Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat – (IV)

În cele ce urmează voi continua analiza geometriei şcolare aşa cum se găseşte aceasta la o lectură atentă “printre rânduri” în lucrarea profesorului Eugen Rusu, De la Tales la Einstein (Lyceum, ed. Albatros,1971). Am citit această carte pentru prima dată cândva în a doua jumătate a anilor ’90, adică spre finalul primului meu deceniu de profesie. Cartea ne-a entuziasmat, pe mine şi pe soţia mea, am preluat câteva citate din ea, dar în mare nu am putut valorifica în profunzime toate cele citite: eram încă la începutul drumului în reformarea predării pe baze mai sănătoase a matematicii (startul conştient pentru mine a fost în 1994). Gândurile lecturate s-au afundat însă încet în uitare, dar nu într-o uitare neglijentă, ci într-o uitare sănătoasă, din care uneori îmi veneau brusc idei – pe care le credeam ale mele – dar care îmi erau sugerate inconştient de cele citite la Eugen Rusu.

La începutul acestui an, lucrând la un alt material, căutam un anumit citat, aşa că am redeschis cartea sus-amintită. N-am găsit citatul căutat, dar am găsit la începutul acestei cărţi o minunată conexiune cu sfatul de folosire a abordării intuitive în predarea primelor noţiuni de geometrie în clasele V-VI din noua programă de matematică pentru gimnaziu. În momentul acela toate gândurile înceţoşate din ultimii peste 20 de ani despre cum ar trebui predată geometria mi-au reapărut în conştienţă, de data aceasta clare ca într-o imagine de cea mai mare rezoluţie pe un monitor HD. Mă simţeam ca într-o casă caldă privind afară pe fereastra înrămată cu perdelele cele mai frumoase, într-o zi însorită de iarnă când toate detaliile firelor de zăpadă din omătul de afară se văd cu o claritate năucitoare. Rezultatul acelui moment s-a concretizat a doua zi în eseul (din 10 ian. 2018) numit Criteriul psihologic al intuiţiei în selectarea teoremelor de demonstrat. Lecturând mai departe din cartea lui Eugen Rusu am înţeles că eseul se cere continuat, astfel apărând următoarele două părţi spre finalul lunii ianuarie.

Consideram că am epuizat subiectul, dar carte continuă, relevând faptul că subiectul ales iniţial cu titlul de mai sus, se transformă încet într-unul mult mai profund, ce ar putea fi numit Etapele predării geometriei şcolare şi argumentarea psihologică a metodicii predării. Am păstrat totuşi titlul iniţial pentru a arătă continuitatea gândurilor.

Aşadar, să mergem mai departe în lecturarea cărţii lui Eugen Rusu. În Capitolul IV, numit Matematica întreagă: meşteşug, ştiinţă, artă şi joc, mijloc de educaţie, Eugen Rusu ne vorbeşte despre ARHIMEDE (287 – 212). Iată, pentru o mai clară impresie, o parte din subtitlurile acestui capitol (care începe la pag. 70): Matematician universal; Viaţa; Ingeniozităţi practice; Arhimede îşi apără Patria; Opera scrisă; Precursorul fizicii matematice (parte ce conţine o descriere detaliată a problemei coroanei); Concepţia filozofică; Evrika; Precursor al calculului integral; Arhimede îi învaţă pe greci să numere; Joc-matematică; (…) Următoarele pasaje sunt alese din acest capitol prin prisma principiului evocat la începutul cărţii, anume că evoluţia matematică a unui individ este, cu prescurtări, asemănătoare cu evoluţia istorică a umanităţii (pag.4). Eu înţeleg acest principiu în felul următor: evoluţia preocupărilor şi a descoperirilor diferitelor elemente matematice de-a lungul vremurilor este un bun indiciu, de care trebuie ţinut cont pe cât posibil în organizarea materiei şi a nivelului de abordare al acesteia, pe parcursul claselor şcolare, fiind cel mai sănătos ca aceasta să evolueze pe căi şi în trepte similare cu cele din parcursul istoric.

