Radacina pătrată – faza aritmetică prin predare intuitivă

Programa clasei a VII-a cuprinde de foarte mulţi ani (de prin 1998?) studiul complet al rădăcinii pătrate, prin aceasta înţelegând introducerea noţiunii, apoi extragerea rădăcinii, ideea de număr iraţional şi calculul algebric cu numere reale. Sunt prea multe etape cuprinse într-un singur capitol, astfel încât foarte mulţi elevi ajung bulversaţi şi nu înţeleg de fapt mai nimic. Aruncând o privire în străinătate observăm că peste tot în lume acest proces se întinde pe parcursul câtorva ani, fiind eşalonat în două mari faze: una, să-i spunem “aritmetică”, iar a doua – dacă aceasta mai apare – o fază “algebrică” (de obicei în liceu). Pentru înţelegerea noţiunii de rădăcină pătrată elevii au nevoie să petreacă în prima fază mult mai mult decât cele 2-3 ore alocate prin programă.

De foarte mulţi ani predau prima fază, cea aritmetică, într-o serie de lecţii după cum urmează. Aceste lecţii (de descoperit intuitiv cu elevii în clasă) se pot înţelege foarte uşor urmărind temele date din fişa de lucru anexată prezentei postări.

  • Tabla pătratelor perfecte şi introducerea rădăcinii pătrate ca operaţie inversă la ridicarea la pătrat. La această metodă scriem pur şi simplu primele trei-patru coloane de pătrate perfecte (prima coloană 12=1, 22=4, …, 102=100; a doua coloană 112=121, …202=400; a treia coloană 212=441,…). Prima coloană este cunoscută, a doua coloană este de învăţat pe de rost. De obicei mă apuc să scriu şi tabla rădăcinii pătrate, adică forma “în oglindă”, dar după câţiva paşi concluzionăm toţi că de fapt nu are rost să ne mai ostenim, pentru că ne descurcăm cu prima variantă. Acest pas nefăcut, dar atins, este foarte important pentru că elevii conştientizează de fapt că ei pot gândi, că o treabă ciudată precum radicalul se bazează pe ceva foarte uşor, că radicalul este operaţia de probă a ridicării la pătrat, adică a înmulţirii unui număr cu sine. Ca temă de casă a acestei lecţii sunt exerciţiile 1, 2 şi 3 de pe fişă. Aceasta este prima metodă de extragere a rădăcinii pătrate, anume cu tabla pătratelor perfecte şi învăţarea rezultatelor pe de rost.
  • Metoda găsirii intuitive a rădăcinii pătrate. Lecţia următoare poate începe cu comentariul despre rădăcina pătrată a lui 2500. Astfel, putem redacta o nouă coloană de pătrate perfecte, anume 102=100, 202=400, 302=900, … 902=8100, 1002=10000. Pe baza acestei noi liste putem deduce o a doua metodă de găsire a rădăcinii pătrate, una foarte intuitivă. Găsiţi pentru aceasta explicaţii în cadrul exerciţiului 4 de pe fişa de teme, dar şi în poza tablei de la lecţia respectivă. Pentru pasul al doilea al metodei trebuie să faceţi însă un studiu al evoluţiei ultimelor cifre a pătratelor pe tablă pătratelor perfecte din lecţia precedentă. Tema de casă a acestei lecţii cuprinde exerciţiile 4 şi 5, cu extindere la 6 şi 7. Această metodă îi ajută pe elevi să pătrundă foarte bine natura rădăcinii pătrate, deoarece îi obligă tot timpul la probă. Pentru că este o metodă în general necunoscută vă ofer şi poza tablei de la această lecţie:

  • A treia metodă studiată este determinarea rădăcinii pătrate prin descompunerea în factori primi. Şi aceasta poate fi uşor dedusă împreună cu elevii – predare prin problematizare – pe baza analizei câtorva descompuneri a unor numere şi a pătratelor perfecte ale acestora. La întrebarea unor elevi despre ce se întâmplă dacă la descompunere apare un factor “singur”, răspunsul este simplu: în acest caz nu avem pătrat perfect şi pe acestea le vom studia mai târziu. Tema de casă la această lecţie constă în exerciţiul 8
  • A patra metodă de calcul este cunoscutul algoritm de extragere a rădăcinii pătrate, legat de care aici trebuie să fac câteva observaţii metodologice. În această lecţie facem doar exemple care “ies exact”, adică cu radicali din pătrate perfecte (îi ajută pe elevii începători, dându-le siguranţă , respectiv bucuria rezultatului final în cazul calculului corect). Este foarte important ca să ajungem repede la exemple în care pasul al doilea să devină repetitiv, adică să luăm pătrate perfecte cu cel puţin 5-6 cifre. Cu cât numărul de sub radical este mai mare, cu atât metoda se înţelege mai bine. Tema acestei lecţii este exerciţiul 9.
  • În a cincea oră luăm exerciţii “cu virgulă”, studiind rădăcina pătrată cu rezultate fracţii zecimale. Acestea sunt de două tipuri. În primul rând apar exemple ca în exerciţiul 10, anume rădăcini din fracţii zecimale “pătrate perfecte”, a căror mecanism se înţelege destul de repede, iar apoi se trece la extragerea rădăcinii din numere care nu sunt pătrate perfecte. Aici apare ideea de aproximaţie; tot aici sunt calculate cu 2-3-4 cifre zecimale rădăcinile lui 2, 3, 5 etc. Desigur că lecţia a 5-a se poate prelungi pe parcursul a 2-3 ore. În cadrul acestei lecţii scriem pe marginea paginii o listă cu rădăcinile pătrate ale numerelor naturale, cu razultatele scrise de la început ale radicalilor din pătrate perfecte; acum se vede foarte clar care este următoarea sarcină, anume calculul aproximativ al rădăcinilor numerelor nepătrate perfecte (2, 3, 5, 6, 7, 8, 10 etc.)

Cât rămânem cu elevii la nivelul aplicativ aritmetic, aceasta este o altă discuţie şi ţine de felul cum înţelegem gândirea copilului. Eu personal încerc să rămân cu clasa a VII-a în această fază măcar câteva săptămâni. Concret, în ultimii ani am trecut la calcule algebrice cu numere reale de-abia în semestrul II. Pe de altă parte, această etapă de introducere a rădăcinii pătrate ar putea fi inclusă lejer deja în clasa a VI-a, aşa cum era înainte de a fi aduse în clasa a VII-a la finalul anilor ’90.

Titus Grigorovici

Rădăcina pătrată exactă – Fișă de lucru.pdf

Cum să predăm o lecţie astfel încât elevii să înţeleagă cât mai puţin (mic îndrumar de bulversat şi dezgustat elevii prin matematică)

“Da’ nu-nţeleg! Mi se pare că la şcoală mergem să-nvăţăm …, sau?” (nedumerirea exprimată de un elev “de 10” din clasa a VIII-a după ce a priceput cât era de simplă lecţia groaznic de grea primită la şcoală)

Din păcate, mulţi profesori parcă au doar acest obiectiv în minte, atunci când vin în clasă şi predau lecţia, anume să-i chinuie pe elevi cât mai mult, să-i înjosească şi să-i scârbească de matematică, mai pe faţă spus, să le arate cât sunt de proşti. Cel puţin aceasta este aparenţa. Nu mă interesează ce-o fi în sufletul acestor profesori, dar haideţi să aruncăm o privire asupra unor reguli de bun simţ încălcate în predarea matematicii, exemplificate cu această ocazie pe elemente din materia de algebră a clasei a VIII-a din semestrul I.

  • În prima lecţie de prezentare a sistemelor de ecuaţii nu se dă elevilor o formă generală cum sunt cele folosite la determinanţi în clasa a XI-a (de exemplu, a1x + b1y = c1 ). Acelaşi gând este valabil şi la ecuaţia de gradul al II-lea, deşi aici situaţia nu este atât de gravă datorită lipsei indicilor. Atât sistemele de ecuaţii, cât şi ecuaţiile de gradul II trebuie prezentate pe baza unor exemple (care se şi rezolvă cât de curând). De-abia ora următoare elevii nu vor mai fi bulversaţi dacă le prezentăm forma generală.
  • Metoda grafică în rezolvarea sistemelor de ecuaţii este lungă, grea (greu de înţeles) şi mai ales destul de neexactă. A începe predarea sistemelor de ecuaţii cu această metodă este una din gafele cele mai mari ale reformei impuse de către profesorii universitari în 1980. Învăţată după cele două metode algebrice gimnaziale (substituţiei şi reducerii) aceasta nu-şi mai are sensul. Parcursă însă după reprezentarea grafică a funcţiilor de gradul I, această metodă capătă un oarecare sens, arătând că ecuaţiile cu două necunoscute sunt doar o altă faţetă a fenomenului de funcţie.
  • Dacă tot am luat “sub lupă” metoda grafică în rezolvarea sistemelor de ecuaţii, haideţi să mai facem o scurtă precizare: în această metodă soluţia se obţine la intersecţia dreptelor soluţiilor celor două ecuaţii, şi nu din întâmplare în tabelele realizate pentru reprezentarea grafică. Soluţia se găseşte desigur cu condiţia ca dreptele să fie reprezentate foarte exact. Pentru a evita găsirea soluţiei din întâmplare, eu am oferit elevilor următorul exemplu: –x + y = 2 şi 2x – y = 3. În speranţa că elevii vor completa în tabele numere din jurul originii (numere cât mai mici), este de aşteptat ca elevii să găsească soluţia (5,7) de-abia după reprezentarea grafică a celor două drepte.

Desigur că arsenalului de metode folosit pentru speriatul elevilor este mult mai vast şi bine adaptat pentru bulversatul acestora la orice vârstă. Am întâlnit de pildă o metodă de derivat funcţiile compuse absolut năucitoare: şi mie, ca profesor cu un sfert de secol vechime, mi-a luat 10 minute să înţeleg ce vrea şi cum funcţionează aceasta. Cum să ne aşteptăm ca elevii să înţeleagă ceva din prima oră, după o astfel de lecţie?

