabă am avut de-a lungul anilor din cauza lor (nu numai în pandemie), în contextul schimbărilor pentru anul şcolar 2022-2023.

După aceste două scurte episoade ciudate (capacitatea cu 100 de subiecte la vedere şi tezele unice) s-a reintrodus examenul sub denumirea de Evaluare Naţională (din câte ţin minte, dacă nu mă inşel; tocmai fusesem numit director, iar situaţia respectivă mă speria extrem). În afara unui episod ciudat şi izolat (nişte subiecte mult prea uşoare în 2013, pe care nu doresc să le comentez aici), în afara acestei întâmplări examenul de Evaluare Naţională mergea relativ bine, când a lovit pandemia de Covid-19, cunoscut şi ca Coronavirus (Coroana mă-sii, vorba unui cântec de peste Prut, nedifuzabil la radio).

În noile condiţii, care a fost mişcarea decisă în primăvara lui 2020 în timpul primului lockdown? S-a decis scurtarea pandemică a programei la “jumătatea” clasei a 8-a. Astfel, generaţia respectivă nu a dat la examen ariile şi volumele corpurilor, fracţiile algebrice, funcţiile şi sistemele de ecuaţii. Unele dintre aceste lecţii chiar nu fuseseră parcurse prin şcoli, dar altele fuseseră şi au fost excluse degeaba (aplicându-se acelaşi principiu ca la Lb. Română, materia D-nei Ministru din acel moment). În această categorie se încadrează cu certitudine fracţiile algebrice (de ce a fost exclusă această temă de parcurs în noiembrie?).

D-na Ministru a promis că lecţiile vor fi recuperate la revenirea în şcoli. Poate funcţiile le-au mai recuperat unii prin a 9-a, poate şi sistemele de ecuaţii, poate-poate şi fracţiile, dar sigur ariile şi volumele nu le-a recuperat nimeni în clasa a 9-a. Deci bifăm o generaţie fără acest subiect de bază în gândirea matematică, subiect cu cele mai puternice aplicaţii în practică din toată matematica.

În toamna-iarna anului 2020 am scris foarte mult pe această temă. Eram diriginte la clasa a 8-a şi eram convins de importanţa demersului: fenomenul ariilor şi al volumelor trebuia reprezentat măcar pe cazul câtorva corpuri în viaţa acelor elevi. Îmi place să cred că mesajul mi-a fost cumva auzit şi prin acesta am influenţat reintroducerea măcar parţială a acestui domeniu în programa de examen. Anul acesta (2021-2022) ariile şi volumele corpurilor de bază sunt din nou în programa pentru EN.

Deşi consider că şi fracţiile algebrice sunt importante pentru cultura matematică a oricărui elev (cel puţin până la un anumit nivel elementar), anul trecut şcolar nu am avut energia să mă mai lupt şi pentru aceste în felul cum am făcut-o pentru ariile şi volumele corpurilor. Însă cu elevii mei le-am parcurs scurt, prin mai, în două ore consecutive, explicându-le că se vor întâlni prin liceu cu acestea, iar atunci probabil că nu va fi timp să li se explice tare mult.

Din păcate, în acest sens ne îndreptăm către al treilea an în care fracţiile algebrice nu sunt incluse în programa pentru EN. La nivel naţional vorbim deja de trei generaţii care vor “bântui” prin licee fără să aibă noţiuni de bază despre “fracţiile cu litere”. La unii dintre aceştia, profesorii din licee se vor strădui să le recupereze (măcar pe scurt); în cazul altor elevi aceştia vor fi lăsaţi “în aer”: cine are meditator particular, acela pricepe ce se întâmplă, cine nu are ajutor particular, acela va rămâne definitiv şi iremediabil în urmă. Unii profesori doar se vor mira “tâmp” de aceste generaţii care “sunt mult mai slabe ca înainte de pandemie”, negândind că de fapt este vina sistemului (autorităţile care au pierdut subiectul pe drum + profesorii care n-au avut conştienţa că trebuie să acţioneze ca o plasă de siguranţă pentru sistemul de cunoştinţe şi de gândire a elevilor).

Eu anul acesta nu am clasa a 8-a şi îmi cer public scuze că nu am pornit o campanie similară de luptă pentru fracţiile algebrice, aşa cum am făcut-o anul trecut pentru studiul ariilor şi al volumelor, pentru a fi incluse în materia de examen măcar într-o formă elementară. Nu am mai avut energie şi pentru respectivul demers, şi mă simt vinovat în acest sens. Dar, oare, numai eu văd lucrurile astea?

În câte locuri sunt necesare fracţiile algebrice în liceu? În câte lecţii se va resimţii neparcurgerea acestora din clasa a 8-a? Pentru că fiţi siguri: dacă nu sunt în programa de examen, sunt şanse mari ca profesorii să nu le facă, fie că nu-i interesează, fie că le vor refuza elevii. Noroc că probabil mulţi le-au făcut deja, înaintea apariţiei programei pentru EN 2022.

În concluzie, despre astfel de experimente mă îngrijorez eu mai mult, nu despre introducerea studiului holocaustului în şcoli. Dar despre aceste experimente nu vorbeşte nimeni. De pildă, nimeni nu pune în discuţie chinuirea elevilor prin forma aberantă în care erau predate şi cerute la examenul de final de gimnaziu polinoamele la începutul anilor ’90 (renumitele cerinţe cu Teorema lui Bézout), ca actualmente polinoamele să nu mai “prindă” nici măcar examenul de BAC. Pentru mine aceste gânduri poartă o durere adâncă. Rămâne de văzut dacă se poate gândi un sistem de programă care să prevină pe viitor posibilitatea apariţiilor de astfel de situaţii (acest subiect însă cu altă ocazie). CTG

P.S. Să vă povestesc de unde ţin minte foarte bine startul acestei poveşti. Fiul meu a terminat clasa a 8-a în acel an, aşa încât furtul subiectelor de la istorie ne-a atins direct. Iar în subiectele de rezervă s-a dat Formarea poporului român, pe care o tot repetaserăm împreună, aşa încât a luat 10 la istorie (la mate n-a luat chiar 10 pentru că încurcase numele axelor de coordonate). Oricum a intrat până la urmă unde a vrut.

Şi în contextul copiatului la examene avem experienţe interesante. La BAC de pildă, întrebat fiind fiiul nostru de ce s-a înscris la proba de psihologie, pentru că “noi suntem fiinţe raţionale”, nu suntem buni la tocit, răsunsul său a fost elocvent: lasă Mamă, că am calculat şi oricum voi fi în faţa sau în spatele Mariei, şi ea le ştie bine (adică ea are capacitatea de tocit; am schimbat desigur numele colegei). Da, şi aşa a fost. Apoi, anul următor s-au introdus camerele de supraveghere.

