Conferinţă Stephan Sigler

5WM-2 din 6 oct. 2015

Aspecte despre planul de învăţământ (Aspekte zum Lehrplan)

A doua conferinţă de la Congresul mondial al profesorilor de matematică Waldorf de la Dornach, lângă Basel, în Elveţia a fost susţinută de dl. Stephan Sigler de la Şcoala Waldorf din Frankfurt. Acesta predă şi la Seminarul de profesori Waldorf de la Kassel. Pe lângă un succint istoric al planului de învăţământ în matematica şcolilor Waldorf, dânsul a prezentat câteva aspecte de larg interes, pe care vi le redăm în continuare pe scurt, după notiţele noastre (cu un mic comentariu personal CTG).

  • Orice face profesorul la clasă ar trebui să reiasă din misteriile momentului întâlnirii cu elevii.
  • La începutul secolului XIX în Germania, Elementele lui Euclid era a doua carte după Biblie.
  • Geometria are o puternică legătură cu simţurile, cu văzul, cu echilibrul şi cu mişcarea, pe când algebra nu are nici o legătură cu simţurile. Uneori ne apare ca o simplă manipulare de înlănţuiri de simboluri.
  • Propunerile din 1905 ale lui Felix Klein pentru reforma predării matematicii (Meraner Reformvorschläge):
    1. Adaptarea la evoluţia spiritual-intelectuală naturală a elevilor;
    2. Conectarea la capacităţile de imaginare şi înţelegere a elevilor; studierea fenomenelor ce pot fi cuprinse şi înţelese de către elevi.
    3. Formarea unui curriculum în spirală.
    4. Orientarea materiei studiate după aplicabilitate în exteriorul matematicii (matematică financiară, practică topografică, dezvoltarea gândirii logice etc.).
    5. Şcolirea gândirii funcţionale, de exemplu prin fuziunea geometriei cu algebra (din păcate la noi această fuziune este făcută mult prea repede, fără a mai fi aşteptată şi permisă “coacerea geometriei” la începutul liceului – adăugare CTG).
  • Prezentarea unor noţiuni vii este dificilă în matematică; prin prezentarea noţiunilor în definiţii acestea nu mai pot evolua, nu mai sunt vii. Cum ar arăta o predare vie? Trebuie să lăsăm empirismul să fie prezent în orele noastre (caracterizare vs. definiţie).
  • De pildă, teorema lui Pitagora ar trebui prezentată iar şi iar, dar din diferite puncte de vedere: o dată prin arii şi forfecări (translaţii), altă dată prin asemănări, apoi din nou cu arii, dar de data asta cu formule de calcul prescurtat, iarăşi mai târziu cu teoria numerelor naturale etc. Aşa apare tendinţa de a lărgi o temă învăţată într-un mod viu. Predarea matematicii trebuie să aducă mai mult decât doar multe cunoştinţe.
  • Imaginaţia poate fi trăită cel mai uşor în matematică (dintre toate domeniile cunoaşterii). De exemplu la înţelegerea numerelor negative.
  • Kronecker: numerele naturale au fost create de către Dumnezeu; la numerele negative a trebuit să intervenim noi.
  • Prezentarea a fost încheiată cu un citat din Rudolf Steiner: Adevărurile matematice reprezintă prima hrană adevărată pentru spirit pe care o primeşte omul (Die mathematischen Wahrheiten sind die erste wahre geistige Nahrung die der Mensch kriegt).

30 oct. 2015

Mariana Grigorovici

Titus Grigorovici

Conferinţă Constanza Kaliks

5WM-1 din 5 oct. 2015

A învăţa să gândeşti (La aptitud de pensar, Learning to think)

Cu această conferinţă pornim prezentările activităţilor de la primul Congres mondial al profesorilor de matematică Waldorf, codificat 5WM la Goetheanum, centrul de cultură de la Dornach, lângă Basel, Elveţia (5-9 oct. 2015).