Poate pare neserioasă tema acestei postări, anume îndepărtarea elevilor de matematică prin chiar felul în care predăm, dar şi însuşi marele Pólya s-a exprimat în acest sens în  Descoperirea în matematică, atunci când spunea: nu insistaţi prea de timpuriu sau prea mult asupra aspectului axiomatic al geometriei – dacă nu vreţi să-i dezgustaţi pe elevi de geometrie. Vă sună cunoscut? (aceasta este cealaltă mare gafă impusă prin manualele gimnaziale ale reformei din 1980 în învăţământul românesc).

Un profesor really pissed off!

Proporţionalitate şi asemănare – prima lecţie

Foarte multe lecţii sau chiar capitole sunt de obicei aranjate conform criteriilor rigurozităţii matematice ştiinţifice. Nevoile elevilor – aflaţi la primul contact cu materia – sunt însă de obicei altele, deseori opuse, acestea ţinând mai degrabă de criterii psihologice. Astfel, linia cea mai sănătoasă, recomandată de către toţi specialiştii în didactică, este drumul de la concret la abstract, de la cunoscut la nou, de la ceea ce elevul cunoaşte şi stăpâneşte la ceea ce urmează a fi prezentat ca material nou.

Capitolul despre proporţionalitate şi asemănare în geometrie este un exemplu perfect în acest sens. Plec de la premiza că este cunoscută cititorilor ordinea lecţiilor din manuale. De prin 2000 eu predau însă la începutul acestui capitol o lecţie de prezentare în care parcursul este unul profund intuitiv, plecând de la o problemă cunoscută din clasa a VI-a, şi ajungând la teoremele capitolului nou în urma unui proces de abstractizare în paşi clari. Pasul de la o etapă la următoarea se face sub întrebarea “la ce putem renunţa din forma precedentă?”. Astfel, la primul pas (1→2) am renunţat la ciobănaş, la oiţe, dar şi la planul orizontal, care ne dădea unghiul drept, total nerelevant pentru studiul nostru. La al doilea pas (2→3) am renunţat la elementele din natură, rămânând cu totul în domeniul geometriei. Următorul pas (3→4), la fel ca la congruenţa triunghiurilor (unde acestea erau constatate ca “egale prin suprapunere”), face o încercare de suprapunere. Desigur că nu funcţionează, dar încercămsuprapunerea măcar într-un colţ, adică pe un unghi comun. În acest caz “se pierd” şi congruenţele de unghiuri, două dintre aceste relaţii fiind înlocuite cu paralelismul a două laturi corespunzătoare (desigur, cu sprijinul teoriei unghiurilor alterne interne). În pasul final (4→5) se renunţă şi la “ultimul sprijin” care ne-a însoţit în precedentele etape ca o schelă de nădejde, anume culoarea (verde de la brad, respectiv roşu de la stâlp). Cu ce rămânem la sfârşit? Cu o proporţie de patru segmente. În acest fel am sintetizat esenţa acestui capitol, anume manifestarea proporţiei unor segmente în geometrie.

Un aspect metodic merită a fi relevat aici: ne plângem de multe ori că elevii “nu învaţă”. Procedând însă după cum am arătat, vedem cum elevii învaţă aranjarea segmentelor proporţionale prin repetarea succesivă chiar în cadrul lecţiei de la clasă. Desigur că scrierea acestora cu cele două culori ale problemei încetineşte parcursul lecţiei, dar vă garantez că creşte vizibil înţelegerea fenomenului de către elevi. Practic, elevii au scris proporţionalitatea segmentelor în câteva forme (primele trei identice dar pe situaţii trensformate, ultimele două apoi tranformate profund).

Merită să precizez în acest context că în Germania ultima situaţie (numită la noi Teorema lui Thales) este cuprinsă în toate formele sale sub titlul de Teoremele de proporţionalitate. Nu există nici măcar un indiciu istoric cum că Thales ar fi dat o astfel de teoremă, ci doar povestea despre stabilirea înălţimii piramidei; aceasta însă presupune exact situaţia de început din problema clasei a VI-a cu stabilirea înălţimii bradului.

După această lecţie introductivă vin în ordinea cunoscută lecţiile din programă luate una câte una: Teorema lui Thales, Teorema fundamentală a asemănării, respectiv Cazurile de asemănare ale triunghiurilor, fiecare cu paşii cunoscuţi.

Înainte de a vă prezenta pozele tablei cu această lecţie inedită trebuie să accentuez atenţia ce o dau părţii estetice, cum ar fi faptul că cele cinci faze trebuie cuprinse, sub forma unui tablou, pe două pagini alăturate ale caietului studenţesc de matematică (primele două tablouri formând “actul I” apar pe pagina din stânga, respectiv ultimele trei tablouri formând “actul II” pe pagina din dreapta). Astfel, lecţia ne apare ca o adevărată “operă”, lăsând impresii puternice în sufletul elevilor. Desigur că şi pe tablă scrisă de profesor întreaga lecţie apare unitar, fără ştersături, elevii putând în orice moment privi în urmă la procesul de transformare a formelor geometrice şi a scrierii corespunzătoare.

Prof. C. Titus Grigorovici

P.S. Lecturând din Descoperirea în matematică a lui George Pólya, pasajul în care acesta vorbeşte despre cât sunt de necesare sau nu demonstraţile de la un caz la altul, de la o vârstă la alta sau de la un nivel de maturitate matematică la altul, în funcţie de elev (pag 324-326), mi-am dat seama că trebuie să fac aici o anumită precizare.

La actualii elevi de clasa a VII-a lecţia prezentată în această postare ţine în mod intuitiv loc de demonstraţie pentru Teorema fundamentală a asemănării, pentru Teorema lui Thales, în forma directă sau reciprocă a acestora, dar şi pentru cazurile de asemănare a triunghiurilor. Oricum, demonstrarea Teoremei lui Thales în cazul iraţional nu este posibilă la nivelul gimnazial, dar de fapt nici măcar în cazul raţional nu mai trebuie să ne obosim a o explica. Astfel, pot fi abandonate din predare diferite elemente ce îi sperie pe elevi la începutul acesti capitol, cum ar fi teorema paralelelor echidistante.

Din punctul meu de vedere, Teorema fundamentală a asemănării, Teorema lui Thales, în forma directă sau reciprocă, dar şi cazurile de asemănare a triunghiurilor se învaţă prin înţelegere intuitivă şi se aplică simplu, ca atare, în rezolvări de probleme sau în demonstraţii.

Desigur că acest Post Scriptum deschide larg poarta pentru apariţia unei întrebări năucitoare: De fapt, trebuie să demonstrăm teoremele din geometria şcolară sau nu? Poate întrebarea ar trebui pusă, mai exact, astfel: Care teoreme ar trebui demonstrate şi care nu? La această întrebare, eu aş răspunde cu o contraîntrebare: Din punct de vedere al elevului – al posibilităţilor sale de înţelegere, dar şi al nevoilor sale de dezvoltare intelectuală – care demonstraţii ar trebui parcurse şi care omise? (omise simplu sau înlocuite cu diverse justificări intuitive ca în exemplul de mai sus) Consider însă că aceste întrebări pot reprezenta subiectul pentru un nou eseu, despre care mă voi preocupa în curând.

Arta predării intuitive a matematicii – Surse de inspiraţie

Folosirea intuiţiei în predare reprezintă cea mai nouă cerinţă la adresa profesorilor de matematică. Noua programă pentru clasele V-VIII adoptată la începutul acestui an, readuce în viaţa profesorilor de matematică predarea intuitivă. Folosirea intuiţiei a fost exilată din şcoli odată cu reforma cerută de Ceauşescu la sfârşitul anilor ’70 (aplicată în gimnaziu începând din anul şcolar 1981-1982). În această reformă uitată de majoritatea profesorilor, intuiţia ca o componentă esenţială în procesul de învăţare a matematicii, a fost alungată brutal din orele de matematică, înlocuită fiind cu o predare axiomatic-riguroasă, de sorginte universitară, aplicată atât la clasele de liceu (cu vârste mai apropiate de cele ale facultăţilor), cât şi la clasele gimnaziale, unde ravagiile în procesul de formare a gândirii matematice au fost imense.

Din păcate, la ora actuală sunt foarte puţini cei care mai cunosc folosirea intuiţiei în predarea matematicii, astfel încât este de aşteptat ca majoritatea aşa-zişilor “formatori” din marele aparate de formare iniţială şi de formare continuă să trateze problema superficial, abordând “papagaliceşte” subiectul predării intuitive (în mod similar cu toţi cei care în ultimii ani ne-au vorbit în vânt despre “folosirea metodelor moderne de predare”, dându-ne lecţii despre ceva ce de fapt habar nu prea aveau nici măcar ei).

Dacă nu vrem să ratăm această ocazie – de revenire a predării intuitive după un exil de aproape 40 de ani – avem nevoie de o strategie clară, la nivel naţional, de reînsuşire a acestui tip de predare de către profesorii de matematică. Propunerea mea în acest context este ca factorii decisivi de la conducerea matematicii şcolare româneşti să se preocupe cu seriozitate de republicarea unor cărţi de căpătâi care au tratat pe toate părţile predarea vie şi sănătoasă pe care toţi ne-o dorim. Despre ce cărţi, respectiv despre ce autori este vorba? Două nume mari îmi vin în minte în acest context: Eugen Rusu şi George Pólya. Astfel, ar trebui republicate următoarele cărţi:

Eugen Rusu – Psihologia activităţii matematice, Ed. ştiinţifică, 1969.

Eugen Rusu – Problematizare şi probleme în matematica şcolară, Ed. didactică şi pedagogică, 1978 (cu semnul întrebării relativ la partea de probleme ce începe la pag.102, probleme ce ar putea să nu mai fie în ton cu materia sau cu cerinţele actuale).

Eugen Rusu – De la Tales la Einstein, Lyceum, Ed. Albatros, 1971.