Ministrul Educaţiei, geometria vectorială şi renunţarea la semestre

Domnii din Deşteptarea la Europa FMVlad Petreanu, George Zafiu şi Luca Pastia – au luat spre analiză – cândva, prin februarie – spusele D-lui Ministru despre materia mult prea încărcată, pe exemplul geometriei vectoriale, dar şi despre “reintroducerea trimestrelor”. Merită să-i ascultaţi pe podcast la adresa https://www.europafm.ro/program/desteptarea/ . Căutaţi emisiunea din 16 februarie 2022, porniţi înregisrarea la minutul 8:30 şi ascultaţi câteva minute despre vectori, dar urmăriţi apoi emisiunea până la min. 23:00, ascultând şi pasajul despre trimestre vs. semestre.

Prima parte este despre vectori şi în general despre materii care nu le-au plăcut ascultătorilor când erau elevi. A doua parte (cam după minutul 16), conţine o “analiză” a situaţiei de după introducerea semestrelor şi “revenirea la trimestre”, care “e mai multe” (3 > 2). Emisiunea este din februarie, dinaintea deşteptării din hibernare a marelui urs (de când pregătisem şi postarea, în forma de atunci). Între timp am aflat că nu vom reveni de la 2 la 3, ci vom trece chiar la 5. Aha! Deci aşa vom creşte calitatea şcolii româneşti! Acum am înţeles! Da, da! Pentru că 5 > 3 > 2. Evident! g.e.d.

Ştiţi ce problemă m-a “chinuit” pe mine chiar din timpul şcolii, dar şi mai târziu: oare, de ce le spunea trimestre? Pentru că erau 3? Adică pentru că anul şcolar era împărţit în trei părţi (fapt susţinut de ideea de semestru, de la semi, adică jumătate)? Sau pentru că erau de cca. 3 luni (cel puţin primul)? Pentru că în economie anul calendaristic era împărţit în patru trimestre, fiecare de câte trei luni. Oare cum trebuie deci înţeles cuvântul trimestru?

Oricum – vorbesc serios acum, renunţând la tonul de pamflet – eu mă bucur de renunţarea la teze, pentru că mult circ şi zdroabă am avut de-a lungul anilor din cauza lor (nu numai în pandemie). Acesta este însă un alt subiect, pe care-l voi trata cu o altă ocazie. Acelaşi lucru mă gândesc să-l fac şi cu subiectul celor 5 “pentamestre” în care va fi împărţit anul şcolar de la toamnă (în linii mari sunt de acord şi cu această mişcare, dar să vedem concret cum se va întâmpla; îmi este frică de un gol de directive, ca apoi să vezi ce le va mai trece unora prin cap!). Titus Pentatonicus

Despre alegerea demonstraţiei teoremei lui Pitagora pe CEAE/edupedu – O analiză (1)

De curând am atenţionat asupra unui articol de pe edupedu.ro, în care era prezentată o altă demonstraţie – una mult mai vizuală – dintr-un manual nemţesc. Am pus atunci doar link-ul articolului, cu scurte comentarii, pentru că eram în mare criză de timp (voi explica mai jos de ce). Iată din nou link-ul respectiv https://www.edupedu.ro/cum-este-demonstrata-teorema-lui-pitagora-intr-un-manual-german-de-matematica-o-comparatie-cu-romania/ , însă acest articol este de fapt reluat de pe blogul CEAE https://ceae.ro/cum-este-demonstrata-teorema-lui-pitagora-intr-un-manual-german-de-matematica-o-comparatie-cu-romania/ . Specialiştilor de la CEAE Centrul de evaluare şi analize educaţionale trebuie să le mulţumim pentru acest articol minunat, ce pune degetul pe o rană veche şi profundă a şcolii gimnaziale româneşti. În schimb portalul edupedu.ro l-a mediatizat şi a adunat câteva comentarii sugestive despre atitudinea breslei noastre. În acest eseu aş vrea să prezint câteva aspecte legate de subiectul respectiv, într-o gamă largă, dar înainte doresc să fac o scurtă prezentare a celor găsite în comentariile la articolul respectiv, sub forma unui:

A.S. (ante scriptum) Am publicat postarea respectivă în mare grabă, nevrând să intru în alte detalii, dar gândul mi-a rămar la câteva comentarii pline de îngâmfare, cu accente de răutate, chiar belicoase, în câteva puncte cu tente de-a dreptul naţionaliste, de care avem tot mai des parte pe plaiurile mioritice. Reiau aici comentariile la articolul respectiv acumulate în zilele ce-au urmat:

C1) (31,03.2022) E foarte bine cum se face in Romania si in conformitate cu cunoștințele precedente. Restul demonstratilor sunt bune ca proiect dar sa nu le exageram rolul.
Este specific învățământului german sa impresioneze elevul cu aplicatii ale chestiunilor pe care urmeaza sa le invete dar sa nu exageram rolul acestora in efortul de a intelege si aplica teoria. Entuziasmul initial se pierde la fel de repede si la noi si la ei. Diferenta principala cu care sunt doar partial de acord este selectarea elevilor de mici dupa posibilitățile cognitive.

C2) (31.03.2022) Articolul pare cam… ridicol. Există și la noi astfel de demonstrații… Hai să fim serioși! Să nu credem că numai ce este nemțesc e bun! Așa ne-am păcălit la alegeri…

C2′) (2.04.2022) Aveți dreptate, dar cred că, la alegerea lui Ioanis a avut un rol important și aplicarea metodei Clotilde Armand.

C3) (4.04.2022) Această demonstrație o aveam, când eram elev, in clasa a7a în manual. Cât despre nemți, încă mai au mult de învățat de la noi, la toate capitolele metodice școlare. Aici chiar stăm foarte bine!

Oare, chiar ar merita să analizăm en-detail afirmaţiile din aceste comentarii? Unele au în conţinut şi elemente metodico-didactice (în primul comentariu e o idee interesantă, dar şi în al treilea). Din păcate, însă, predomină pasajele cu tentă îngâmfat-răutăcioasă, de tipul “du-te mă, că nici la nemţi nu umblă câinii cu colaci în coadă” sau “învăţământul nostru este cel-mai-cel din toată lumea!”. Nu doresc să vin cu replici la acelaşi nivel (deşi îmi stau pe limbă câteva). Psihologia întâmplării merită totuşi comentată şi tratată, dar pe un plan ceva mai ridicat al discuţiilor.

Din start trebuie să precizez că sunt într-u totul de acord cu linia articoluluide pe CEAE, dar totodată trebuie să precizez un aspect: finalul titlului – o comparaţie cu România – este într-adevăr provocator pentru profesorii care consideră învăţământul matematic românesc ca deosebit de performant. Astfel de observaţii sunt foarte bune, absolut justificate, dar ar trebuie aduse cu mai multă precauţie, pentru a nu stârni reacţii de felul celor citate mai sus.

*

Să trecem la lucruri mai serioase, cu tentă pedagogică, deşi trebuie să recunosc, că cele ce urmează se doresc a fi un fel de răspuns la comentariile redate mai sus. În paralel, veţi vedea cum întâmplarea cu acest articol se leagă în mod ciudat cu evenimentele din viaţa mea din aceste zile. Aşadar, să purcedem la analiza oportunităţii studierii altor demonstraţii la teorema lui Pitagora şi a alegerii acestora într-un mod cât mai potrivit posibilităţilor şi nevoilor elevilor.

