Minutul de 1000 de euro şi matematica şcolară

Luni 4 feb. 2019 în emisiunea Deşteptarea de la Europa FM, domnii Vlad, George şi Luca, în rubrica Minutul de 1000 de euro a avut loc următorul dialog între cei trei prezentatori şi ascultătorul intrat în direct:
Ce determină formula pi-er-pătrat? Ce măsoară această formulă?
Raza!
După terminarea minutului, în care aceasta a fost singura greşeală – deci diferenţa de la 90 euro (câte 10 pentru fiecare răspuns corect) şi 1000 euro (premiul mare pentru situaţia cu toate 10 răspunsurile corecte) – dialogul a mai continuat:
R este raza! Ia gândeşte-te ce era.
Aria?
Cred c-o să ţi minte toată viaţa.
Matematica! ….
E singurul răspuns greşit
Sper să nu mă-ntâlnesc cu Domnu’ profesor de matematică. Nu eram sigur, aşa că am zis ceva la nimereală.
Felicitări pentru cei 90 de euro, dar mia, era … ! (unde? în formulele cercului?)
A doua zi, marţi 5 feb., cu alt ascultător “drăcuşorul matematici” a lovit din nou, şi din nou matematica a făcut diferenţa dintre 90 euro şi 1000 euro:
Câte laturi are un hexagon?
Şapte!
După terminarea minutului şi a celor zece întrebări dialogul a continuat (din nou reluat orientativ):
Eu plec acasă acum (Vlad), nu mai suport!
Da’, ce-am făcut? Sau ce n-am făcut?
Vai de capu’ meu: Tetra, Penta, Hexa, Hepta, Octo!
Şapte!
Da’ un heptagon câte laturi are?
Erau şase!!
Am zis şşş-apte!
Ai zis 1000 euro: pa-pa!
Eu în locul tău m-aş duce şi-aş desena hexagoane până deseară, şi m-aş gândi la 1000 de euro: hexagon după hexagon pe o coală albă.
Albinuţe hexagoane.
E incredibil, ieri 90 euro, azi 90 euro, … e un semn! (din partea matematicii?)

Da, aceasta a fost istoria a două întrebări (din geometria de final de clasa a VII-a!!!) în care ascultătorii respectivi au pierdut câte 910 euro. Ca norocu’ că a treia zi drăcuşorul matematicii nu a mai lovit, aşa că ne-am liniştit. Până la urmă, în această vacanţă cei trei colegi din Deşteptarea au reuşit să dea mia de euro, mai cu cântec, mai cu poveste, vineri, după ce au dezbătut răspunsurile date de un ascultător joi.

În urmă au rămas doar gândurile respective, care – cel puţin mie – mi-au trezit amintirea unui om minunat, Marcetti Perneş, care a lucrat ani la rând ca portar în şcoala noastră şi care, atunci când ieşeau elevii de la lucrare de control la mate îi întâmpina şi ştia să le spună toate răspunsurile. Dorea să le dovedească astfel că nu profu’-i de vină, ci ei pentru că erau întrebări logice şi trebuiau să gândească, şi dacă şi el reuşeşte, înseamnă că erau doar pe baza unor cunoştinţe elementare minime.

Revenind la realitatea noastră, situaţia ar trebui să ne dea de gândit (nu numai nouă, hexa apare şi în chimie). Şi, să fim bine înţeleşi: lucrurile pot evolua doar înspre mai rău; cu cât scade vârsta de început “a vieţii în faţa unui ecran” şi cu cât creşte timpul petrecut, de pildă în faţa deşteptofonului, cu atât va fi tot mai rău. Şi tot mai mulţi sunt cei care se întreabă retoric: la ce bun să învăţăm toate prostiile, că doar se găsesc pe internet?! Sigur, nu trebuie învăţate pentru concursuri “de cultură generală”; ele sunt folositoare însă şi în alte locuri. Dar acesta este alt subiect. Titus Hexagonezul

Numerele lui Fibonacci şi creanga de pin

În postarea precedentă am prezentat cum se găsesc numerele Fibonacci consecutive 8 şi 13 la alinierea fructelor de pe un ananas. Tot acolo am amintit în treacăt şi despre o creangă de pin pe care am găsit numerele Fibonacci consecutive 5 şi 8, aşa că m-am gândit să vă prezint şi această găselniţă personală, în caz că cineva s-ar fi putut gândi că situaţia prezentată la ananas ar fi una singulară. Şi, da, aceasta este o găselniţă personală, pe care nu am întâlnit-o niciunde în literatura studiată (unde se găsesc indicii despre conurile coniferelor, dar nu şi despre crengile acestora).

Aşadar, cum am găsit situaţia ce urmează? Simplu: făceam într-o vară un foc pentru grătarul de seară şi spărgeam nişte lemne dintr-un pin tăiat în anul precedent. Am vrut să crestez o creangă “de-a lungul”, aşa că o ţineam culcată lovind-o cu toporul pe lungime. Probabil că n-am lovit destul de tare, aşa încât a crăpat doar primul strat de lemn, cel din ultimul an de creştere, dar a rămas intact stratul interior. Când m-am uitat la acesta, am văzut nişte adâncituri perfect aliniate pe toată suprafaţa sa. În momentul acela am avut o bănuială, aşa că am pus lemnul de-o parte şi mi-am continuat activitatea de pregătit a grătarului cu alte lemne. Apoi am luat lemnul cu pricina la studiat şi iată ce am găsit.

Întrebând o colegă, am aflat că porii respectivi, frumos aliniaţi, sunt canale rezinifere (de răşină), cuprinse în zonele de lărgire a razelor medulare. Apropos, cum vă simţiţi când “dă” cineva în voi cu jargon de specialitate din afara zonei dvs. “de confort”? Cam aşa se simt şi elevii când “dăm” în ei cu jargon prea dur din specialitatea noastră. Din ce am înţeles eu, prin acei pori copacul “transpiră răşină” la nevoie.