Eugen Rusu a fost autor de manuale, dar şi un mare metodist român activ în anii ’60-’70. Văzând ca adult profunzimea gândurilor sale metodico-didactice, mă simt mândru că am avut ocazia să învăţ după manualele sale de aritmetică în clasele a V-a şi a VI-a.

George Pólya – Matematica şi raţionamentele plauzibile, Ed. ştiinţifică,1962 (originalul din 1954).

George Pólya – Cum rezolvăm o problemă?, Ed. ştiinţifică, 1965 (originalul din 1957).

George Pólya – Descoperirea în matematică, Ed. ştiinţifică, 1971 (originalul din 1965).

George Pólya a fost un matematician maghiar (deci de prin această zonă a lumii), pe care viaţa l-a dus în Elveţia, apoi mai departe, în America. Cărţile sale sus amintite au fost scrise în urma activităţii de metodist în SUA, la ora actuală fiind apreciat ca cel mai mare specialist în arta predării matematicii la nivel mondial. Din lista de mai sus cu cărţile lui Pólya, eu personal le-am citit doar pe ultimele două (acestea sunt şi cele mai citate şi folosite la nivel mondial), dar se pare că cele trei formează un fel de trilogie, despre care acesta aminteşte în câteva rânduri. Precizez că cele trei sunt apărute în limba română, deci nu este nevoie să mai fie traduse (adică retraduse). Descoperirea în matematică o citesc actualmente a două oară şi sunt fascinat de tot ce scrie acolo (voi încerca în curând o scurtă prezentare).

Personal, la surse de inspiraţie, în sensul dobândirii unui stil de predare viu, apreciat de către elevi, mă simt obligat să mai amintesc o lucrare ce o am în limba germană. Şi pe aceasta am lecturat-o de două ori şi pot doar sublinia: este fabuloasă.

Bengt Ulin – Der Lösung auf der Spur, Ziele und Methoden des Mathematikunterrichts, (într-o traducere relativă: În căutarea soluţiei, a rezolvării, Ţeluri şi metode ale predării matematicii). Exemplarul meu este apărut la editura Verlag Freies Geistesleben, Stuttgart, 1987. Bengt Ulin a fost profesor de matematică într-o şcoală Waldorf din Suedia, lucrarea fiind redactată la cererea ministerului suedez al educaţiei, ca sursă de inspiraţie pentru profesorii din toate şcolile.

Dintre cei trei autori amintiţi în această postare, doar Pólya are dedicată o pagină pe Wikipedia (aici suntem la egalitate, românii cu suedezii). Permiteţi-mi să închei această scurtă prezentare citând câteva pasaje (lecturate azi dimineaţă) din Descoperirea în matematică a lui George Pólya (din Cap. 14, Să învăţăm noi, să-i învăţăm pe alţii şi să învăţăm cum să-i învăţăm pe alţii, citat compilat de la paginile321 şi 323):

Geometria, ştiinţa despre spaţiu poate fi considerată sub diferite aspecte. Geometria poate fi concepută, aşa cum ştim, ca o ştiinţă bazată pe axiome. Dar geometria este şi o măiestrie a ochiului şi a mîinii. Apoi, geometria poate fi considerată drept o parte a fizicii (…). În ipostaza de parte a fizicii, geometria este şi un domeniu în care putem face descoperiri, intuitive sau inductive, pe care le putem verifica apoi prin raţionament. La aceste multiple aspecte mai adăugăm unul: geometria este şi sursa de simboluri pentru un anumit tip de limbaj care poate fi discursiv sau precis, dar şi într-un caz şi în altul – util şi instructiv.

Există şi o morală – în atenţia profesorului: dacă vreţi să vă instruiţi elevii, şi nu doar să parcurgeţi în goană temele unui plan de studiu dictat “de sus”, atunci nu neglijaţi nici unul din aceste aspecte. Şi mai ales nu insistaţi prea de timpuriu sau prea mult asupra aspectului axiomatic al geometriei – dacă nu vreţi să-i dezgustaţi de geometrie pe elevi – [indiferent de ce vor deveni aceştia]: viitori ingineri, oameni de ştiinţă, artişti, filozofi etc., pe care i-ar putea atrage mai mult cunoaşterea vizuală a formelor geometrice, vizualizarea spaţială, sau descoperirea intuitivă, sau sprijinul viguros pe care-l poate constitui pentru gândire reprezentarea diagramatică. (…)

Despre Raţionamentul riguros George Pólya spune următoarele:  Demonstraţia riguroasă este efigia, semnul distinctiv al matematicii, ea este o parte esenţială a contribuţiei matematicii la cultura generală. Elevul căruia nu i s-a dat niciodată ocazia de a fi impresionat de o demonstraţie matematică a fost lipsit de una din trăirile intelectuale de bază. (…)

Există [însă] demonstraţii şi demonstraţii, există diferite moduri de a demonstra. Primul lucru pe care trebuie să-l înţelegem, şi să-l înţelegem bine de tot, este că la o vîrstă dată a auditoriului şi la un grad de maturitate dat al acestora, anumite moduri de demonstrare sînt mai adecvate în predare, decît altele.

Un anumit aspect al demonstraţiei matematice a fost sesizat şi descris cu remarcabilă luciditate de către Descartes. Citez a treia din regulile pentru îndrumarea minţii: “În raport cu obiectele propuse [pentru studiu] trebuie cercetat nu ceea ce au gândit alţii sau ceea ce noi înşine doar presupunem, ci numai ce putem să intuim în mod clar şi evident sau să deducem cu certitudine; căci ştiinţa nu se dobîndeşte în alt mod”. Explicitînd această regulă, Descartes consideră succesiv cele două “moduri prin care se dobîndeşte ştiinţa”: intuiţia şi deducţia. Iată cum începe el discuţia despre deducţie: “Această evidenţă şi certitudine a intuiţiei se cere nu numai într-un enunţ oarecare, dar şi în orice specie de raţionament. (…)”

O deducţie matematică îi apare lui Descartes drept un lanţ de concluzii, o secvenţă de paşi succesivi; şi pentru ca deducţia să fie valabilă, este necesar ca la fiecare pas să se realizeze acea înţelegere intuitivă care arată că concluzia obţinută în acea etapă decurge evident şi rezultă necesar din cunoştinţele dobîndite anterior (dobîndite fie direct – prin intuiţie, fie indirect – din etapele anterioare ale deducţiei).

Legat de demonstraţii mai complicate, care ne apar nu ca un lanţ, ci ca o diagramă cu ramuri, Pólya precizează că Descartes ar fi insistat ca fiecare element al diagramei (…) să se sprijine pe evidenţa intuitivă. Analizând aceste rânduri înţelegem cu prisosinţă că intuiţia reprezintă celula de bază a raţionamentului riguros.

Mă opresc aici din citarea acestui text, nu pentru că s-ar fi terminat partea interesantă, ci pentru că a continua ar reprezenta un demers fără sens: ar trebui să citez o parte mult prea mare din carte pentru a avea convingerea că am redat tot ce-i interesant legat de acest subiect. A doua zi (18 aprilie) la cafeaua de dimineaţă am lecturat şi am subliniat voios încă trei pagini din Descoperirea în matematică (până la 326, pentru cei care au cartea, dar şi curiozitatea să vadă la ce mă refer).

Revenind la lista iniţială a celor doi autori, Eugen Rusu şi George Pólya, trebuie precizate câteva aspecte. În primul rând, trebuie înţeles că aceste cărţi nu se citesc uşor. Cu excepţia lucrării De la Tales la Einstein, care are un profund caracter de beletristică, celelalte patru pe care le cunosc nu se citesc deloc uşor (mă aştept ca şi prima lucrare a lui Pólya să aibă această caracteristică; acelaşi lucru se poate spune şi despre lucrarea lui Bengt Ulin). Aceste cărţi se citesc greu şi doar dacă reuşeşti să-ţi dezvolţi un interes adevărat pentru autodezvoltare, pentru ieşirea din starea plată de prelegere apatică în care am fost împinşi noi, profesorii de matematică, şi în care mulţi dintre noi se complac fără jenă. Aceste cărţi se citesc fără a înţelege iniţial mare lucru, fără un aparent efect spectaculos în predarea personală. Dar apoi, parcă de niciunde, încep să-ţi vină idei noi în predare. Iar când vei relua cartea peste 2-3 ani înţelegi mult mai bine şi pricepi de unde îţi veneau acele idei novatoare. Este un proces de lungă durată la profesorii activi, deja formaţi pe o linie, dar merită: cei care o iau pe acest drum vor simţi tot mai des satisfacţia unei predări interactive, în care bucuria de zi cu zi a elevilor la ora de matematică te hrăneşte cu o energie de nebănuit.

Închipuiţi-vă ce am simţit joia trecută la clasă (vineri se lua vacanţă) în timp ce predam la clasa a VI-a liniile importante în triunghi: parcursesem bisectoarele şi mediatoarele (la fiecare făcusem o figură cu o singură linie pentru reamintire, iar apoi o figură cu toate cele trei linii de un fel într-un triunghi, cu constatarea concurenţei); acum eram la mediană, făcusem prima figură, şi lucram toţi la figura cu toate cele trei mediane în triunghi – elevii în caiete iar eu la tablă, cu spatele către clasă. La un moment dat s-a auzit din clasă o voce de elev: “Ce frumos!”. Nu m-am întors; n-am spus nimic; doar am savurat. În acel moment am ştiut că le-am oferit acelor elevi exact ce aveau nevoie şi că ei vor spune de-acum încolo că “geometria e frumoasă”. Pentru acel elev reuşita unei figuri geometrice corecte, confirmate probabil prin concurenţa celor trei mediane, a fost suficientă pentru a fi considerată o trăire frumoasă.