Pentru început doresc să evoc o întâmplare ce mi-a fost povestită de o colegă ce a participat cu ani în urmă la o întâlnire de profesori din toată Europa de est (parcă era vorba de Riga). Cu ocazia respectivă s-au organizat şi nişte grupe de lucru, iar la grupa de matematică profesorul care conducea activitatea (iar un neamţ, dar staţi liniştiţi, îndată apar şi americanii), acesta a venit cu următoarea întrebare: “Cine ştie o altă demonstraţie la teorema lui Pitagora?”. Şi nimeni n-a ştiut vreuna. Este evident că avem de-a face cu o problemă generală: există o cale aleasă cândva ca “cea mai bună” (aia prin teorema catetei) şi de-atunci toată lumea merge docil pe aceasta; la ora actuală o mare parte dintre profesori nici nu mai cunosc alte demonstraţii.

Părerea mea este că cel târziu la cursurile de metodică din facultăţile de matematică lucrarea lui Mihu Cerchez ar trebui inclusă ca bibliografie obligatorie (Mihu Cerchez – Pitagora, Ed. Academiei, 1986, azi 12,60 lei la o simplă căutare pe net). Actualmente nu o am la îndemână, dar ţin minte că ar avea ceva de genul 55 de demonstraţii la teorema lui Pitagora (afirmaţie neverificată). În culegerea de geometrie ce am scris-o (Ed. Humanitas Educaţional, 2006, staţi liniştiţi, nu se mai găseşte pe piaţă) am inclus în final 12 demonstraţii, două dintre acestea care nu sunt la Mihu Cerchez.

Demonstraţia principală evocată în articolul CEAE/edupedu.ro (cea cu patru triunghiuri rearanjate în cadrul unui pătrat) este şi în cartea lui Mihu Cherchez, fiind una dintre cele mai cunoscute şi mai “vizuale”, mai accesibile copilului cu cunoştinţe elementare; o vezi şi o înţelegi imediat fără să fie nevoie de cine-ştie ce explicaţii complicate, de pildă pe bază de alte teoreme mai abstracte (desigur că ulterior poate fi şi aceasta redactată frumos ca demonstraţie). Împreună cu soţia mea o numim “demonstraţie cu şerveţele”.

Atât demonstraţia din manualul nemţesc, cât şi filmuleţul de pe youtube, prezentate în articolul CEAE/edupedu.ro au avantajul că se bazează în principal doar pe arii, adică nu folosesc elemente prea intelectuale, mai greu accesibile elevului de rând (teorema catetei, respectiv asemănarea triunghiurilor necesară pe drumul de demonstrare a teoremei catetei; nici factorul comun nu le este cu adevărat clar multor elevi; chiar dacă aparent îl ştiu aplica, mulţi elevi îl fac ca un element de dresură, iar pasul din demonstraţia tradiţională le apare ca un număr de magie total neînţeles, bun doar de copiat în caiet, că “de aia am venit la şcoală”). Or, ariile – atât a pătratului şi a dreptunghiului – reprezintă fenomene deosebit de accesibile înţelegerii intuitive a copilului mediu, fiind cunoscute oricum din clasa a 5-a. Pentu elevi o astfel de demonstraţie este deosebit de accesibilă, chiar atrăgătoare (appealing ar zice americanul).

În plus, după cum am scos în evidenţă în articolele paralele din această perioadă, cele despre inspiraţia din culegerea Prof. A. Hollinger, pentru elevi sunt mult mai clare şi mai accesibile demonstraţiile vizuale, cele vizibile chiar la nivel oral într-o figură ataşată alăturat, demosnstraţii care ulterior se redactează şi în scris. Dimpotrivă, demonstraţia uzuală în manualele din România, dar mai ales în mentalul majorităţii profesorilor (la care se pare că unii ţin cu mare îndârjire şi – nu ştiu de unde – cu mult patriotism, împănat cu profunde înclinaţii naţionaliste), această demonstraţie este una mult mai teoretică, cu tente clare de calcul, adică nevizibile pe figură fără a face calculul. Despre demonstraţia prin teorema catetei putem spune cel puţin că este o demonstraţie greu “vizibilă” pentru foarte mulţi elevi. Apropos, cunoaşteţi reprezentarea prin arii a teoremei catetei şi legătura acesteia cu vizualizarea  demonstraţiei teoremei lui Pitagora tot prin arii? E simplă: pătratul construit în exteriorul triunghiului dreptunghic pe ipotenuză este tăiat în două părţi inegale prin prelungirea înălţimii; pătratul unei catete este astfel echivalent cu dreptunghiul parte a pătratului ipotenuzei corespunzător.

Chiar dacă poate nu-i neapărat întotdeauna adevărat, merită să scot aici în evidenţă cum se văd lucrurile legat de îndârjirea cu care mulţi profesori români ţin la demonstraţia la care se ajunge doar pe drumul “asemănarea triunghiurilor + teorema catetei”, aparent refuzând demonstraţiile pe bază de arii. Arată ca şi cum se doreşte ca demonstraţia teoremei lui Pitagora să fie accesibilă doar celor mai buni elevi, nici într-un caz elevilor de rând. Cum am mai spus, această demonstraţie este resimţită de mulţi elevi ca un fel de “număr de magie matematică”, cărora nu le înţeleg nici măcar “poanta”, darămite să înţeleagă şi cum, şi ce s-a întâmplat în aceasta, sau ce rol are ea (adică faptul că relaţia din teorema lui Pitagora s-ar cere demonstrată; mai ales după ce au văzut că în clasa a 6-a le-a fost dată pur şi simplu, adică fără demonstraţie. “De ce? pentru ce?” ar întreba mulţi elevi; “da’ ce-are dacă n-o facem?“; “la ce-i bună?“). Or, magia matematică devine educativă, are sens adică, doar dacă ulterior o poţi şi înţelege, adică o poţi desluşi, ai mai înţeles o bucăţică de matematică. Pentru asta ea trebuie însă să fie măcar ca rezultat atractivă şi intrigantă; ceea ce nici măcar atât nu este pentru majoritatea copiilor (majoritatea profesorilor prezintă textul teoremei cât mai încărcat, încă folosind şi cuvântul “lungime”, ţinând cu dinţii de poziţionarea teoremei în zona numnerică: “pătratele lungimilor catetelor” în loc de “pătratele catetelor”, care ar lăsa deschisă portiţa spre înţelegerea ca “ariile pătratelor catetelor”). Cei mai mulţi elevi nici măcar nu-şi dau seama că s-a întâmplat ceva cu totul special (unul dintre momentele cele mai speciale din toată istoria ştiinţei universale); ei doar au copiat demonstraţia de pe tablă cu “poziţia ghiocel” în suflet. Singurul lucru bine şi profund înţeles de către majoritatea elevilor este că ei nu pot pricepe materia asta, că ei sunt de fapt proşti! Dar să revenim la multitudinea de demonstraţii ale celei mai cunoscute teoreme din toate timpurile.