La congres au participat 98 de dascăli din 32 de ţări. Iată unele date: câte unul din Australia şi Noua Zeelandă, două doamne din Asia (Filipine, respectiv Japonia), trei colegi din Africa, câte un grup hotărât din America latină, respectiv America de nord; restul de 64% din Europa (incluzând cultural aici şi participanţii din Israel); doar cca. 31% erau vorbitori de germană.

D-na Constanza Kaliks predă la Seminarul didactic din São Paulo, Brazilia şi este conducătorul Secţiunii pentru tineret de la Goetheanum. Conferinţa a fost ţinută în spaniolă, noi audiind-o în traducere simultană (germană, respectiv engleză). Vă prezentăm în continuare în scurte idei, după notiţele noastre, prelegerea d-nei Kaliks ţinută la deschiderea congresului (adăugările personale le-am notat cu CTG). Rămâne de datoria cititorului să-şi completeze în imaginaţie multele pasaje de legătură între ideile prezentate. Trebuie doar să v-o închipuiţi pe d-na Kaliks cu un discurs latin, deosebit de temperamental (pilotul german de Formula 1 Sebastian Vettel, întrebat cum este la echipa italiană Ferrari, a răspuns: se vorbeşte foarte mult cu mâinile!).

  • Caracteristica centrală a matematicii: curiozitatea, creativitatea, “prin mine, prin gândirea mea”.
  • Cele două coloane centrale ale predării matematicii rezidă în următoarele afirmaţii:

I – lucrurile acestea sunt de când lumea aici;

II – hai să descoperim ce putem găsi aici (I can discover a world which is in my mind).

  • Ca urmare, există două căi extreme de predare:

I – să predai ca şi cum lucrurile sunt cunoscute de mult;

II – să predai astfel încât copilul să descopere formulele, cunoştinţele din lecţie.

  • Predarea matematicii are în faţa ei trei mari provocări:

1) Trecutul şi viitorul trebuie să se întâlnească în noi, participanţii la ora de matematică; elevul trebuie să înveţe lucruri vechi drept noutăţi.

2) Arta predării matematicii;

3) Cantitatea absurdă de informaţie (în supradoză, dar superficială) la care s-a ajuns în ultimii 50 de ani.

  • 30 milioane de copii nu merg la şcoală (date UNICEF de la sfârşitul lui sept. 2015).
  • Care este valoarea cunoaşterii? Informaţia nu se poate transforma în inteligenţă; cunoaşterea (ştiinţa) se poate însă transforma în inteligenţă. Din păcate, suntem deseori tentaţi să vedem stocarea de informaţii drept inteligenţă (este una din liniile de distrugere a copiilor de mici: avem impresia că dacă ştiu multe, sunt şi inteligenţi; sindromul micului Einstein, cu prototipul Dexter, cunoscutul personaj de desene animate din anii ’90 – adăugare CTG). Este o iluzie a crede că prin aglomerarea matematicii în copil acesta va avea o mai bună legătură cu lumea.
  • Prin matematică înveţi să te descurci în “ceva (nesenzorial)”.
  • Cum a evoluat istoric perceperea cunoaşterii:

a) În trecut omul gândea: “eu sunt parte a întregului” (“întreg pe care nu-l înţeleg”, în antichitate, respectiv “întreg pe care-l înţeleg”, începând din secolul XVI);

b) În prezent omul gândeşte: “întregul este al meu” (de ex. “întreaga lume este a mea prin intermediul internetului” – adăugare CTG). Cum influenţează aceasta predarea?

  • Şcoala trebuie să îmbine echilibrat următoarele două tipuri de activităti:

i) – activităţi creatoare; ii) – activităţi receptoare. Eu trebuie să fiu creator şi receptor în acelaşi timp; să fiu dispus oricând să încep a mă juca din nou (Ich muss Schöpfer und Empfänger gleichzeitig sein; immer neu anfangen zu spielen).