Aceste cărţi trebuie citite de mai multe ori, dar după ce le-ai citit prima oară şi după ce a trecut o perioadă de dospire a acestor gânduri în subconştientul tău, după 2-3 ani le vei relectura a două oară cu mare plăcere. Desigur că, cel mai bine ar fi ca acestea să reprezinte literatură obligatorie pentru facultate şi pentru primii ani de predare, până la definitivat (chiar şi pentru gradul II sunt foarte potrivite). Acest demers ar trebui decis cât de curând şi aplicat cu sfinţenie pentru a ne asigura că măcar peste 10 ani să intre în sistem profesori cu o mentalitate sănătoasă în predare. Pentru cei mai avansaţi în cariera de profesor de matematică aceste cărţi trebuie să reprezinte însă un demers autoasumat de bună voie şi dus la îndeplinire conştincios. Asta dacă nu cumva aceştia sunt atât de “avansaţi” încât au început să numere AMR-ul, adică anii până la pensie.

Există desigur şi o altă cale: aşa cum în anii ’80 profesorii au fost forţaţi să treacă de la predarea vie, intuitivă la predarea riguros axiomatică de tip prelegere, în mod similar acum autorităţile ar putea să procedeze la forţarea în sens opus. Mă şi îngrozesc însă gândindu-mă cum aceste cărţi minunate ar putea fi pervertite într-un mod autoritar, “băgate fiind cu forţa pe gâtul” unor profesori care nu le înţeleg rostul.

Revenind la cei doi autori, Eugen Rusu şi George Pólya, este evident că Eugen Rusu vorbeşte “mai pe limba noastră”, referindu-se deseori la aspecte ce ne sunt unora mai cunoscute. Dimpotrivă, George Pólya şi-a redactat cărţile pentru profesorii americani. Deşi se simte că este un “autor mondial”, în lucrările sale am avut impresia deseori că le vorbeşte profesorilor din amintirile sale din copilăria şi tinereţea petrecută pe aici, prin răsăritul Europei. Cele două seturi de lucrări se completează însă foarte bine, Eugen Rusu ca al doilea în ordine cronologică făcând o muncă magistrală în redactarea lucrărilor sale. În acest sens, eu nici nu ştiu cum ar fi mai bine: un profesor să pornească cu lecturarea cărţilor lui Pólya sau cu cea a cărţilor lui Rusu. Eu personal l-am citit întâi pe Pólya, despre care tot auzisem; pe Eugen Rusu l-am descoperit ca autor ceva mai târziu.

Titus Grigorovici,

17-18 aprilie 2017

Mulţimile de numere ℕ⊂ℤ⊂ℚ⊂ℝ

De multe ori elevii sunt bulversaţi de denumirile date de matematicieni diverselor clase de numere: numerele naturale şi cele reale sunt ceva mai clare, pe când cele întregi şi cele raţionale nu coincid nici măcar la prima literă cu denumirea denumirea dată mulţimilor. Apariţia, din câte ştiu doar în România, a unei notaţii pentru mulţimea numerelor iraţionale, care nu respectă modelul de extindere al precedentelor mulţimi, îi bulversează şi mai mult pe elevi (nu avem, de pildă, o denumire pentru numerele raţionale care nu sunt întregi).

Fără pretenţia de a a fi găsit forma ideală de predare, vă prezint totuşi pozele tablei de la lecţia ce o fac de mulţi ani în această formă. Concret, lecţia le-o predau elevilor în patru forme succesive diferite, fiecare cu povestea ei (totul într-o oră, chiar mai puţin).

În prima formă le şi spun elevilor că îi invit la o călătorie cu un balon cu aer cald, în care vom survola de la mare înălţime matematica. Astfel, în timpul zborului vedem operaţia de bază (adunarea) cu operaţia de probă (scăderea). O adunare repetată înseamnă înmulţirea, care are ca operaţie de probă scăderea. O înmulţire repetată reprezintă operaţia de putere, având ca probă rădăcina (aici analogia este cam subţire, deoarece elevii nu cunosc decât rădăcina pătrată, da’ nu ne împiedicăm de astfel de detalii minore). Cele trei operaţii directe aplicate pe numere naturale dau întotdeauna rezultate naturale. Dimpotrivă, fiecare operaţie de probă, lăsată să opereze la întâmplare, generează un nou tip de numere.

Din câte ştiu, denumirile celor patru mulţimi au fost date de către David Hilbert, aşa că, cel puţin în cazul numerelor întregi şi a celor raţionale am căutat în limba germană. Astfel, litera Z a fost aleasă de la cuvântul Zahl (număr în germană, zählen = a număra) iar litera Q de la cuvântul Quozient (cât, adică rezultatul unei împărţiri, tot din germană). Nu sunt sigur, este doar o presupunere, dar această teorie le dă elevilor o explicaţie plauzibilă.

A doua formă oferită scoate în evidenţă exact ce am prezentat în prima parte, anume că fiecare operaţie de probă nouă duce la o extindere a mulţimii de numere. Imaginea este una de pungă în plasă în sacoşă în geamantan (putem spune şi pungă în sertar în dulap în cameră). Pentru stabilitatea înţelegerii am păstrat şi culorile folosite iniţial.

A treia formă este probabil cea mai cunoscută; singura observaţie ar fi că la trecerea de la mulţimea Z la Q le atrag atenţia elevilor că nu mai putem prezenta numerele într-o secvenţă ordonată fără lipsuri.

Ultima formă, cea a axei numerelor, se înţelege cel mai greu din această imagine. Pe tablă, eu am păstrat diferitele culori iniţiale şi am desenat numerele: la început cele naturale ca paşi, la fel apoi şi cele întregi, apoi cel raţionale cu multe liniuţe (cele care dau impresia de iarbă), iar în final am evidenţiat faptul că numerele reale umplu toată axa, trăgând în sfârşit concret axa numerelor. Deci, să fie clar: axa numerelor nu am desenat-o de la început, ci numerele le-am poziţionat iniţial doar aliniate.

Titus Grigorovici

Compararea fracţiilor ordinare – Un studiu al diferitelor metode

Elevii vin din clasa a IV-a cu o parte din această lecţie învăţată. Dacă se începe capitolul de fracţii ordinare din semestrul I în clasa a V-a cu o preocupare intensă pentru reprezentarea fracţiunilor şi a fracţiilor în diferite forme geometrice (părţi din disc-lipii, pătrat, dreptunghi, triunghi etc.) şi se folosesc acestea în diferite probleme de pătrundere a fenomenului, atunci elevii vor enunţa de la sine – adică din înţelegere şi din amintiri din clasa a IV-a – primele criterii de comparare a fracţiilor ordinare. Deci, aceste prime criterii ar trebui să fie enunţate de către elevi pe baza unei minime experienţe, adică predominant intuitiv, profesorul ajutând procesul cu fineţe, dând doar exemple cu semnul întrebării.

  1. Fracţii cu acelaşi numitor: dacă două fracţii au acelaşi numitor, ordinea este aceeaşi cu ordinea numărătorilor. Exemple: .
  2. Fracţii cu acelaşi numărător: dintr-un exemplu bine ales (vezi primele două exemple) elevii vor putea explica faptul că dacă două fracţii au acelaşi numărător, atunci ordinea lor este inversă ordinii numitorilor. Exemple: .
  3. Metoda grafică elementară: la compararea fracţiilor , acestea se pot reprezenta fiecare ca parte dintr-un întreg circular; din compararea celor două desene alăturate se poate stabili care fracţie este mai mare.
  4. O metodă grafică aparte: fracţiile şi se pot compara reprezentându-le grafic prin împărţirea unui dreptunghi cu lăţimea de 5 şi lungimea de 7 pătrăţele. Pentru prima fracţie împărţim cu o culoare întregul pe lăţime în cinci fâşii din care haşurăm cu această culoare trei fâşii, iar pentru a doua fracţie împărţim întregul pe lungime cu o altă culoare în şapte fâşii din care haşurăm cu această a doua culoare doar patru fâşii. În final avem dreptunghiul întreg împărţit de fapt în 35 de pătăţele, prin cele două culori, şi trebuie doar să numărăm câte sunt mai multe, cele din prima sau cele din a doua culoare. Este clar că această metodă deschide uşa pentru aducerea la numitor comun, dar este recomandabil să lăsăm mai spre final metodele foarte generale (cunoscând o metodă generală, elevul va accepta mai greu alte metode; în acest caz nu ne putem atinge unul dintre obiectivele majore ale unui învăţământ sănătos: deschiderea cât mai largă a minţii elevului).
  5. Fracţie subunitară < fracţie supraunitară: dacă au înţeles cele două tipuri de fracţii vor putea rezolva direct şi aceste exemple; apoi se trece în caiet regula.
  6. Compararea fracţiilor subunitare faţă de jumătate: elevii cu simţul dezvoltat pentru fracţii vor observa uşor dacă o fracţie subunitară reprezintă mai mult sau mai puţin decât jumătate. Exemple: .
  7. În general, compararea celor două fracţii faţă de o altă cantitate intermediară: de exemplu putem ordona crescător fracţiile şi , comparându-le (eventual grafic) cu fracţia intermediară , care este destul de cunoscută şi vizual. Deci . Un exemplu în acest sens ar fi şi următorul: fracţiile  şi  pot fi comparate cu .
  8. Comparând diferenţele până la un întreg: în cazul fracţiilor şi , diferenţele până la un întreg sunt . Este evident că .
  9. Scoţând întregii din fracţie, cu cantităţi de întregi diferite: în acest caz ordinea este dată de întregi. Exemplu: .
  10. Scoţând întregii din fracţie, cu cantităţi de întregi egale: în acest caz ordinea este dată de părţile fracţionare, după celelalte criterii. Exemplu: .
  11. Aducând fracţiile la acelaşi numitor, prin amplificare sau prin simplificare. Aceasta este lărgirea cadrului de aplicabilitate a primei metode. Pentru deschiderea cât mai clară a gândirii elevilor este evident că trebuie să oferim şi exemple cu simplificare. Exemple:
  12. Aducând fracţiile la acelaşi numărător, prin amplificare cât şi prin simplificare. Aceasta este desigur lărgirea cadrului de aplicabilitate a celei de-a doua metode. Această metodă este importantă, la fel, pentru formarea la elevi a unei gândiri căt mai deschise. Aici este important să alegem exemple la care aducerea la numitor comun să fie mult mai dificilă decât aducerea la numărător comun (din punct de vedere al calculelor). Exemple: .