Tocmai când apăruse articolul respectiv pe edupedu.ro eu urma să-mi încep participarea la un curs de împrospătare pentru profesorii din şcolile Waldorf, organizat la Kassel în Germania (Refresher Course); de aici şi foarte scurta trimitere către articol. De fapt au fost două cursuri paralele: cel în limba germană, organizat fizic la Kassel, cât şi cel online în limba engleză, organizat în urma entuziasmului la nivel mondial în urma ediţiei din 2021 (atunci au fost tot două cursuri paralele, unul în germană iar celălalt în engleză, dar ambele online; până în 2019 se organizau în săptămâna de la Kassel diferite cursuri într-una sau în cealaltă din limbi, iar conferinţele comune se traduceau oricum în cealaltă limbă). Tema principală a cursului de anul acesta a fost clasa a 9-a (ca vârstă potrivindu-se mai degrabă cu clasa a 8-a de la noi).

La una din conferinţe ne-a vorbit d-na Marisha Plotnik din America. Şi “ghici ciupercă” despre ce ne-a vorbit dânsa? Despre demonstraţii la teorema lui Pitagora! Da! Mai exact, despre diferitele demonstraţii ale acestei teoreme şi despre folosirea lor la clasă, despre uimirea ce poate fi trezită în sufletul elevilor prin acestea. Pentru cei interesaţi de subiect, dânsa ne-a vorbit despre cartea din perioada interbelică The Pythagorean Proposition, avându-l ca autor pe Elisha S. Looms, carte ce conţine sute de demonstraţii, cât şi alte curiozităţi legate de teorema lui Pitagora. Pentru doritori, lucrarea se găseşte pe net scanată în format pdf (eu mi-am salvat-o deja din ziua conferinţei, într-o ediţie din 1940).

Ce-i mai interesant însă de-abia acum vine: d-na Plotnik ne-a vorbit că dânsa le dă elevilor (în grupe de câte 2) câte o astfel de demonstraţie doar cu construcţiile iniţiale, lăsându-i pe elevi să caute, să “sape” (poate 2-3 zile la rând), să cerceteze ce găsesc în acea figură şi ce se poate deduce de acolo, în ultimă instanţă cum se poate obţine afirmaţia din teorema lui Pitagora pe baza celor din acea figură. Vedem cum aici lucrurile se întâlnesc cu cele sugerate de către autorul primului comentariu la articolul de pe edupedu.ro (Restul demonstratilor sunt bune ca proiect).

Cât despre exagerarea rolului acestora (ca replică respectivului coleg), n-am înţeles cine a exagerat ceva: doar vorbind despre ele argumentat reprezintă deja o exagerare? Doar evidenţiind clare avantaje metodico-didactice ale acestora înseamnă că se exagerează? Într-un singur articol? În afara articolelor mele rebele, de “lup singuratic”, cine a mai vorbit despre aceste aspecte, astfel încât să se poată susţine ideea de exagerare?

Atitudinea respectivă le este cunoscută celor mai în vârstă din vremurile comuniste, mai ales din anii ’80, când orice sau oricine călca “pe de lângă” faţă de linia oficială era automat privit ca mare trădare şi contra-atacat cu multă îndârjire, uneori “în haită”, de către cei care erau responsabili de păstrarea canoanelor vremii, sau de cei care se simţeau bine în acestea (în mod similar, pe vremuri biserica catolică îi clasifica pe unii ca eretici). Cred că exagerarea vine mai degrabă în sens opus, din partea celor care refuză cu totul o mare “felie” din cultura matematicii mondiale. Pentru că da, multitudinea şi varietatea demonstraţiilor teoremei lui Pitagora poate fi clar catalogată drept o “bună felie” de matematică, deosebit de potrivită pentru a fi folosită în scop şcolar, pedagogic, conţinând variate şi surprinzătoare aplicaţii. Lasă că exagerez eu acum, analizându-le de-a fir-a-păr, făcându-le chiar “teoria chibritului”.

Dar, de fapt, ce spunea d-na Plotnik? Spunea că dintre acestea se pot alege suficiente exemple, pe baza cărora elevii să vieţuiască varietatea aproape nemărginită a demonstraţiei matematice, dar şi a gândirii umane (în condiţiile de faţă, nici nu mă gândesc să vă spun cât de mult timp, mai exact câte ore îşi alocă dânsa pentru aceste “proiecte”). Iar lucrarea respectivă, cu câte demonstraţii are, sigur oferă şi exemple vizuale şi accesibile, pentru elevii mai “începători” în ale raţionamentului matematic, dar şi demonstraţii dificile, ca provocări pentru elevii mai buni la matematică, pentru cei care au înţeles şi lecţiile mai grele.

Îmi permit să redau aici exemplul prezentat de d-na Plotnik în timpul conferinţei de marţi 12 aprilie (cu notaţiile puţin schimbate faţă de cele din antologia sus menţionată). Deci, considerăm triunghiul ABC dreptunghic în A şi algem pe drepta BC punctele E şi F astfel încât BE = BA = BF, să zicem E în exteriorul ipotenuzei [BC] iar F pe ipotenuză. Demonstraţi pe baza acestor date relaţia din teorema lui Pitagora (cam aşa am înţeles că le dă dânsa elevilor sarcina de lucru). Pentru fluenţa citirii acestui articol dau imediat şi o figură (aşa cum sugera chiar Profesorul Hollinger):

Nu dau şi demonstraţia, ci vă las dvs. bucuria de a o găsi (dacă nu cumva o cunoaşteţi deja sau tocmai aţi găsit-o). Precizez însă că demonstraţia conţine o frumoasă varietate de elemente: primul pas se bazează pe faptul că un triunghi înscris în semicerc este dreptunghic (reciproca “medianei pe ipotenuză”, sau “Cercul lui Thales” cum este cunoscut de către unii prin spaţiul german, chiar şi până mai aproape, prin Ungaria, aceasta fiind prima teoremă demonstrată de un om “ever” – merită să revin în curând la acest subiect). În continuare vine un raţionament interesant cu unghiuri, apoi o foarte ascunsă asemănare de triunghiuri (pe baza cazului UU), iar în final o surprinzătoare aplicaţie a unei formule de calcul prescurtat.

Văzând demonstraţia din acea carte veche, prezentată nouă de către d-na Plotnik, am simţit în suflet o stare apropiată de veneraţie faţă de mintea care a avut ideea construcţiei respective. Cam aşa ceva trebuie că simţeau vechii greci, astfel încât atunci când demonstrau câte una din primele lor teoreme, se duceau apoi la templu şi aduceau o jertfă zeilor pentru inspiraţia cu care fuseseră “ajutaţi”. De pildă, chiar despre marele Pitagora se spune că – după ce a demonstrat propoziţia respectivă – a sacrificat pe altarul zeilor un număr impresionant de boi, iar de atunci toţi boi tremură când aud de teorema lui Pitagora. Şi despre Thales se spune că ar fi sacrificat cel mai mare şi mai frumos bou al său la templu, după ce a demonstrat teorema cu triunghiul înscris in semicerc.

Revenind la demonstraţia de mai sus, trebuie să recunosc sentimentul iniţial cum că mie nu mi-ar fi trecut prin cap aşa ceva. Simţeam toată stima şi tot respectul pentru acea minte umană care a gândit aşa ceva (autorul este pierdut prin vechiile cărţi). În comparaţie cu această minte strălucită, eu am impresia că la ora actuală capacităţile noastre creative în domeniul demonstraţilor pe bază de construcţii ajutătoare sunt mult mai reduse.