Capitolul începe prin enumerarea a şapte argumente, motive pentru care Arhimede poate fi considerat primul matematician universal (Henri Poincaré, 1854-1912, ar fi ultimul matematician universal). Trei dintre acestea mi-au atras atenţia. Astfel, Arhimede:

– a făcut cercetări de matematică dezinteresată, axate pe plăcerea de a gîndi, nedispreţuind nici sectorul problemelor “distractive”, situate între joc şi matematica-artă; – a împletit cercetarea euristică cu fundamentarea logică riguroasă, arătând şi cum a gândit ca să descopere şi cum, după aceea, caută o demonstraţie matematică riguroasă; – a intrat în contact cu alţi matematicieni nu comunicîndu-le direct rezultatul, ci provocîndu-i să-l caute, dovedind astfel că a intuit cu deosebită fineţe adevărata pedagogie a matematicii; (…; pag.70-71)

Aceste argumente ar trebui citite “printre rânduri” ca un sfat din partea lui Eugen Rusu pentru introducerea lecţiilor prin procedeul de problematizare, mai degrabă decât prin simpla prezentare a conţinuturilor. Astfel, elevii trebuie provocaţi să gândească (şi să descopere plăcerea de a gândi) în strădania de a genera împreună lecţia la oră, în loc să le turuim conţinuturile şi să le cerem să le înveţe pe de rost. Iar în procesul de atragere a elevilor spre plăcerea de a gândi, matematica “distractivă” reprezintă unul dintre “magneţii” cei mai puternici. În subtitlul Joc-matematică (pag.91) E. Rusu reia ideea:

Jocul “stamahion” – practicat ca distracţie la curtea din Siracuza şi căruia Arhimede i-a consacrat o mică lucrare – constă în aşezarea a 14 plăci de fildeş în aşa fel ca să formeze un pătrat. Plăcile erau astfel tăiate încît să existe mai multe soluţii, precum şi unele false soluţii, adică aşezări care erau “aproape pătrate” şi numai prin raţionamente – după cum a arătat Arhimede – se putea dovedi că nu sînt soluţii exacte. Căutarea soluţiilor era un amuzament. Cînd însă căutarea soluţiilor nu se face pur empiric, prin aşezări întîmplătoare, ci prin aşezări ghidate şi de raţionament, acest amuzament devine de ordin superior; avem în acest caz un joc-matematic şi el trebuie incorporat matematicii propriu-zise. Astfel de jocuri apar în cărţi care se intitulează obişnuit matematică distractivă. Mi se pare că este un titlu prea larg: nu numai jocurile, multe probleme “serioase”, aproape întreaga matematică este sau ar trebui să fie dintr-un anumit punct de vedere şi distractivă. Nenumăratele demonstraţii prin arii ale teoremei lui Pitagora, din care am amintit cîteva, nu sînt în esenţă foarte asemănătoare cu jocul stamahion? Graniţa între joc de inteligenţă şi matematică este foarte neprecisă. (…) Astfel concluzionează Eugen Rusu acest subtitlu, iar eu îmi permit să completez în primul rănd că Da!, orele de matematică şcolară ar trebui pigmentate din când în când cu probleme mai mici sau mai mari de matematică distractivă. Apoi, în al doilea rând, trebuie precizat că multe elemente din lecţiile serioase, obligatorii prin programă, pot fi – şi ar fi bine să fie – predate asemănător problemelor de matematică distractivă. Efectul surprinzător la o astfel de politică de predare este că, în felul acesta chiar şi elementele mai seci ale orei de matematică sunt preluate de către elevi cu drag, ei fiind conştienţi că profu’/profa’ se străduieşte ori-de-câte-ori este posibil să le prezinte lecţii cât mai frumoase şi atractive.

După descrierea detaliată a problemei coroanei, în subtitlul Evrika Eugen Rusu analizează momentul înţelegerii unui fenomen. Gîndirea lui Arhimede nu este stînjenită de prejudecăţi “filozofice”, este un om viu, interesat de felurite probleme de viaţă, de ştiinţă. Simţirea lui este de asemenea spontană, naturală, nefalsificată de “concepţii” – şi deci foarte interesantă ca fenomen psihic.