Ultimul exemplu deschide evident calea spre o generalizare ce ar reprezenta pasul spre o abordare algebrică a situaţiei. Dar, acum în clasa a V-a, încă nu este vremea pentru aşa ceva. Acum, în această lecţie, obiectivul a fost unul mai modest (dar prin aceasta mult mai ambiţios), anume ca elevii să petreacă o oră cât mai profundă în compania fracţiilor ordinare, întru înţelegerea acestora. Atât şi nimic mai mult. Şi totuşi, este de aşteptat ca seminţele plantate cu această ocazie să rodească pe viitor, iar atunci vom simţi din plin roadele acestei lecţii.

Titus Grigorovici

În primăvara lui 2015

Analiza proiectului pentru programa de matematică din gimnaziu, (2) – analiza metodicii

O analiză a proiectului de programă de matematică pentru gimnaziu (ian. 2017), cu privire asupra aspectelor metodico-didactice sugerate, sau nesugerate dar necesare, îşi mai are rostul (acum, în martie) decât în sensul boem, de amorul artei, pentru că, la nici două săptămâni de la închiderea aplicaţiei pentru strângerea părerilor profesorilor, comisia de la minister a şi publicat forma finală a programei de matematică pentru gimnaziu.

Astfel, în data de 22 feb. echipa ISE ne-a transmis mulţumiri pentru implicare în consultare, invitându-ne să vizităm aplicaţia cu rezultatele procesului de consultare la adresa http://www.ise.ro/proiectele-de-programe-scolare-pentru-gimnaziu-in-consultarea-specialistilor-si-a-practicienilor . La adresa respectivă am aflat că mai puteam trimite propuneri până în 24 (dar oamenii mai şi lucrează: o mică simulare planificată la a VIII-a şi nu mai ai timp de altceva o vreme). Tot aici am aflat printre altele că profesorii nu s-au prea implicat, cu excepţia celor din Bucureşti, Suceava şi Iaşi. Oare de ce? Totodată, la această adresă se găseşte şi programa „revizuită”, dar la care nu am găsit ulterior nici măcar o singură schimbare semnificativă (de găsit la http://www.ise.ro/wp-content/uploads/2017/01/Programa_mate_clasa_V_VIII_21_02_2017-fg.pdf ).

Totuşi, sunt de părere că trebuie să fim pozitivi şi să privim partea plină a paharului, anume cât de multe aspecte pozitive noi a adus această propunere, şi să analizăm totuşi câteva din aspectele metodico-didactice sugerate de către autori, sau dimpotrivă nesugerate dar necesare de a fi luate în seamă de către profesori. Astfel, multe din gândurile exprimate în acest proiect înspre schimbarea metodicii predării matematicii în gimnaziu sunt atât de novatoare în matematica ultimilor peste 30 de ani în România, încât mă simt nevoit să le reiau în citate (prezentate înclinat) şi să le comentez separat, adăugând şi unele explicaţii suplimentare.

1) Analiza sugestiilor metodologice din proiectul de programă: În procesul de predare-învăţare-evaluare se creează oportunităţi pentru ca elevii să fie conduşi spre conexiuni între diferite teme, între abstract şi practic…(pag 30) Sarcinile de învăţare vor fi eşalonate după gradul lor de dificultate, însemnănd că acestea trebuie să fie eşalonate şi după gradul lor de abstractizare. De pildă, la introducerea operaţiei de putere, la studiul numerelor naturale din clasa a V-a, după cum am arătat în prima parte, eşalonarea trebuie să fie clară pe baza nivelului de abstractizare. Astfel, în prima parte se tratează operaţia din punct de vedere aritmetic, respectând ordinea operaţiilor. Apoi – sugeram la analiza conţinuturilor ca aceasta să se întâmple peste cca. o săptămână – în a doua parte să se treacă la proprietăţile operaţiei de putere, acestea fiind de sorginte algebrică, ele deschizând posibilităţi evidente de încălcare a ordinii operaţiilor.

Să analizăm şi alte astfel de exemple. În propunerea comisiei apare eşalonat studiul geometriei, într-o primă fază cunoaşterea elementelor geometrice mai ales prin intermediul construcţiilor cu instrumente geometrice, într-o a doua fază mai accentuat prin intermediul raţionamentului demonstrativ. În acelaşi sens am propus la analiza conţinuturilor, eşalonarea cunoaşterii numerelor reale din clasa a VII-a în două părţi: în semestrul I o abordare din punct de vedere aritmetic prin calcularea mărimilor în formă practică aproximativă (3,14 pentru π sau 1,73 pentru rădăcina lui trei etc.), iar în semestrul al II-lea abordarea algebrică a numerelor iraţionale, cu folosirea rezultatelor exacte (practicată la ora actuală).

Conform sugestiilor metodologice din acest proiect introducerea conceptelor din cadrul domeniilor de conţinut se va realiza intuitiv, pornind de la exemple din realitatea înconjurătoare…(pag. 30). Sunt într-u totul de acord cu această sugestie; urmez acest principiu de foarte mulţi ani. De exemplu, pentru necesitatea aducerii fracţiilor la acelaşi numitor în vederea adunării acestora, de 25 de ani foloseam următoarea întrebare ca pornire a procesului de gândire: “cât face o jumătate de pâine cu un sfert de pâine?” Întotdeauna primeam răspunsul “trei sferturi de pâine”, din care apoi deduceam lecţia. În urmă cu 8-9 ani am întâlnit primul copil care nu a ştiut să-mi răspundă la această întrebare (la o cercetare mai amănunţită am constatat că în toată viaţa lui văzuse doar pâine gata feliată în pungă de la supermarchet, pâine feliată în stilul “cozonac”).

Ideea este că observăm cum, încet dar sigur, exemplele din realitatea înconjurătoare se restrâng. Cam tot de prin 2010 nu mai găsesc la clasa a VIII-a elevi care să-mi răspundă spontan la întrebarea “câte feţe are un zar?” Am nevoie de această informaţie în cadrul lecţiei despre cub unde consider că formula de arie totală trebuie să o dea elevii pe bază de gândire simplă (ştiu aria unui pătrat; zarul e un cub şi are 6 feţe, deci aria totală a cubului este 6a2). La această întrebare elevii unei clase se împart la ora actuală în două mari categorii: cei care se vede clar că nici măcar nu se gândesc şi cei care încep să numere feţele unui cub imaginar, gest însoţit chiar de o mişcare fizică a capului. Mai de mult nu era aşa; îi întrebam şi primeam spontan răspunsul 6, apoi imediat şi 6a2. De unde această situaţie? Simplu! Ce copil se mai joacă la ora actuală jocuri de mutat piese la care se aruncă cu zarul?

Iată şi un exemplu mai vechi: la începutul anilor ’90 toţi elevii ştiau să socotească cu 25 şi cu vecinii săi, datorită folosirii zilnice a monedelor de 25 bani şi a bancnonetor de 25 de lei. De pildă, orice elev ştia că din 100 lei poţi cumpăra patru ciocolate de 24 lei. La fel, orice elev la descompunerea lui 75 ştia să împartă la 3. Acum nu mai ştiu. La descompunerea lui 75 văd doar divizibilitatea cu 5.

Nu mi-am propus să citez toată partea de sugestii metodologice din prezenta propunere de programă, dar trebuie să scot în evidenţă faptul că magicul cuvânt intuiţie a fost folosit în diferite variante de 19 de ori în această parte. Acest cuvânt mai apare şi în nota de prezentare, dar şi în prezentarea conţinuturilor. Într-adevăr cuvântul magic intuiţie este una din cheile de bază în descuierea gândirii şi trezirea interesului elevilor pentru matematică. În acest sens să reiau un citat prezentat de Eugen Rusu în lucrarea Problematizare şi probleme în matematica şcolară (Ed. Didactică şi pedagogică, 1978), la pagina 37: “Cu intuiţia descoperi, cu logica stabileşti”. (J. Hadamard)

Începând de la reforma uitată din 1980, profesorii au fost vânaţi la propriu, cu ocazia inspecţiilor, să nu mai folosească intuiţia în predare, aceasta nefiind compatibilă cu nou-slăvita predare axiomatică. Rămâne de văzut cum vor reuşi profesorii să-şi seteze predarea pe noua linie, respectiv cum vor fi sprijiniţi prin structurile de formare şi formare continuă în acest sens. Pentru că acum ne putem doar întreba: oare, câţi profesori mai ştiu să folosească intuiţia în predare?

Sugestiile metodologice cuprinse în proiectul de faţă reprezintă din acest punct de vedere documentul cel mai important despre predarea matematicii în gimnaziu emis în ultimul sfert de secol. Reactivarea rolului şi folosirea intuiţiei vine să repare distrugerile de neimaginat din mentalul profesorimii cauzate de implementarea dură a predării riguroase pe baze axiomatice introdusă în şcoli odată cu reforma din 1980 (vezi postarea http://pentagonia.ro/reforma-uitata-o-scurta-descriere/ ). Prin reintroducerea folosirii intuiţiei în predare, distanţându-se astfel de canoanele academice, matematica şcolară românească îşi întoarce din nou faţa către copil (cel puţin la nivel declarativ).

Iată, în continuare, câteva completări la ideile exprimate în legătură cu intuiţia. Predarea intuitivă reprezintă foarte mult pentru elevii claselor V-VI, dar aceasta nu dispare în clasele VII-VIII, aşa cum se poate uşor înţelege din textul de la pag.31. De fapt intuiţia rămâne o componentă majoră a înţelegerii matematicii chiar şi în liceu. Astfel, textul ar trebui să arate mai degrabă aşa: Programele şcolare de matematică pentru clasele a VII-a şi a VIII-a realizează trecerea treptată de la metodele predominant intuitive, abordate în clasele anterioare, la unele mai mature din punct de vedere matematic, cum ar fi definirea unor noi concepte, demonstrarea unor proprietăţi şi aplicarea unor algoritmi de calcul; rămâne însă întotdeauna şi partea intuitivă în clasele superioare gimnaziale. Astfel, aşa cum spre finalul clasei a VI-a, aşteptările sunt ca elevul să poată deja dezvolta raţionamente deductive simple, în mod simetric în clasa a VII-a metodele intuitive fac un mic pas înapoi, dar nu dispar cu totul din ora de matematică.