Probabil că găsirea acetei demonstraţii n-a fost chiar atât de ieşită din comun, însă asta am simţit eu în zilele de după ce am văzut-o: o curată admiraţie (uneori, probabil că aşa ceva simt şi elevii atunci când noi “le trântim” câte o construcţie sau o demonstraţie ciudată; aceasta se va întâmpla însă doar dacă drumul a fost pregătit lin în sufletul lor; dimpotrivă, dacă-i luăm prea repede, se vor simţi doar covârşiţi, înjosiţi). Revenind cu picioarele pe pământ, probabil că persoana respectivă lucra la cine-ştie-ce problemă şi a observat că figura respectivă duce spre rezultatul din teorema lui Pitagora. Sau, poate a fost altfel? Cine ştie?!

Şi eu am avut o astfel de întâmplare, dar am fost destul de neatent încât să nu-mi dau seama că tocmai ce m-am împiedicat de o demonstraţie la teorema lui Pitagora; ulterior, când am început să studiez acest subiect am regăsit-o: este cea care apare prin cărţi ca descoperită de către fostul preşedinte american Abraham Garfield (1831-1881).

În acest sens, demonstraţia d-nei Plotnik mi-a adus aminte de o alta dintr-un manual românesc de la începutul anilor ’80 (din păcate nu-l am la îndemână), o demonstraţie prin puterea punctului faţă de cerc. Ştiu că aceasta nu mai este în programă, dar poate fi evitată elegant, oferind elevilor mai răsăriţi o demonstraţie interesantă, cu elemente din materia actuală (începutul clasei a 8-a din cauza mutării calculului prescurtat din a 7-a). Iar până la urmă vom constata că aceasta este de fapt aceeaşi demonstraţie ca cea din exemplul d-nei Plotnik, doar că abordată din altă parte (mutând pornirea din zona construcţiilor ajutătoare şi a “cercului lui Thales” în zona unghiurilor înscrise în cerc). Aşadar: Considerăm un cerc de centru O şi un punct exterior P. Prin punctul P trasăm o tangentă la cerc, notând cu T punctul de tangenţă, cât şi o secantă dusă chiar prin centrul cercului, notând cu L şi cu K punctele în care aceasta taie cercul. a) Demonstraţi că PT reprezintă media proporţională între lungimile PL şi PK (adică PT2 = PL · PK); b) Folosind relaţia precedentă, demonstraţi egalitatea din teorema lui Pitagora în triunghiul POT.

Da, cam atâta am avut de spus legat de felul în care merită să privim diversele demonstraţii ale teoremei lui Pitagora şi a modului în care ne raportăm ca profesori la acestea. Demult îmi doream să abordez acest subiect şi să evoc diversele aspecte ce le implică, dar acum gândurile au ajuns ceva mai coapte, fiind în paralel şi stârnite de comentariile prezentate la început. Desigur că sunt conştient că oricând s-ar putea găsi aspecte noi, dar eu mă cam opresc aici în această primă analiză a subiectului. În a doua parte mă voi apleca în detaliu asupra celor spuse în articolul de pe blogul CEAE.

*

Înainte de a încheia acest articol doresc să evoc însă câteva aspecte despre atitudinea cu care “mergem prin viaţă”, respectiv pe ce poziţie ne situăm pe axa modestie-îngâmfare. Pe scurt doresc să prezinte felul în care mă raportez eu personal la tot ce găsesc nou în lumea largă – ar putea spune unii că le caut “cu lumânarea”, oricum cu multă îndârjire şi perseverenţă – în comparaţie cu felul cum blochează alţii orice ajunge nou în faţa lor, orice este diferit de ceea ce reprezintă zona lor de comfort. Pentru că da, multe vin din această poziţionare.

Care multe? Păi, de pildă felul în care învăţământul matematic românesc nu reuşeşte să se debaraseze de vechile paradigme şi să evolueze înspre o pedagogie adaptată şi potrivită secolului XXI. Dacă aşa reacţionăm – precum autorii comentariilor redate la începutul acestui eseu – dacă aşa reacţionăm la orice propunere de schimbare, de îmbunătăţire, de a aduce predarea matematicii din şcolile noastre într-o formă mai potrivită nevoilor şi posibilităţilor actualilor elevi, atunci – iaca – avem pe tavă un dintre cauzele elocvente peantru care şcoala noastră nu reuşeşte să se schimbe, rămânând închistată în tarele trecutului.

Mai exact, aş dori să accentuez asupra felului în care mă raportez eu faţă de matematica cu care mă întâlnesc în contactele ce le am din când în când cu străinii (cursuri sau alte întâlniri cu profesori, dar şi cărţi, actuale sau demult traduse în română). Era o vorbă veche, ceva de genul: dacă nu deschizi o carte cu o profundă stare de veneraţie, atunci nu vei găsi nimic special în aceasta (sau, cam aşa ceva). Nu mai ştiu dacă era vorba despre cărţi în general, sau despre cărţi de matematică, dar sigur dacă nu eşti dotat – fie de la mama natură, fie conştient – cu acea stare de modestie elementară, atunci la orice contact cu matematica străină se vor declanşa în sufletul tău nişte mecanisme de mândrie naţională exagerată (avându-şi originea în implantările făcute de Ceauşescu din anii ’80 “pe creierele românilor”), mecanisme ce te vor împiedica să percepi aspecte noi, ce nu sunt prezente în România.

Anul acesta, la cursul de la Kassel, de pildă, m-am înscris la două cursuri de matematică (fiecare de câte 5 şedinţe a 1,5 ore); în plus a fost acea conferinţă de care am vorbit (1 oră). Ca o paranteză, cursul fiindu-mi plătit din Germania, m-am înscris la tot programul, aşa încât am urmărit de fapt încă cinci conferinţe ce nu aveau treabă cu matematică, dar şi un curs de geografie-geologie de 12 şedinţe a 1,5 ore (ajungând deci doxă în acest subiect). Dar să ştiţi că şi în acest curs de geografie am găsit destule elemente ce le voi putea transborda în predarea mea la matematică.

Desigur că multe lucruri îmi erau cunoscute din cele prezentate (la cursurile de mate), dar m-am bucurat de fiecare aspect nou primit (nou pentru mine). De pildă, la cursul d-lui Robert Neumann despre construcţiile curbelor conice (secţiunile conice, adică parabola, elipsa şi hiperbola, construite cu rigla şi compasul) cunoşteam cca. 60%. Nu-i nimic, m-am bucurat şi-aşa, chiar m-am entuziasmat pentru celelalte 40% idei şi aspecte noi pentru mine. Şi chiar dacă ar fi fost doar 10% material nou, tot mi-ar fi meritat. Desigur că şi la cursul d-nei Birte Vestergaard despre fişele de lucru prin descoperire ştiam foarte multe (din precedentele întâlniri). Nu-i bai, şi aici m-am bucurat de orice nou aspect; şi au fost suficiente.