Există la unii oameni părerea că activitatea matematică este pur intelectuală, uscată şi rece, lipsită de pulsaţia şi palpitaţiile fenomenelor vii. Este părerea acelora care nu au o experienţă proprie, autentică asupra ei, care o privesc prin prisma deformantă a matematicii şcolare de un anumit tip, a unei şcoli greşit înţelese, care în loc să deschidă poarta spre matematica vie, au transformat-o într-o obligaţie penibilă. (pag.83) Cât de multă dreptate are aici profesorul Rusu, sugerând măcar în parte că abordarea predării matematicii poate fi privită ca una din sursele apariţiei persoanelor avariate matematic! (fenomen despre care am vorbit în câteva rânduri cu alte ocazii) Şi, din păcate, cât de mulţi profesori de matematică, al căror rol ar trebui să fie de a deschide poarta spre matematica vie şi spre plăcerea de a gîndi, cât de mulţi dintre aceştia transformă matematica într-o obligaţie penibilă, într-o materie repulsivă!

Există însă şi mulţi oameni care, încă de copii, intuiesc esenţa umană a activităţii matematice; căci, pentru aceasta, nu nivelul creaţiei este important, ci actul în sine. O problemă elementară, dacă este trăită, provoacă o gamă de sentimente şi o satisfacţie, asemenea, dar la scară mai mică, cu cele date de un act de creaţie propriu-zis. Priviţi copilul cum se munceşte necăjit cu o problemă; îi vine să o lase dar atunci îi apare sentimentul unei umilinţe, uneori şi al unei ambiţii, al unei competiţii tacite: Petrescu va reuşi s-o facă, eu nu? Priviţi-l cum schimbă încercările cînd cu deznădejde, cînd cu înfrigurări de speranţă. Priviţi, mai ales, momentul cînd faţa i se luminează, începe să lucreze înfrigurat dar sigur, pentru ca la sfîrşit, confruntînd eventual şi cu răspunsul din carte, să exclame cu o satisfacţie specifică: mi-a ieşit! Comparaţi acum cu peripeţiile de ordin sufletesc ale lui Arhimede în căutarea soluţiei la problema lui Hieron (cea cu dilema dacă aurarul a înlocuit o parte din aurul pentru coroană cu argint). Nu, activitatea matematică nu e de loc rece; o gamă de sentimente şi emoţii puternice trebuie să o anime pentru ca ea să fie fructoasă.

Mi-a ieşit, exclamă copilul, satisfăcut. Legenda spune că atunci cînd Arhimede făcînd baie, a intuit brusc legea plutirii corpurilor şi, prin ea, şi soluţia la problema cu coroana, entuziasmat a ieşit din baie, gol cum era, strigînd: Evrika, Evrika! (am găsit, am descoperit!). Evrika! Este rădăcina etimologică a cuvîntului euristic. Este simbolul scurt şi evocator al întregii matematici euristice, ca şi al oricărei invenţii, al triumfului inteligenţei în lupta ei necurmată cu necunoscutul. Din tot ce a făcut şi a trăit Arhimede, inclusiv ceea ce îi atribuie legendele, dacă nu ar rămîne decît acest unic cuvînt evrika, chiar şi golit de conţinutul concret, fără să mai ştim la ce anume invenţie s-a referit, el şi-ar păstra o deosebită valoare de simbol, simbolul celei mai vii şi autentice atitudini umane. Tocmai de aceea, ecoul lui prelungit peste veacuri ne înfioară şi astăzi.

Ca să apară, izbucnind, acest evrika triumfător e necesar un preambul, uneori destul de prelung, de sforţări, de luptă nedecisă, de îndoieli chinuitoare împletite cu înfiripări de speranţă; este necesar, în plus, ca acest efort să fie personal, tensiunea întreagă a propriei fiinţe. Evrika e un fel de împlîntare a steagului victoriei pe o redută îndelung asaltată.

Urmăriţi timbrul emoţional al unei exclamaţii pe linia cunoaşterii: aha! Este exclamaţia care traduce pe “am înţeles”, “m-am dumerit”, cînd unui om i se explică, din afară, ceva. O exclamaţie şi ea umană, numeric mai frecventă decît evrika, dar emoţional mai ştearsă. Traduce o satisfacţie – aceea de a fi aflat un lucru nou – dar ea e oarecum umbrită de regretul de a nu fi reuşit singur, prin mijloace proprii.

Oamenii care rămîn afectiv incolori în faţa procesului de cunoaştere sînt de compătimit, ei nu au ajuns în miezul viu al lucrurilor. Autentici sînt oamenii care exclamă. Prin natura lucrurilor, cum spuneam, cea mai frecventă exclamaţie este “aha”! Dar fiecare om, cu adevărat om, trebuie să aibă şi acţiuni, momente în care exclamă cu plenitudine şi cu ascuţită satisfacţie: evrika!