25 oct. 2015

Mariana Grigorovici

Titus Grigorovici

Fracțiile la vechii egipteni

În vara lui 2010 l-am cunoscut la Nürnberg pe dl. Filip, un învăţător de la Şcoala Waldorf din acest oraş, pensionat de mult şi care avea multe poveşti interesante (printre altele a avut-o în clasa a II-a ca elevă pe fetiţa Sandra Bulock!!!).
De la dânsul am primit o grămăjoară de cărţi vechi de matematică, care fusese o pasiune puternică a vieţii sale. Într-una din aceste lucrări, Ernst Bindel, Das Rechnen (Socotitul) din 1966, am găsit un capitol despre fracţiile la egiptenii antici. Autorul făcea referire la un articol mai vast Altägyptische Bruchrechnung (Calculul de fracţii la vechii egipteni), publicat în revista Erziehungskunst Nr.11-1961 (Arta educaţiei). Cu timpul am fost atras de subiect şi am început să lucrez la înţelegerea acestei teme. Am găsit şi articolul cu pricina, dar am început să găsesc referiri la acest subiect şi în alte locuri, mai ales în reportajul BBC FOUR The Story of Maths realizat de profesorul Marcus Du Sautoy în 2008.
Preocupările s-au accentuat în anul şcolar 2014/2015 când, în mai multe etape, am generat următorul eseu pe tema fracţiilor în Egiptul antic. Cu această lucrare am participat la Sesiunea de comunicări ştiinţifice Didactica Matematicii 2015 de la Turda.

C.Titus Grigorovici

Fracțiile la egipteni.pdf

Pentagonul și pentagrama

Dintre figurile geometrice neglijate de programa şcolară din România, pentagonul regulat este probabil cea mai importantă pentru cultura matematică universală. Pentagrama şi secţiunea de aur completează această temă aproape nelimitată. Iată câteva aspecte în această linie, cu care ne-m ocupat în trecut:

Articole de metodică

În paginile caietelor de matematică PENTAGONIA am inclus diverse prezentări de metodică a predării unor lecţii din programa şcolară. Iată o scurtă listă a acestora, pentru a le putea găsi mai uşor.

  • Apariţia numerelor complexe – predarea prin întrebări – Pentagonia nr.2
  • Ecuaţii de gradul I cu parametru – Pentagonia nr.3
  • Fracţiile zecimale – predarea prin întrebăriPentagonia nr.4
  • Extragerea radicalului, rădăcina pătrată şi numerele iraţionale în claseleVI-VIII – Pentagonia nr.6
  • Proporţionalitatea directă şi proporţionalitatea inversă – Pentagonia nr.7
  • Predarea ariilor în gimnaziu – Pentagonia nr.8
  • Linia mijlocie în triunghi – studiu de teoremă directă şi reciprocele sale – Pentagonia nr.9

Alte prezentări metodico-didactice vor urma.

Corpurile platonice (perfecte)

Una dintre marile teme ale culturii omeneşti ce lipsesc din programa şcolară o reprezintă setul celor cinci corpuri perfecte, cunoscute în vest drept Corpuri Platonice. Dintre acestea doar cubul şi tetraedrul regulat apar la noi în programa gimnazială, celelalte trei lipsind cu totul din conştienţa generală.
Cei doritori găsesc o prezentare scurtă a acestora şi a unor conexiuni dintre ele în paginile caietelor PENTAGONIA, astfel:

  • Introducere; I. Octaedrul; II. Tetraedrul, cubul şi octaedrul înscrise unul în celălalt – Pentagonia nr.2
  • III. Câte poliedre regulate există?; IV. Dodecaedrul – Pentagonia nr.3
  • V. Platon, Kepler şi corpurile perfecte; VI. Icosaedrul – Pentagonia nr.4

Subiectul nu este nici pe departe epuizat, dar oferă doritorului o minimă linie de plutire în cultura generală a omenirii, prezentabilă şi accesibilă la nivelul de clasa a VIII-a. În acest sens merită amintită o întâmplare cu un fost elev, care după clasa a IX-a s-a mutat cu familia în Statele Unite. Peste ani m-am trezit cu el la o serbare de final de an şcolar: venise să mă salute şi să-mi spună că în anul I la facultatea de arhitectură la Seattle a fost singurul care a ştiut de aceste corpuri, să le denumească şi să spună câte ceva despre ele (Salut Vlad!).
Pentru cei care încă nu sunt convinşi, studiaţi un pic promo-urile folosite pe postul de muzică ZU TV până la începutul verii 2015, să vedeţi câte icosaedre aveau ei acolo (şi pe care le-au văzut zilnic elevii).