O singură dată la o participare în “Străinezia” am părăsit un curs, deoarece simţeam că profesorul respectiv chiar “o lălăie” peste nivelul meu de suportabilitate şi nu-mi oferă nimic, dar şi deoarece în pauză văzusem la un curs paralel anumite aspecte fascinante pe nişte planşe rămase atârnate de perete; aşa că am trecut de a doua zi la celălalt curs (l-am anunţat pe acest nou profesor că vreau să vin la dânsul şi gata).

Aşadar, a nu se înţelege însă că mă duc la aceste întâlniri internaţionale “cu capul plecat”. Nici vorbă! Merg demn şi civilizat, cu o stare de echilibru între modestie şi totuşi conştienţa că ştiu foarte multe (că vin dintr-o şcoală matematică bună şi dintr-o familie de matematicieni); particip însă realist, conştient fiind că nu pot să ştiu totul. Nu mă dau mare, dar nici nu-mi este frică să spun ce gândesc, însă îmi caut cu grijă cuvintele pentru a nu jigni; încerc întotdeauna să înţeleg contextul de unde vine un vorbitor (la orice nivel, fie cel care ţine prelegerea, fie un eventual coleg cu care ajung pentru scurt timp într-o grupă de lucru). Ei nu-mi cunosc lumea mea matematică; singurul care poate creea o punte – mie folositoare – sunt chiar eu, aşa încât sunt “cu ochii-n patru” astfel încât să prind orice aspect nou.

Iar după ce le-am înţeles lumea lor, fiţi siguri că am şi eu cu ce “să mă dau mare”, măcar puţin, chiar “pe limba lor”. Fac asta însă doar dacă ajungem să ne împrietenim; eu le spun “cadouri”, pentru că după câte am primit de la ei, trebuie să le ofer şi eu ceva, nu-i aşa?

În acest context, al “cadourilor” am trăit experienţe de toate felurile, de la bune la eşecuri. În astfel de situaţii unii au avut reacţii cu totul speciale: un domn a venit o dată cu cartea scrisă chiar de dânsul, sigilată, spunându-mi că el nu are ceva de aşa mare valoare cum i-am dat eu lui, dar că îmi oferă în gest de apreciere cartea scrisă de dânsul; altă dată un profesor mi-a adus a doua zi o carte (tot sigilată, deci nou cumpărată), un mega curs de matematică al unui mare profesor din sistemul Waldorf. Am avut desigur şi întâmplări opuse, când prietenul respectiv cunoştea tot ce-i arătam eu (drept “cadou”); încă şi plusa cu aspecte noi; în cazul acestui prieten a trebuit să “muncesc” mult ca să-i pot da ceva necunoscut lui (ştia totul, din orice carte, aşa încât l-am putut surprinde doar cu “cadouri” descoperite de mine). Dar oricum, în astfel de cazuri totul se petrece cu o modestie civilizată, fără orice urmă de îngâmfare. Va urma! Titus pitagoreanul (Grigorovici Constantin Titus)

P.S. (post scriptum) Dar, totuşi, că mă tot râcâie ideea: ce treabă are Iohannis cu cine-ştie ce manual din Germania???. Că doar el este profesor de fizică. Apropos, se scrie Iohannis, nu Ioanis. Dacă al doilea “n” ţine de capacitatea de atenţie şi memorare la un nivel elementar pentru orice intelectual ce se respectă (că doar nu vorbesc toţi germana), litera “h” chiar se aude la fiecare pronunţare la televizor sau radio. Mă gândesc cât de dramatică ar fi fost situaţia scrierii numelui său, dacă n-ar fi fost greşeala ofiţerului care i-a scris certificatul de naştere cu litera “i” la început, ci i-ar fi trecut numele corect, ca la taică-su, adică Johannis, deci cu “j”. L-ar fi pronunţat toţi cu “j”, chiar dacă pe germană această literă se citeşte tot un fel de “i” (aşadar, în spaţiul public numele preşedintelui se pronunţă corect; la fel s-ar fi pronunţat şi dacă se scria cu “j”). Oricum, trebuie apreciat că măcar pe d-na Clotilde Armand n-au stâlcit-o. Chiar aşa, însă, dânsa cum a ajuns în această discuţie? Ce treabă are dânsa cu manualul nemţesc? Respectiva divagaţie către zona politică este specifică unei categorii consistente de “internauţi” mioritici şi spune multe despre capacitatea lor de a se concentra pe un anumit subiect dat (mai exact incapacitatea).

Teorema lui Pitagora – despre demonstrarea acesteia pe edupedu.ro

Dragi cititori si iubitori de pentagonia.ro, azi este o zi mare: au început şi alţii să atragă atenţia asupra unuia dintre marile baiuri din predarea matematicii în şcolile româneşti. Dacă încă nu l-aţi citit, făceţi-vă măcar acum timp pentru următorul articol: https://www.edupedu.ro/cum-este-demonstrata-teorema-lui-pitagora-intr-un-manual-german-de-matematica-o-comparatie-cu-romania/

Eu m-am preocupat în câteva rânduri de acest subiect, de pildă în seria din primăvara lui 2019 (iată direct adresele: http://pentagonia.ro/teorema-lui-pitagora-si-ciocolata-ritter-sport-in-clasa-a-6-a/ , apoi http://pentagonia.ro/teorema-lui-pitagora-si-patratele-acesteia-in-clasa-a-6-a/ şi http://pentagonia.ro/teorema-lui-pitagora-si-tripletele-de-numere-pitagoreice-in-clasa-a-6-a/  în final). După multele strădanii în acest sens, în urma cărora aveam uneori impresia că vorbesc de unul singur, acum pot doar să le mulţumesc colegilor de la edupedu.ro. Apropos, elevii care mi-au arătat prima dată filmuleţul acela de pe youtube când erau în clasa a 7-a, acum sunt în anul doi de facultate. Da, copiii sunt uneori mai treji decât noi, profesorii. Titus pitagoreanul

P.S. Nu vă amăgiţi, acesta nu este nici pe departe singurul bai mare în predarea românească. De pildă în continuare mulţi profesori nu folosesc teorema lui Pitagora în semestrul I din clasa a 7-a, deşi ea este acum cunoscută de către elevi, pentru că “pe creierele” acestor colegi respectiva teoremă apare doar în semestrul al II-lea. Dar dacă tot s-a ivit ocazia vă mai spun unul: azi (!) am vizitat expoziţia despre geniul lui Leonardo da Vinci de la Casa de cultură a studenţilor din Cluj. Într-una din fişele expuse cu imagini din notiţele acestuia ce văd eu? Două-trei desene cu Cercul lui Thales, acea primă teoremă de geometrie dată de un om, aia care spune că un triunghi înscris într-un semicerc este automat dreptunghic, şi care din programa şi din manualele noastre lipseşte de zeci de ani, dar care începe să primească tot mai des aplicaţii în culegerile pregătitoare pentru examenul de EN8 (bănuiesc că privită ca reciprocă a medianei pe ipotenuză, sau ca un caz particular la unghiul înscris în cerc).