Legat de ultima frază de la sugestiile metodologice pentru clasa a V-a, eu aş încheia-o astfel: … stimularea şi menţinerea interesului elevilor pentru studiul matematicii  se poate face uneori şi prin matematică distractivă (M. Gardner, B.A.Kordemsky, I. Perelman, B.Iosub etc.).

Închei evidenţierea unor puncte pozitive din această propunere cu câteva alte scurte exemple. De pildă, un mare DA! principiului de trecere lentă în clasa a V-a dinspre primar spre gimnaziu. Acesta trece într-un şi mai mare DA! în principiul evoluţiei treptate a unei noţiuni prin predarea în spirală, principiu „citit printre rânduri” în paginile acestui proiect. La fel, un DA! hotărât principiului învăţării prin vizualizare a unor fenomene, pe lângă învăţarea intelectualizată şi prin memorare pură.

Legat de acest ultim principiu doresc să ofer un exemplu sugestiv dintr-o veche carte. La poziţia relativă a două cercuri, lecţie propusă pentru clasele V-VI, aceasta se poate studia deosebit de intuitiv şi practic desenând cele două cercuri cu ajutorul a două monede diferite (merge bine cu 5 şi cu 50 bani). Eu prefer această lecţie totuşi în clasa a VII-a, când le pot cere elevilor o sarcină mai complexă, anume să traseze totodată şi tangentele comune, studiind cum evoluează numărul de tangente comune de la o poziţie relativă la cealaltă. Elevii găsesc cu mare bucurie ideea că în spatele fenomenelor matematice se ascunde deseori un model aritmetic (găsirea principiului ascuns: find the pattern behind it!).

Indiferent dacă sunt principii mici sau mari, aceste principii de bun simţ sunt valoroase prin faptul că au reapărut în programa de gimnaziu după atâţia ani în care au fost neglijate (lista de mai sus nu are în nici un caz pretenţia de a fi exhaustivă).

2) Alte sugestii metodologice de inclus în programă: Am scris foarte mult în acest sens (folosirea inuiţiei de către toată lumea era una din dorinţele la care visam constant), dar voi încerca o scurtă trecere în revistă a celor mai importante aspecte şi metode de predare ce nu le-am găsit enumerate în acest proiect pentru a fi reintroduse în predarea matematicii gimnaziale.

Elevii trebuie din nou să înveţe să gândească, chiar să gândească liber. Ora de matematică nu mai trebuie să fie doar o dresură de învăţare (de frică) a diferitelor exerciţii şi probleme cu metodele de rezolvare pre-oferite de către profesor (pre-date, pre-gătite; ce frumos sună dacă le citim astfel!).

Cel mai important cuvânt absent din acest proiect de programă este problematizarea. Oficial se numeşte predare prin problematizare, dar eu prefer denumirea predare prin descoperire (o formă extremă a primeia). Reintroducerea acestei metode ar fi de lungă durată, majoritatea profesorilor fiind actualmente setaţi să le turuie pur şi simplu lecţia elevilor. Foarte mulţi dintre elevi, pe de altă parte sunt obişnuiţi, sunt dresaţi deja, într-o stare de pasivitate: „De ce mă întreabă pe mine? De unde să ştiu eu cum se face? Să zică ăia buni; să zică el, că el e profesor”. Dar pot depune mărturie: dacă îţi doreşti şi îţi propui cu adevărat, în câţiva ani reuşeşti, iar satisfacţiile ulterioare sunt uriaşe atunci când începe să-ţi reuşească predarea prin descoperire. Lucrarea mai sus amintită a profesorului  Eugen Rusu reprezintă în acest sens o lucrare de căpătâi ce ar trebui republicată şi studiată în toate facultăţile ce pregătesc viitori profesori de matematică, respectiv ar trebui parcursă la toate cursurile de formare şi reformare obligatorii la ora actuală.

Desigur, când vorbesc de predarea prin problematizare nu mă refer la acei mulţi profesori care pe parcursul discursului de predare oferă de multe ori pseudo-întrebări: ei întreabă şi tot ei răspund, având astfel pretenţia că lecţia respectivă este interactivă, bazându-se pe un dialog. Nu, dragi colegi, un astfel de pseudo-dialog nu poate fi considerat predare prin problematizare, deoarece elevii sunt într-o profundă stare de pasivitate. Cele mai comice sunt situaţiile când profesorul întreabă „ce teoremă folosim aici?”, iar apoi tot el dă un semi-răspuns: „teorema lui Pi…?” iar elevii continuă „tagora!”. Într-un astfel de caz elevii nu sunt atenţi la oră; ei doar încearcă să mimeze atenţia şi activitatea matematică. Chiar şi cazul când profesorul poartă un dialog real, însă constant doar cu 1-2 elevi cei mai buni din clasă, îi reduce pe restul la starea de pasivitate. Este bine dacă activitatea orei se bazează pe un proces real de problematizare, dar este foarte important ca profesorul să se străduiască să atragă cât mai mulţi elevi în acest proces. Personal, la unele clase acest deziderat îmi reuşeşte mai bine, la altele mai puţin, dar strădania este prezentă tot timpul.

Într-o lucrare precedentă a aceluiaşi profesor, Psuhologia activităţii matematice (Ed. Ştiinţifică, 1969) Eugen Rusu laudă foarte mult matematica proces  în comparaţie cu matematica rezultat. Ce sunt acestea? O scurtă explicaţie ar fi că matematica proces este atunci când elevul este parte activă a procesului de creare a lecţiei ce tocmai se învaţă, el compunând lecţa de studiat sub îndrumarea profesorului, pe când matematica rezultat este atunci când profesorul o prezintă pe tablă, ca într-o prelegere, elevul având doar sarcina să o copieze pe caiet şi, în cel mai bun caz, să răspundă la întrebări izolate puse de către profesor. Astfel, de multe ori explicaţiile sunt date, dar şi înţelese doar de către profesor, elevul fiind într-o situaţie similară cu dictarea de către cineva a unui manual. Conectând ultimele două metode active de predare, am putea spune că matematica proces reuşeşte cel mai bine atunci când în procesul de predare se implică tot mai mult şi predarea prin problematizare.

Eugen Rusu vorbeşte uneori şi de matematica vie. Este minunat când elevii ajută la crearea lecţiei, observă anumite lucruri şi îi dau o formă unică şi de nerepetat. Să vedeţi ce interesant este când elevi activi reuşesc să-ţi deturneze lecţia de la planul iniţial şi te trezeşti în final că a ieşit cu totul altceva (nu în sens rău). Aia da lecţie vie! Şi această carte a lui Eugen Rusu ar trebui inclusă alături de cealaltă în studiul şi lectura obligatorie a oricărui profesor de matematică.

Un alt principiu pe care l-am experimentat intens este parcurgerea alternativă a celor doua materii algebră /geometrie (alternativ un capitol de algebră, apoi unul de geometrie). Elevii se concentrează mai bine pe o temă, au patru ore pe săptămână pentru a o înţelege. Se potriveşte aici argumentul acela vechi: dvs., câte cărţi citiţi deodată? Dacă aţi avea de citit aidoma elevilor câte 8-10 cărţi deodată (vorbesc aici doar de manuale), cred că v-aţi bucura dacă una dintre acestea ar lua pauză uneori.

Includerea ideii de parcurgere a unei părţi de matematică în două etape de studiu, una mai elementară, mai intuitivă, cu aplicaţii mai simple, şi a doua mai riguroasă, mai înaltă teoretic şi cu aplicaţii mai superioare, este o idee de mare importanţă pedagogică, cuprinsă în general sub denumirea de predare în spirală. Acest principiu foarte valoros nu trebuie însă limitat doar la nivelul unei clase sau la nivelul unor clase învecinate dar din acelaşi ciclu şcolar. Ţin aici să amintesc desigur parcurgerea geometriei elementare în două etape la conectarea gimnaziului cu liceul: prima, la un nivel elementar intuitiv, pe parcursul claselor gimnaziale VI-VIII, iar a doua, mai matură, cu aplicaţii mai profunde, pe parcursul primelor clase liceale IX-X. Aceasta s-ar putea face desigur prin reintroducerea geometriei elementare în clasele IX-X de liceu, pentru că reducerea nivelului geometriei gimnaziale la un nivel elementar intuitiv a fost făcută în mai mulţi paşi în anii 2000, prezentul proiect reprezentând în acest sens doar recunoaşterea şi organizarea acestui demers pe principii psihologic sănătoase. Eugen Rusu are şi în legătură cu acest subiect unele referiri în lucrarea despre problematizare (de exemplu, la pag. 23: geometria în etapa a doua de studiu, adică în clasele de liceu, şi atenţie, nu vorbea aici de geometria analitică).

Exemplul de mai sus se referă la geometrie, adică la o foarte mare parte de materie. Se pot da aici însă şi exemple mai mici. De pildă, analizând situaţia de câţiva ani buni, în cazul studiului ecuaţiei de gradul II, am convingerea că ar fi benefică următoarea eşalonare a lecţiei. În clasa a VII-a să apară prima oară ideea de ecuaţie cu două necunoscute pe cazuri simple, de tipul x2 = 9 etc. până la (x – 5)2 = 9. În clasa a VIII-a ar apărea diverse cazuri de rezolvări particulare, de pildă x2 – 10x + 16 = 0 / +9, care duce prin cea de sus la dubla ecuaţie x – 5 = ± 3, de unde x1 = 2 şi x2 = 8. Rezolvarea în cazul general, cea cu Δ, ar veni astfel de-abia în clasa a IX-a.