Gândirea aritmetică vs. Gândirea algebrică

Un eseu cu exemplificare pe
Introducerea operației de putere la numerele naturale

Una din întrebările esenţiale, dar despre care mai nimeni nu-şi face multe gânduri, este următoarea: unde este trecerea de la aritmetică la algebră?

În eseul prezentat m-am preocupat de întrebarea: ce este gândirea aritmetică şi ce este gândirea algebrică, şi cum se diferenţiază una de cealaltă?

Am studiat această întrebare pe două plane: întâi la nivelul teoretic din punct de vedere al dezvoltării copiilor, apoi la un nivel concret, cu susţinere mai mult psihologică, pe baza exemplului introducerii operaţiei de putere şi a proprietăţilor operaţiilor cu puteri.

Eseul de faţă sublinează – printre rânduri – motivul pentru care preocuparea mea de bază o reprezintă actualmente predarea matematicii în ciclul gimnazial: este perioada în care pe rând elevii trec de la stadiului operaţional concret la stadiu operaţional formal; primii fac această trecere uşor odată cu trecerea în clasa a V-a, dar mulţi elevi o fac de-abia în anii următori, la trecerea în clasa a VI-a sau chiar în a VII-a. Din păcate însă acest aspect a fost neglijat puternic din anii ‘80 încoace.

Am încheiat această expunere de gânduri cu o scurtă fişă de lucru pentru însuşirea şi stabilizarea operaţiei de putere nou învăţate prin exerciţii de ordinea operaţiilor numerelor naturale (prezentată din motive practice în două exemplare). Spor la lucru!

Gândirea aritmetică VS Gândirea algebrică.pdf

Conferință Dr. H. Paschen

Vara asta, la terminarea anului şcolar, pe 10 iunie 2015, la Facultatea de Psihologie şi Ştiinţe ale Educaţiei din cadrul Universităţii Babeş-Bolyai din Cluj, am avut bucuria să-l audiez pe dl. Prof. univ. dr. habil. Harm Paschen de la Universitatea Bielefeld din Germania, cu o prezentare despre:

Importanţa pedagogică a conceptelor de cunoaştere non-discursive: empatia, intuiţia, spiritualitatea, tactul (Die Pädagogische Bedeutung der Konzepte von non-diskursiven Erkenntnis: Empathie, Intuition, Spiritualität, Takt).

Daţi-mi voie să vă prezint câteva idei din această conferinţă deosebit de interesantă.

  • încă din 1942 Susanne Langer vorbea despre faptul că muzica, arta în general, este o ştiinţă despre sentimente şi emoţii;
  • empatia nu este încă inclusă în pedagogie ca ştiinţă; eşti admis la facultate pe baza testării disciplinei respective, fără a fi verificat dacă ai tactul necesar pentru a acţiona pe viitor în faţa elevilor; un studiu în Germania arată că undeva între 35% şi 50% dintre profesori nu au empatia necesară exercitării acestei meserii;
  • tactul este direct înrudit cu empatia şi reprezintă calitatea modului în care interacţionezi cu ceilalţi (Herbarth, 1930?); empatia şi tactul merg mână în mână, determinând calitatea actului pedagogic;
  • prin “flow” se înţelege fenomenul in care oamenii ajung să fie ca uniţi cu un lucru (de ex. felul in care ne unim cu calculatorul şi nu ne mai putem desprinde de acesta); există o predare în care să apară “flow”, o predare care să-i capteze cu totul pe elevi?
  • prin “val” se înţelege procesul prin care pedagogul nu este cel care face ceva, ci cel care are “un val” şi îi ia şi pe elevi “cu valul”; nici această metodă nu este una discursivă;
  • intuiţia reprezintă experienţă încă neconştientizată; pedagogii au de-a face cu creiere, lucrul cel mai complicat din univers;
  • spiritualitatea (în general aceasta nu trebuie confundată cu spiritualitatea credinţei): în dezvoltaria matematicii aceasta a devenit tot mai spirituală, cu cât s-a desprins mai mult de slujirea lumii exterioare;
  • alte exemple de prezentări non-discursive: imaginile, muzica;