Cea mai lungă pauză

Cu o lună în urmă eram entuziasmat de bancul cu pitonul. Mă pregăteam pentru al treilea curs pentru profesorii de matematică din şcolile Waldorf, ce urma a se desfăşura în zilele de 24-25-26 februarie 2022. Eram bucuros de acea postare şi mă gândeam că următoarea va fi peste două săptămâni, imediat după curs, printr-un scurt raport la cele discutate.

Miercuri seara ne-am întâlnit cu colegii la o scurtă conectare pe Meet, pentru ca a doua zi să nu avem surprize la orele de asistenţă de la 8:00. Da, şi cum ştiţi, a doua zi toţi am aflat de brusca trezire din hibernare a marelui urs. Nimeni nu credea cu adevărat că se va întâmpla aşa ceva, dar – după decenii întregi – marele urs s-a trezit brusc, şocând o planetă întreagă. Cu greu v-aş putea explica cum m-am putut concentra ca să-mi ţin cursul. Însă, după curs, nici vorbă să mă pot apuca de scris. Pur şi simplu n-am mai putut scrie. Simţeam că problemele prezentate pe pentagonia.ro nu mai au nici cea mai mică relevanţă şi rost pe lângă suferinţa ce se declanşase în jurul nostru.

Peste două săptămâni, miercuri pe 9 martie, panica a lovit din nou, de data asta sub forma isteriei scumpirii benzinei. Nu puteam crede că se va întâmpla scumpirea de care se vorbea (de la 7 la 12 lei). Raţiunea şi datele acumulate până în acel moment nu mă lăsau să cred aşa ceva. Aşa că am venit acasă liniştit. Ce-i drept aveam şi un avantaj: îmi lipsea din rezervor mai puţin de un sfert. Iar când ministrul energiei a început să iasă pe ecrane şi la microfoane pentru calmarea isteriei, am sunat-o pe mama mea şi i-am mulţumit că m-au învăţat să gândesc.

Da, cam aşa am ajuns la cea mai lungă pauză între două postări de când am pornit acest blog. Dacă reuşim mâine să postăm, vom avea exact o lună de la ultima postare, cea cu pitonul. Încerc să-mi revin şi să încep din nou să scriu, convins fiind că numai aşa pot contribui la creşterea gândirii raţional-empatice în această lume nebună. CTG

Fracţiile algebrice şi experimentele pe diferite generaţii (Programa de examen şi urmările acesteia)

De curând reprezentanţii unui anumit partid parlamentar se plângeau destul de sonor legat de “experimentele ce se fac pe elevi” în contextul intenţionatei introduceri a studiului istoriei holocaustului în România. Eu nu doresc să tratez acest subiect, deşi ar fi foarte interesant. În schimb, doresc să propun aici o scurtă istorie a “experimentelor” făcute pe diferitele generaţii în domeniul matematicii. Ca să nu iasă incontrolabil de lungă mă voi rezuma la amintiri legate de acest subiect doar din domeniul evaluării la sfârşitul gimnaziului după 2000. Precizez însă că evaluarea la sfârşitul clasei a 8-a este doar de faţadă: miza adevărată este desigur admiterea în clasa a 9-a la licee sau clase cât mai bune. Deci, să pornim.

În vara lui 2006 cineva a reuşit să “pună mâna” pe subiectele pentru Examenul de Capacitate pentru clasa a 8-a la proba de Istorie şi le-a publicat imediat pe internet. Din câte ţin minte, vestea a picat în buletinele de ştiri cu câteva zile înainte de examenul de istorie, aşa încât s-a putut apela la subiectele de rezervă (ţin minte foarte bine pentru că … vezi P.S.).

Recunoscând că nu ne puteam apăra împotriva acestor tipuri de furt, sub conducerea ministrului din vremea aceea (nici nu mă interesează care a fost), în disperare de cauză, s-a luat o decizie năucitoare: pentru anul şcolar următor şi în vederea examenelor din 2007 se vor publica din timp câte 100 de variante de teste la fiecare materie, iar în dimineaţa examenului urma să se extragă dintr-o urnă, la vedere, numărul variantei ce se va da; numărul unei variante alese aleator din cele 100 deja arhicunoscute. Această metodă s-a aplicat la toate materiile, atât la Examenul de Capacitate cât şi la BAC.

Zis şi făcut: cândva după vacanţa de iarnă au fost publicate cele 100 de variante, inclusiv la matematică. Partea clar pozitivă este că prin această mişcare s-au tăiat din rădăcină gândurile de furt a subiectelor (cel puţin pentru moment). Dar haideţi să vedem care au fost celelalte urmări.

În primul rând, editurile erau toate pregătite, luând startul într-o cursă nebună: după cca 3 săptămâni apăreau pe piaţă primele culegeri cu rezolvările acestor 100 de variante. Elevii, la rândul lor, erau pregătiţi de lucru. Ce fel de lucru? Care, cum. Unii au învăţat cum trebuie.

Alţii s-au gândit să o ia pe scurtătură: aveau toate răspunsurile pentru 100 de teste care erau astfel concepute încât puteai lua nota 6 doar cu răspunsuri, fără să faci nici cea mai scurtă rezolvare. Oare câţi din acel an au mers la examen cu copiuţe minuscule (100, dar minuscule)? Eu estimasem atunci că erau suficiente 10 hârtiuţe cât un bilet de autobuz, pentru aţi scrie răspunsurile de la părţile I şi II pentru toate cele 100 de variante. Rămânea doar să reuşeşti să scoţi hârtiuţa potrivită şi să apuci să-ţi treci răspunsurile pe lucrare. Tot în acel an apăruseră de vânzare pixuri din care se putea extrage o hârtie de cca 5×12 cm, care lăsată liberă se rula înapoi în pix, ca o ruletă.

Eu doresc să evoc o alt fel de întâmplare, un dialog de la o oră de prin primăvară. Studiam un corp şi o situaţie pe o problemă anume. Ţin minte că era una din acele situaţii pe care le facem oarecum cu fiecare nouă generaţie pentru că din acea problemă se înţelege foarte bine sistemul de conexiuni ce apar în structura respectivei situaţii. Un elev, neobservat de mine, studia intens culegerea ce cuprindea cele 100 de teste. La un moment dat a ridicat mâna şi şi-a exprimat nedumerirea: de ce facem această problemă? Pentru că nu apare în teste, deci nu se va da la examen! Vă las pe dvs. să analizaţi felul în care gândea acel elev.

Se pare că mulţi gândeau aşa şi chiar la conducerea ministerului erau conştienţi de acest aspect, aşa încât în paralel s-a pornit sistemul tezelor unice pentru clasele a 7-a şi a 8-a. Mediile de la cele patru teze din aceste clase urmau să înlocuiască nota de la examen. Nici acest sistem nu s-a aplicat tare mult, pentru că şi în acest caz se putea frauda intens.

Din acei ani ţin minte cum o elevă foarte slabă copiase până la nota 9 de la un elev bun, doar pentru că a avut ocazia, supravegheată fiind de o pereche minunată de profesori (colegul de sport şi cel de franceză), ambii total neobişnuiţi în a supraveghea elevii disperaţi să copieze.