În general, pentru dezvoltarea paletei de metode naturale de predare a matematicii, profesorii ar trebui sprijiniţi cu reeditarea marilor cărţi din domeniu. Pe lângă lucrările lui Eugen Rusu, trebuie măcar amintite şi cărţile lui George Pólya pe care toţi profesorii ar trebui să le aibă în bibliotecă şi să le reia odată la câţiva ani. Sunt cărţi pe care oricând le reciteşti, mai ai ceva de învăţat.

Încerc să închei aici acest eseu fără pretenţia de a fi epuizat nici pe departe subiectul, exprimându-mi încă o dată starea de bucurie generată de această nouă programă.

Prof. C. Titus Grigorovici

Analiza proiectului pentru programa de matematică din gimnaziu, (1) – analiza conţinuturilor

Prezentul eseu este gândit ca o scrisoare deschisă adresată d-lui Radu Gologan, preşedinte SSMR, şeful Comisiei pentru elaborarea noilor programe de matematică pentru clasele gimnaziale, cât şi tuturor membrilor comisiei. Propunerea oferită spre dezbatere publică la sfârşitul lunii ianuarie 2017 reprezintă cea mai plăcută surpriză posibilă, deschizând căi de vindecare şi evoluţie pozitivă a predării matematicii, căi de neimaginat până în urmă cu puţină vreme.

Această primă parte a eseului (de publicat înaintea termenului de 12 feb.) va fi direcţionată asupra conţinuturilor şi ordinii acestora, dar va conţine în argumentări şi elemente de metodică. În cea de a doua parte (ce urmează cât de repede posibil) voi analiza mai în amănunt metodica propusă. Din această a doua parte evidenţiez acum doar un singur aspect: întoarcerea în predarea matematicii a cuvântului intuiţie. În prezentul proiect, doar la nota de prezentare şi în sugestiile metodologice, acesta apare în diverse forme de 20 de ori (!!!), subliniindu-se astfel importanţa folosirii şi dezvoltării intuiţiei elevilor. Aşadar:

Stimate D-le Radu Gologan, stimaţi colegi,

Ca profesor activ în direcţia reformării predării matematicii de peste 20 de ani, vă felicit pentru acest proiect. În încercarea de a fi cât mai obiectiv (un ideal greu de atins) am structurat prezenta analiză pe patru categorii de păreri, numite cât de sugestiv posibil: 1) Da, cu aplauze; 2) Da, cu amendament; 3) Nu, cu alternativă; 4) Nu, cu avertisment. Din punct de vedere personal, proiectul este unul foarte reuşit, dovadă că primele trei categorii sunt încărcate, pe când ultima categorie este foarte “subţire”. Toate părerile şi comentariile expuse se bazează pe experienţa personală; pe majoritatea covârşitoare le cunosc foarte bine din aplicarea în activitatea personală (a mea şi a soţiei) din şcolile unde am predat. La toate aceste comentarii se poate face precizarea că opinia prezentată este în favoarea elevului, că aşa este cel mai sănătos pentru parcursul matematic al elevului. Înţeleg prin sănătos orice argument de ordin psihologic, legat de posibilităţile şi nevoile fiecărei vârste, dar şi a fiecărei categorii de elevi în parte. Acolo unde nu am o părere bazată pe experienţă directă, ci doar pe intuiţia dată de experienţa de ansamblu, acolo voi preciza acest aspect.