Acestea au fost câteva idei pe care am apucat să le notez din această conferinţă. Au fost şi multe exemple presărate în diferite momente. La “val” de pildă a fost un exemplu cu nişte elevi din internat care căutau noaptea, sub pătură, cu lanterna, soluţia problemei profesorului de mate la o problemă foarte palpitant pusă

C. Titus Grigorovici

Șirul lui Fibonacci în gimnaziu

Suntem obişnuiţi cu prezenţa şirului lui Fibonacci în liceu şi idea introducerii cunoştinţelor despre acesta în gimnaziu pare surprinzătoare. Să analizăm un pic subiectul şi veţi vedea că lucrurile sunt chiar accesibile.

În clasa a V-a le-am dat elevilor câteva numere, să zicem până la 8, şi le-am cerut să-l găsească pe următorul, fără a le da vreun indiciu despre cum este construit şirul.

1      1      2      3      5      8      …

Dacă nu apare numărul următor corect din câteva încercări, îl scriu eu pe următorul:

1      1      2      3      5      8      13    …

Apoi le cer din nou să continue ei. Până la urmă tot se prinde vreun elev din clasă despre ce-i vorba şi care-i şmecheria. Pasul următor este să le cer să completeze şirul până la al douăzecelea termen şi să studieze ce se întâmplă (apar câteva mici surprize).

Un alt exerciţiu, eventual ca temă, este construirea de şiruri de tip Fibonacci. Pentru acestea alegem două numere iniţiale oarecare, de pildă 4 şi 5, din care construim mai departe următorii termeni după regula din şirul lui Fibonacci (fiecare termen ca sumă al celor doi precedenţi).

Până aici nimic special, până de curând, când am luat la răsfoit o carte de Feng Shui (The complete idiot’s guide Feng Shui, de Elizabeth Moran, Joseph Yu, Val Biktashev, apărută la Ed. Curtea Veche), şi am găsit referiri la şirul lui Fibonacci (pare-se adunate din Fascinating Fibonaccis: Mystery and Magic in Numbers, de Trudi Hammel Garland, apărută la Dale Seymour Publications, 1987).

Şi iată ce proprietate am găsit aici:

Suma oricăror zece numere succesive din şirul lui Fibonacci este un număr divizibil cu 11, iar rezultatul împărţirii acestei sume la 11 este tot un număr din şirul lui Fibonacci, mai exact al patrulea de la coadă din seria celor zece alese.

De exemplu: 5 + 8 + 13 + 21 + 34 + 55 + 89 + 144 + 233 + 377 = 979, iar 979 : 11 = 89.

Acesta este deja un exerciţiu de fluidizare a calculului mult mai interesant pentru clasele mici (ca temă, fiecare elev are de verificat trei exemple până ora viitoare).

La elevii mai mari însă, putem trece de la faza de verificare a câtorva cazuri, la faza de demonstrare a generalităţii acestei proprietăţi. Deci, să încercăm o demonstraţie!

Nici n-am apucat să caut o demonstraţie într-o carte sau pe vreun site, că mi-a trecut prin minte o demonstraţie (în timp ce conduceam prin oraş!). Când am ajuns la destinaţie, mai întâi am verificat demonstraţia pe un bon de benzină, şi SURPRIZĂ!, a funcţionat.

Vă propun să căutaţi şi voi această demonstraţie, plecând de la idea că proprietatea prezentată – de divizibilitate la 11 – ar putea fi valabilă pentru orice şir de tip Fibonacci. Deci, plecăm de la două numere oarecare şi mai construim încă opt numere de tip Fibonacci, apoi facem suma lor şi … gata, v-am spus destul!

  1. Vă propun să hotărâţi apoi din ce clasă se poate da ca temă de lucru această demonstraţie. Eu zic că în clasa a VII-a (a şaptea!) merge deja lejer.

C.Titus Grigorovici

14 aug. 2015