Este evident că aici este loc de o vastă cercetare, de care însă eu nu mi-am luat timp până acum, având alte priorităţi. De pildă, pare destul de logic că la o creangă mai groasă vom găsi numere consecutive Fibonacci mai mari. Sau poate nu? Titus Sylvestris




Numerele lui Fibonacci şi ananasul

În postarea precedentă am deschis sacul din care au ieşit iepuraşii lui Fibonacci, aducând cu ei – ca dintr-un joben magic – numerele din renumitul şir. Dacă tot am deschis subiectul, merită să mai zăbovim puţin în jurul acestor numere renumite.

În primul rând trebuie subliniat faptul că problema respectivă este profund falsă din punct de vedere al realităţii speciei şi a felului în care se înmulţesc iepuraşii. La fel ca majoritatea problemelor de matematică, şi aceasta descrie şi se bazează pe o situaţie idealizată, profund diferită de realitatea înconjurătoare. Cu atât mai şocantă este această constatare cu cât există multiple exemple de situaţii profund naturale în care numerele izvorâte din problema iepuraşilor apar totuşi în realitatea înconjurătoare în mod nemijlocit şi fără de tăgadă. Sunt renumite diferitele situaţii din lumea vie în care se găsesc urme ale numerelor lui Fibonacci, spirala logaritmică sau secţiunea de aur fiind prezente “te miri unde”.

Există foarte multe exemple, dar nu mi-am propus aici o prezentare exhaustivă, nici măcar o enumerare a celor mai cunoscute astfel de situaţii unde sunt întâlnite renumitele numere 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … . Le puteţi găsi în bogata literatură tipărită sau pe internet (de pildă Mario Livio, Secţiunea de aur, Humanitas). Doar un singur exemplu doresc să vă prezint în această postare, anume unde şi cum am găsit eu numere Fibonacci pe un fruct de ananas.

Analizând un astfel de fruct, observăm că suprafaţa sa este formată din nişte “celule” oarecum patrulatere destul de ordonat aliniate. De fapt acestea sunt seminţe iar alinierea lor poate fi privită ca o înşiruire de dale pentru un posibil “şotron”.

Mai exact spus, fiecare astfel de poziţie este parte a două alinieri, una care urcă spre stânga şi una care urcă spre dreapta. Analizând cu atenţie sporită vedem că alinierea care urcă înspre stânga este mai lină, pe când alinierea care urcă spre dreapta este mai abruptă.

Interesant este că cele două alinieri care pornesc dintr-o poziţie, cea înspre stânga şi cea înspre dreapta, ajung să se reîntâlnească în partea cealaltă a ananasului. De fapt nu se întâlnesc exact în partea opusă, şi asta datorită diferenţei de înclinaţie. Astfel, de la un punct comun, să-i zicem A punctului de jos, până la celălalt punct comun B al celor două alinieri oblice, situat mai sus, drumurile pe cele două trasee diferă ca lungime: drumul care urcă lin spre stânga este mai lung, pe când drumul care urcă abrupt spre dreapta este clar mai scurt.

Surpriza apare atunci când numărăm paşii ce trebuie făcuţi pe cele două drumuri: de la A la B pe drumul abrupt dar mai scurt avem de făcut 8 paşi, pe când pe drumul lin dar mai abrupt sunt de făcut 13 paşi! UAU!!! DA!!! Exact 8, respectiv 13 paşi. La alte specii pot fi găsite alte numere Fibonacci alăturate. De pildă la o creangă de pin am găsit numerele Fibonacci consecutive 5 şi 8 (cu cât avansăm, raportul a două numere alăturate din acest şir aproximează tot mai bine renumitul număr “fi” φ ≈ 1,618).

Păi, ştiu ananaşii sau pinii matematică? Multe persoane au în momentul acesta o trăire de uluială profundă, ceva de genul: plantele sunt creaţia lui Dumnezeu; asta este o urmă clară şi de netăgăduit lăsată de Dumnezeu de când a creat lumea. Problema cu iepuraşii era clar artificială, dar această situaţie este una profund naturală şi realistă. Încă o dată: UAU!!!

De obicei, prima întrebare ce îmi este adresată în acest moment este dacă toţi ananaşii au chestia asta. Cel mai bine ar fi să mergeţi şi să verificaţi în supermarket (este distractivă imaginea a doi elevi distrându-se într-un magazin la cutia cu ananaşi, numărând bunbii respectivi, când un angajat vine şi îi ia la rost, că “ce fac acolo?”, iar aceştia să răspundă “ne facem tema la mate, ne-a dat profu’ să numărăm pătrăţelele de pe ananas!”).

Răspunsul la întrebarea dacă întotdeauna se întămplă aşa, este în principiu afirmativ, doar că aceste fructe nu sunt obligatoriu perfecte, ci au dereglări ale rândurilor în anumite părţi. De pildă, exemplarul din aceste poze dovedeşte o dereglare a rândurilor pe partea surprinsă în prima poză. Concret, pentru a fi sigur că pot face pozele pentru prezentul articol, pe acest fruct l-am verificat cu atenţie înainte de a-l cumpăra din magazinul Lidl (unde mă aştepta cuminte în raft). Dar de obicei funcţionează. În calculator mai am încă un rând de poze cu un ananas cumpărat cu trei săptămâni în urmă din Kaufland, la fel de corect, dar la care vopsirea nu se vede la fel de bine. Pe cele de mai sus le-am ales doar pe baza vopsirii mai clare a alinierilor. Titus “Dole”