*

Realitatea psihică închisă în cuvîntul evrika, bucuria de a afla, o găsim şi la Tales şi la Pitagora, tradusă material printr-un alt simbol: jertfa adusă zeilor drept mulţumire pentru descoperirea unei teoreme. Dar pe un fond comun – emoţia, entuziasmul pentru un plus de cunoaştere – două nuanţe distincte: evrika înseamnă am descoperit eu, sînt mulţumit pentru că procesul de gîndire petrecut în mintea mea a fost încununat de succes. Jertfa arată concepţia că descoperirea s-ar datora şi sprijinului unei puteri supranaturale din afară. Nu ştiu dacă e adevărat că Arhimede  a ieşit din baie dezbrăcat la propriu; dar dezbrăcat de concepţii mistice, om pur şi simplu, aşa cum l-a făcut natura, era.

Nu însă un om simplu, ci, dimpotrivă, foarte rafinat. El ştia să preţuiască nu numai actul viu, dinamic, al descoperirii, ci şi frumuseţea interioară a unor adevăruri, armonia de genul aceleia atît de preţuită de către predecesorul său, Pitagora.

Propoziţia care i-a plăcut mai mult din acest punct de vedere a fost faptul – simetric şi simplu – că cilindrul circumscris sferei are aria o dată şi jumătate cît a sferei, iar raportul volumelor este acelaşi.

Sfera şi cilindrul circumscris este tocmai figura care i-a fost săpată, ca omagiu, pe mormînt – tot astfel cum pe mormîntul unui poet se sapă două versuri din opera sa. Figuri, versuri care uneori amintesc mai mult de liniştea majestuoasă a morţii decît de efervescenţa vieţii acelui care odihneşte sub piatra pe care ele au fost săpate … (pag.83-85)

Da, aşa a descris Profesorul Eugen Rusu emoţiile trăite pe parcursul unei rezolvări de către cel ce se străduieşte cu adevărat, comparându-le – chiar dacă la o scară redusă – cu legendarul evrika al lui Arhimede. Dar, oare unde putem cuprinde noi cel mai eficient aceste “sfaturi” date printre rânduri de Eugen Rusu? Cum putem noi aranja materia de studiat, cum putem alege teoremele şi problemele de demonstrat, astfel încât să aducem elevii în punctul de a trăi şi ei, măcar parţial, bucuria “redescoperirii” marilor realizări ale lui Arhimede, ca unele dintre cele mai mari ale antichităţii înfloritoare elene. Pentru că actualmente, în matematica de gimnaziu acesta nici măcar nu este amintit! Într-adevăr, noi, profesori, nici măcar nu-l amintim la orele de geometrie pe Arhimede, îmblînzitorul cercului şi al sferei, primul om care l-a stăpânit cu adevărat pe acel număr magistral, numit de către urmaşii săi π (pi). De pildă, câţi dintre noi prezentăm elevilor că Arhimede este primul om care l-a stabilit pe 3,14 sub forma fracţiei ordinare 22/7?

Permiteţi-mi să vă prezint cum mi-am ales eu elementele legate de lungimea cercului şi aria discului în clasa a VII-a, respectiv aria sferei şi volumul bilei în clasa a VIII-a (exprimarea preţioasă, hipercorectă, respectă faptul că cercul şi sfera sunt singura figură, respectiv singurul corp care au denumiri diferite pentru interior: cercul este linia, pe când discul reprezintă cercul plus interiorul său, măsura cercului reprezentând perimetrul, pe când măsura discului aria; în mod similar, sfera este goală, măsura sa fiind o arie, pe când bila reprezintă sfera împreună cu interiorul său, măsura acesteia fiind un volum; nici o altă figură, respectiv nici un alt corp nu au în mod similar două denumiri; povestea asta le-o spun elevilor la clasă, rareori în a VII-a, dar sigur în a VIII-a).