Chiar mai mult, ţin minte discuţii din vremea respectivă, de tipul: să-l punem pe cutare la supravegheat, că ştie ceva matematică şi să-i poată ajuta pe elevi, ca să iasă lucrurile cât mai bine. Eu personal eram disperat când auzeam aceste idei; am aflat după o vreme că colegii o mai făceau pe ascuns, fără ştirea mea. Sunt sigur că în multe şcoli s-au întâmplat astfel de lucruri.

Eu însă, pentru altceva am amintit “experimentul” tezelor unice: pentru marele circ ce avea loc la nivel naţional înaintea fiecărei teze, anume până la ce lecţie urma să se dea la teza unică. Astfel, pentru teza din semestrul I avea loc o adevărată negociere în culisele bucureştene. Rezultatul a fost de fiecare dată că materia pentru teza unică era masiv redusă. Urmarea secundară era că restul materiei se reporta pentru al doilea semestru. Aceasta la rândul ei ducea la negocieri mai acerbe în vederea stabilirii materiei pentru teza unică pe ţară din semestrul al II-lea.

Şi care era urmarea finală? Doi ani la rând capitolul despre cerc din clasa a 7-a, dar şi corpurile rotunde din clasa a 8-a, nu au fost incluse în materia pentru tezele unice. Aici am vrut să ajung: acolo unde profesorul era hotărât, se studia şi cercul după teză. În majoritatea cazurilor, însă, acele generaţii nu au învăţat lecţiile despre cerc, inclusiv despre numărul pi (un elev de-a 8-a mi-a răspuns atunci: 1,62?).

Dar staţi liniştiţi, asta nu s-a întâmplat pe vremea când D-na Viorica era în elevă, dar poate că perioada coincide cu vestitele ei meditaţii despre care s-a lăudat că le dădea la matematică. Rezumând: au fost două generaţii la rând fără aria şi perimetrul cercului, şi nimeni nu a trebuit să dea socoteală pentru acest lucru (aşa cum ar da socoteală un profesor dacă ar fi prins că nu a parcurs la clasă aceste lecţii importante). Tot “sistemul” s-a făcut că nu vede şi s-a uitat în altă parte.

După aceste două scurte episoade ciudate (capacitatea cu 100 de subiecte la vedere şi tezele unice) s-a reintrodus examenul sub denumirea de Evaluare Naţională (din câte ţin minte, dacă nu mă inşel). În afara unui episod ciudat şi izolat (nişte subiecte mult prea uşoare în 2013, pe care nu doresc să le comentez aici), în afara acestei întâmplări examenul de Evaluare Naţională mergea relativ bine, când a lovit pandemia de Covid-19, cunoscut şi ca Coronavirus (Coroana mă-sii, vorba unui cântec nedifuzabil la radio).

Care a fost mişcarea decisă în primăvara lui 2020 în timpul primului lockdown? S-a decis scurtarea programei la “jumătatea” clasei a 8-a. Astfel, generaţia respectivă nu a dat la examen ariile şi volumele corpurilor, fracţiile algebrice, funcţiile şi sistemele de ecuaţii. Unele dintre aceste lecţii chiar nu fuseseră parcurse prin şcoli, dar altele fuseseră şi au fost excluse degeaba. În această categorie se încadrează cu certitudine fracţiile algebrice.

D-na Ministru din acea vreme a promis că lecţiile vor fi recuperate la revenirea în şcoli. Poate funcţiile le-au mai recuperat unii prin a 9-a, poate şi sistemele de ecuaţii, poate-poate şi fracţiile, dar sigur ariile şi volumele nu le-a recuperat nimeni în clasa a 9-a. Deci bifăm o generaţie fără acest subiect de bază în gândirea matematică, cu cele mai puternice aplicaţii în practică din toată matematica.

În toamna-iarna anului 2020 am scris foarte mult pe acest subiect. Eram diriginte la clasa a 8-a şi eram convins de importanţa demersului: fenomenul ariilor şi al volumelor trebuia reprezentat măcar pe cazul câtorva corpuri în viaţa acelor elevi. Îmi place să cred că mesajul mi-a fost cumva auzit şi prin acesta am influenţat reintroducerea măcar parţială a acestui domeniu în programa de examen. Anul acesta (EN 2022) ariile şi volumele corpurilor de bază sunt din nou în programa pentru EN.

Deşi consider că sunt importante pentru cultura matematică a oricărui elev (cel puţin până la un anumit nivel elementar), anul trecut şcolar nu am avut energia să mă mai lupt şi pentru fracţiile algebrice. Însă cu elevii mei le-am făcut scurt prin mai, în două ore consecutive, explicându-le că se vor întâlni prin liceu cu acestea, iar atunci probabil că nu va fi timp să li se explice tare mult.

Din păcate, ne îndreptăm către al treilea an în care fracţiile algebrice nu sunt incluse în programa pentru EN. La nivel naţional vorbim deja de trei generaţii care vor “bântui” prin licee fără să aibă noţiuni de bază despre “fracţiile cu litere”. La unii dintre aceştia, profesorii din licee se vor strădui să le recupereze (măcar pe scurt); în cazul altor elevi aceştia vor fi lăsaţi “în aer”: cine are meditator particular, acela pricepe ce se întâmplă, cine nu are ajutor particular, acela va rămâne definitiv şi iremediabil în urmă.

Despre astfel de experimente mă îngrijorez eu mai mult, nu despre introducerea studiului holocaustului. Dar despre aceste experimente nu vorbeşte nimeni. Nimeni nu pune în discuţie forma aberantă în care erau predate şi cerute la examenul de final de gimnaziu polinoamele la începutul anilor ’90 (renumitele cerinţe cu Teorema lui Bezout), ca acum polinoamele să nu mai “prindă” nici măcar examenul de BAC.

Eu anul acesta nu am clasa a 8-a şi îmi cer public scuze că nu am pornit o campanie similară de luptă pentru fracţiile algebrice, aşa cum am făcut-o anul trecut pentru studiul ariilor şi al volumelor, măcar într-o formă elementară. Nu am mai avut energie şi pentru asta, şi mă simt vinovat în acest sens. Dar, oare, numai eu văd lucrurile astea?

În câte locuri sunt necesare fracţiile algebrice în liceu? În câte lecţii se va resimţii neparcurgerea acestora din clasa a 8-a? Pentru că fiţi siguri: dacă nu sunt în programa de examen, sunt şanse mari ca profesorii să nu le facă, fie că nu-i interesează, fie că le vor refuza elevii. Noroc că probabil mulţi le-au făcut deja, înaintea apariţiei programei pentru EN 2022. CTG

P.S. Să vă povestesc de unde ţin minte foarte bine startul acestei poveşti. Fiul meu a terminat clasa a 8-a în acel an, aşa încât furtul subiectelor de la istorie ne-a atins direct. Iar în subiectele de rezervă s-a dat Formarea poporului român, pe care o tot repetaserăm împreună, aşa încât a luat 10 la istorie (la mate n-a luat chiar 10 pentru că încurcase numele axelor de coordonate). Oricum a intrat până la urmă unde a vrut.