Pentru ca elevii să poată aprecia magnitudinea acestor descoperiri, dificultatea găsirii şi demonstrării lor, trebuie să aibă cu ce să le compare. Cu alte cuvinte, înaintea găsirii ariei discului, elevii trebuie să fi fost conduşi pe calea descoperirii la clasă a formulelor de arie pentru celelalte figuri de bază (găsirea prin problematizare a formulelor de arie pentru triunghiurile şi patrulaterele studiate; am precizat prin problematizare, accentuând importanţa trezirii şi activării gândirii elevilor, atragerea acestora în procesul de descoperire însoţită de către profesor a noilor cunoştinţe). La fel, pentru a putea aprecia spectaculozitatea găsirii formulelor pentru aria şi volumul sferei, implicit şi genialitatea lui Arhimede, trezind astfel admiraţia pentru gândirea omenească în forma ei cea mai strălucită, elevii trebuie să fii dedus în clasă prin problematizare aria şi volumul tuturor celelalte corpuri (prismele, piramidele, trunchiurile şi corpurile rotunde plan-desfăşurabile). În acest sens iată pe scurt enumerarea lecţiilor.

În clasa a VII-a, după lămurirea ariilor patrulaterelor şi a triunghiurilor studiate, eu studiez în ordine: 1) aria hexagonului regulat şi a octogonului regulat înscrise în cerc (pentru “încălzirea” minţii), urmate de fabuloasa situaţie a dodecagonului regulat (poligonul cu 12 vârfuri) a cărui arie este egală cu 3r2 (demonstraţie de 1-2 rânduri prin calcularea ariei unei “felii”, adică a unui triunghi isoscel, nu prin apotemă, ci calculând una din înălţimile congruente folosind cateta opusă unghiului de 30o); 2) determinarea ariei unui disc cu raza de 5cm pe caietul cu pătrăţele, contabilizând toţi cm2 întregi cât şi toate fracţiunile de cm2, aproximând cât mai bine discul în interiorul sau în exteriorul cercului (este o lucrare practică de tip Laborator de matematică), cu stabilirea în final a faptului că pătratul razei, adică 52 = 25 întră în aria stabilită aproximativ de 3,12 ori (descrierea acestei lecţii o găsiţi în finalul postării Matematica naivă, exemple (2) din 1 august 2016); 3) în finalul acestei lecţii, sau ora următoare, le prezint elevilor numărul π (pi), aici putând efectua şi câteva măsurători pe castroane rotunde şi alte oale, folosind metrul de croitorie pentru a observa apariţia acestui număr şi la lungimea cercului, adică la perimetrul său. Tot aici le povestesc şi despre goana după cât mai multe zecimale de calculat acestui număr, arătându-le elevilor o pagină cu peste 2500 de zecimale ale numărului pi (pag.64 din Simon Singh, Marea teoremă a lui Fermat, Ed. Humanitas, ed. A II-a, 2000) şi le spun că de peste zece ani am descărcat de pe net numărul pi cu un milion de zecimale. 4) Uneori, într-o oră ulterioră, ca o curiozitate, le pot arăta elevilor şi metoda egipteană de calcul a ariei discului.

În clasa a VIII-a elevii sunt pregătiţi să deducă majoritatea formulelor de arie ale corpurior studiate. Pentru formulele de volum trebuie abordată a tactică de îndrumare care să folosească gândirea intuitivă a elevilor. În această etapă obişnuiţi fiind să gândească, elevii dictează mare parte din formulele corpurilor. Doar în diferite momente trebuie să mai intervin cu precizări sau explicaţii. Astfel pregătiţi fiind, când în final ajungem la sferă, elevii vor putea trăi din plin şi cu totală admiraţie demonstraţia condusă de către mine la tablă, în timp ce îl evoc pe Arhimede. Demonstraţia pentru volumul sferei este la un cu totul alt nivel decât cele precedente (cilindru, con, trunchi de con), trezind o stare de uimire profundă faţă de gândirea care a generat-o. Povestea cu Cicero care, două secole după moartea lui Arhimede îi găseşte mormântul lângă Siracuza pentru că avea gravate pe el o sferă într-un cilindru, această poveste “pune capac” admiraţiei elevilor. Dacă doriţi şi alte amănunte, găsiţi prezentarea în detaliu şi pozele acestei lecţii în postarea din aprilie 2016 la adresa Finalul Geometriei în clasa a VIII-a (4) .

CTG, 3-4 martie 2018 (cadou de ziua lui Pi)

Leave a Reply

Your email address will not be published. Required fields are marked *