  1. DA, cu aplauze! Da, sunt cu totul de acord cu următoarele elemente:
    • Da! conectării cmmdc şi cmmmc de simplificarea fracţiilor ordinare, respectiv de aducerea fracţiilor la numitor comun; aşa înţelege orice elev la ce sunt bune acestea, le găseşte imediat un sens. Da şi introducerii acestora prin enumerare şi intuitiv, nu prin algoritm. Aşa este sănătos!
    • Da! aducerii înmulţirii şi împărţirii fracţiilor ordinare înapoi în clasa a V-a, imediat după adunare şi scădere. Da şi limitării pentru început la exerciţii mai uşoare.
    • Da, poveştii cu tabla de şah (pag.7).
    • Da! mutării noţiunii de mulţime din clasa a V-a la începutul clasei a VI-a. Atunci deja există o zestre de cunoştinţe matematice fixate ce pot fi folosite în exerciţii cu mulţimi. Astfel, în clasa a V-a aducem aspecte matematice noi, dar în sistemul de scriere cunoscut.
    • Da, capitolului despre mulţimi şi structurare a cunoştinţelor despre numere naturale deja dobândite de la începutul clasei a VI-a. Simţeam că în clasa a V-a mulţimile, prin scrierea lor nouă, abstractă, îngreunează mult acomodarea elevilor la matematica de gimnaziu, dar nu aveam un gând clar unde ar trebui puse. Experienţa generală îmi spune că la începutul clasei a VI-a este foarte bine (dar nu le-am predat nici o dată astfel).
    • Da! (cu ropote de aplauze şi urale!) scoaterii m-ului de la măsura unui unghi (pag. 9); undeva prin clasele VI-VII poate fi introdusă treptat, deşi în multe raţionamente acest m cu parantezele sale încarcă doar scrierea, devenind astfel pentru mulţi elevi o piedică, o îngreunare în înţelegerea raţionamentului expus.
    • Da introducerii ecuaţiilor de-abia în clasa a VI-a, după învăţarea semnului unui număr. Atât unii profesori, cât şi părinţii, nu se puteau abţine să nu le zică elevilor încă din clasa a V-a că îl mutăm în membrul celălalt cu semn schimbat.
    • DAAA! (cu cea mai mare bucurie) parcurgerii paralelelor tăiate de o secantă, respectiv a unghiurilor alterne interne, înaintea lecţiei despre triunghiuri. Astfel se poate studia – cu demonstraţie cu tot! – suma unghiurilor în triunghi din prima lecţie. Suma unghiurilor în triunghi este o aplicaţie cu pronunţat caracter aritmetic, accesibilă tuturor elevilor, care ajută în plus şi la stabilizarea înţelegerii noţiunii de unghi. Se încheie astfel o lungă perioadă aflată sub dominaţia predării riguros- axiomatice care impunea o ordine a lecţiilor ce sfida principiile natural-pedagogice (demonstraţia prin reducere la absurd, ce folosea congruenţa triunghiurilor, cu acel triunghi prelungit la infinit, nu se mai face de la Revoluţie; ca urmare nu mai este necesară de mult ordinea triunghiul → congruenţa triunghiurilor → unghiuri alterne interne → suma unghiurilor în triunghi). Eu personal predau în ordinea propusă de prezentul proiect din anul şcolar 1994-1995.
    • Da! (cu lungi ovaţii!) reintroducerii cercului în “clubul noţiunilor fundamentale”, în primul capitol de geometrie din clasa a VI-a. Cred totuşi că poziţiile relative a două cercuri pot fi lăsate pentru clasa a VII-a (neesenţial).
    • Da! (cu mare bucurie!) reintroducerii accentului pe construcţii geometrice cu diferitele instrumente, atât în clasa a V-a, cât mai ales în clasa a VI-a (inclusiv construcţia intuitivă a paralelelor prin translaţie, care este de mare valoare în formarea gândirii, dar care poate sta şi la baza explicării congruenţei unghiurilor corespondente). Cunoaşterea figurilor geometrice prin construirea acestora în diferite cazuri particulare este o cale deosebit de sănătoasă de învăţare. Acesta ar trebui aleasă ca tema definitorie (!) pentru clasa a VI-a. Apoi, în clasa a VII-a, când accentul se mută pe raţionament, pe demonstraţie şi calcule complicate, elevii pot folosi la nevoie doar schiţe, pentru că ei au deja fixată în minte figura corectă construită cu mare atenţie în clasa a VI-a.
    • Da, (în conexiune directă cu precedentul) lecţiei Cazurile de construcţie a triunghiurilor, cu precizarea că eu prefer ordinea LLL, LUL, ULU.
    • Da, la Identificarea patrulaterelor pe corpuri geometrice sau pe desfăşurări ale acestora (pag.17), dar şi a triunghiurilor. Tocmai ce am propus un opţional de clasa a VII-a cu construcţii de corpuri geometrice din carton.
    • Da! (cu mii de mulţumiri!) readucerii sistemelor de ecuaţii în clasa a VII-a, mai ales că au fost aduse doar cu metodele specifice ecuaţiilor (substituţiei şi reducerii), rămânând în clasa a VIII-a metoda grafică (cea care a bulversat zeci de ani elevii la această lecţie).
    • Da! (cu mare bucurie) mutării în clasa a VII-a a capitolului despre cerc de la sfârşitul anului (când mulţi nu-l prea mai făceau) în semestrul I. Anul acesta eu am predat Poligoane înscrise în cerc (construcţie, măsuri de unghiuri) şi Lungimea cercului şi aria discului în semestrul I, şi pot depune mărturie că funcţionează foarte bine. De pildă, între cele două teme am calculat aria poligonului regulat cu 12 laturi înscris în cercul de rază r, care este exact 3r2, folosind doar determinări de unghiuri şi cateta opusă unghiului de 30o. La lungimea cercului şi aria discului se pot folosi şi metode aproximative de tip “laboratorul de matematică” (mult sprijinit de dl. acad. Nicolae Teodorescu): determinarea lungimii cercului cu metrul de croitorie, apoi găsirea aproximativă a lui π prin împărţire, respectiv determinarea ariei prin numărarea pătrăţelelor din interiorul cercului pe caietul de matematică sau pe hârtie milimetrică şi apoi împărţirea ariei obţinute la aria pătratului razei. Aceste metode sunt în deplină armonie cu linia prezentului proiect.
    • Da! (un DA mare) aducerii inecuaţiilor de la sfârşitul clasei a VIII-a la început, în primul capitol, imediat după intervale.
    • Da! (cu evidentă bucurie) precizărilor legate de rezolvarea ecuaţiei de gradul II: prin aplicarea formulelor de calcul prescurtat (pag.26). Ce se întâmplă cu formulele clasice de rezolvare (a,b,c,Δ,x1,2)? Sunt interzise? Le facem în semestrul II? Rămân pentru clasa a IX-a? Trebuie să lămuriţi aceste aspecte, eventual în note de subsol, la fel ca la scrierea măsurii unghiurilor. Eu aş fi mulţumit să rămână în liceu, dar din respect pentru ceilalţi colegi cred că poate fi aleasă varianta cu semestrul II. (ar fi binevenite mai multe astfel de note de subsol, unele dintre ele reparatorii, cum ar fi următoarea: reducerea termenilor opuşi într-o sumă poate fi făcută încă din clasa a VI-a, la numere întregi, nu doar în clasa a VII-a, ca în programa veche; dvs. nu aţi precizat unde se va face pe viitor)
  2. DA, cu amendament. Susţin aceste elemente de conţinut cu următoarele amendamente:
    • Da, readucerii în clasa a V-a a metodelor de rezolvare aritmetică de probleme. În general, doamnele învăţătoare nu prea le ştiu. Am însă îndoieli că profesorii le vor parcurge cât de cât serios. Într-o lume dominată de punerea în ecuaţie, este nevoie de explicaţii serioase, pentru a se înţelege la ce folosesc rezolvările aritmetice.
    • Da, readucerii în clasa a V-a a proprietăţilor operaţiei de putere, dar într-o lecţie separată, următoare introducerii puterii. Elevii au nevoie de cel puţin 2 ore (chiar o săptămână) pentru acomodarea cu noua operaţie; ei trebuie protejaţi faţă de profesorii care vin şi “le toarnă” totul din prima zi, fără ca ei, elevii să apuce să se dezmeticească despre ce este vorba. Urmare a acestei “politici de predare” dăunătoare, avem exemplele cu elevii care prin clasa a VII-a spun: puterea este un fel de înmulţire, deci fac înmulţire, adică 23= 6. Un alt argument este că introducerea proprietăţilor puterii din prima lecţie sabotează fixarea acestei noi operaţii în contextul ordinii operaţiilor de ordinele I, II şi III. Ca urmare propun următoarea detaliere (eventual ca observaţie metodologică): Lecţia 1: introducerea operaţiei cu exemple, fără exponentul 0 sau 1, cât şi primele exerciţii simple de ordinea operaţiilor cu toate cele cinci oparaţii. Lecţia 2: lămurirea noţiunii de putere, inclusiv puterea cu exponent 1 sau 0, conexiunea dintre exponent şi numărul zero-urilor la puterile lui 10, cât şi exerciţii de ordinea operaţiilor mai stufoase. Lecţia 3: Proprietăţi ale operaţiei de putere, acestea aducând de obicei o încălcare a ordinii naturale a operaţiilor.
    • Da, mutării criteriilor de divizibilitate cu 3 şi cu 9 înapoi în clasa a V-a, cu amendamentul că ar trebui adus şi criteriul cu 25, care este foarte uşor. Criteriul cu 4 eu personal îl voi face oricum ca pereche al lui 25 (la fel cum criteriile cu 2 şi cu 5 sunt în pereche; vezi predarea prin analogie a asemănării triunghiurilor cu congruenţa triunghiurilor, la sugestii metodologice, clasa a VII-a).
    • Da studiului mărimilor direct proporţionale şi a celor invers proporţionale, cu următoarea precizare importantă: dacă la proporţionalitate directă avem şir de rapoarte egale, la proporţionalitatea inversă avem şir de produse egale. În acest context vă rog insistent să eliminaţi definiţia cea veche (invers proporţionale înseamnă şir de rapoarte egale cu inversele) care nu mai foloseşte la nimic, doar la bulversat elevii.
    • Da construcţiilor geometrice de pătrate şi dreptunghiuri pe baza şirului lui Fibonacci, dar cu amendamentul că va trebui explicat profesorilor ce să facă, altfel colegii vor citi peste acel rând (pag.15). Înţeleg că vorbiţi de desenul de construcţie al spiralei lui Fibonacci; eu îl fac cu elevii, dar câţi îl cunosc?
    • Da titlului Noţiuni de trigonometrie, cu rugămintea de inserare a expresiei: rapoarte trigonometrice înaintea enumerării acestora. Din păcate, mulţi profesori care coboară de la liceu la gimnaziu le denumesc funcţii trigonometrice. Ce înţeleg elevii din această denumire? Tot aceşti profesori le dau apoi elevilor şi valorile pentru 0o şi 90o. Ar trebui undeva în programă interzise aceste derapaje.
  3. NU, cu alternativă. În locul propunerii dvs. vin cu o alternativă care poate oferi atingerea obiectivului propus:
    • Scrierea în baza 2 a numerelor în clasa a V-a este prea grăbită, mai ales că majoritatea profesorilor vor face direct scrierea de tipul 1100101. Eu am făcut-o în ultimii ani în recapitularea de la începutul clasei a VI-a sub forma orice număr natural poate fi scris ca sumă de puteri ale lui 2, prezentată ca joc în care elevii trebuiau să găsească puterile lui doi care compun un număr dat. De-abia apoi am dedus scrierea în baza 2.
    • La clasa a V-a, în lecţia Înmulţirea fracţiilor, puteri; împărţirea fracţiilor propun mutarea puterii după împărţire, păstrând ordinea naturală a nivelului operaţiilor.
    • Este absurd să vorbim la clasa a V-a despre Numere raţionale pozitive, când elevii încă nu au învăţat despre numere negative sau pozitive; sfidează ordinea introducerii noţiunilor fără a avea o motivaţie concretă. Propun să rămânem în clasa a V-a la denumirea de fracţie, cu variantele de fracţie ordinară sau fracţie zecimală, acestea putând fi transformate una în cealaltă, prin semnul de egalitate. Astfel, propun ca noţiunea de număr raţional, cât şi mulţimea ℚ a numerelor raţionale, să fie introduse de-abia la capitolul din finalul clasei a VI-a, parte a procesului foarte bine descris în Note definitorii ale acestei programe (pag. 3).
    • Scrierea unui număr natural de două cifre ca produs de puteri de numere prime, poate fi inclusă liniştit în primul capitol din clasa a V-a, mai ales că se precizează prin observare directă. Chiar şi algoritmul de descompunere a numerelor în factori primi este accesibil majorităţii elevilor în clasa a V-a. Acesta este profund conectat cu operaţia de împărţire (o temă de bază a sem.I din clasa a V-a), cu operaţia de putere şi cu criteriile de divizibilitate cu numerele 2, 5 şi 3, pentru care reprezintă o bună aplicaţie.
    • Elevii pricep foarte greu scrierea divizibilităţii cu bară verticală (ex. 3|51, la pag.15). Pentru divizibilitate ar trebui reintrodus oficial semnul care conectează în mintea elevului cu semnul împărţirii (un punct în plus înseamnă împărţire exactă), dar rămâne pe calapodul de gândire obişnuit (numărul mare este divizibil cu numărul mic, evitând inversarea cerută de scrierea cu bară).
    • Nu este precizat, aşa că ar trebui explicit interzisă definirea tradiţională a interiorului unui unghi, cea prin intersecţia de semiplane. Profesorii trebuie doar să coloreze sau să haşureze interiorul unghiului; exteriorul vine de la sine înţeles, aşa că, folosind intuiţia copilului, nici n-ar mai trebui prezentate; oricum, la ce foloseşte exteriorul unghiului?
    • Folosirea, introducerea ideii de demonstraţie geometrică doar pe cazul unei singure matode, anume a metodei triunghiurilor congruente, în clasa a VI-a este periculoasă pentru formarea gândirii elevului: mulţi elevi reacţionează ulterior la probleme ce necesită alt tip de argumentaţie, forţând pseudo-demonstraţii fără sens care au forma unicei demonstraţii învăţate, cea cu congruenţa de triunghiuri; iar când le spui că au greşit se uită năuciţi şi nu înţeleg ce se întâmplă. Elevii trebuie să cunoască şi alte demonstraţii în paralel. Eu m-am concentrat din start la câteva exemple de demonstraţii cu unghiuri.
    • Demonstraţiile prin metoda triunghiurilor congruente în cazul figurilor axial-simetrice nu au sens în mintea elevului începător, minte care vede intuitiv că cerinţa este îndeplinită prin simetria figurii. Introducând criteriul ne-simetricităţii figurii, rămân foarte puţine probleme pe care elevul să înveţe această metodă. Problemele cu congruenţă în figuri cu cerc mai pot ajuta un pic, dar nu prea mult. De-abia când apar şi patrulaterele, cantitatea de aplicaţii nesimetrice creşte la un nivel mulţumitor.
    • Păstrarea capitolului despre patrulatere în clasa a VII-a are o serie de dezavantaje majore. Pe lângă conexiunea cu precedentul aliniat, este evident că aplicaţiile la primele tipuri de demonstraţii (inclusiv cele cu unghiuri) sunt foarte restrânse doar în triunghiuri (triunghiul este o figură săracă în aplicaţii simple dar nesimetrice). Readucerea capitolului despre patrulatere în clasa a VI-a ar rezolva toate cele expuse. Patrulaterele s-ar putea parcurge foarte uşor prin cunoaşterea intuitivă a proprietăţilor acestora, prin construcţi detaliate în diferite cazuri (o bogăţie de exemple, aliniat cu principiul mai sus menţionat pentru clasa a VI-a), dar şi prin primele exemplificări ale conexiunilor demonstrabile între proprietăţile acestora (multitudinea de teoreme directe şi reciproce). În plus, am scăpa astfel de schizofrenia manifestată actual când le dăm elevilor o figură formată din două triunghiuri, dar ne facem că nu ştim că acela este de fapt un patrulater. Dau aici exemplul trapezului de la EN Cl.a VI-a din urmă cu trei ani, care era prezentat ca o combinaţie de două triunghiuri, şi la care copiii s-au chinuit foarte mult. Dacă ar fi cunoscut trapezul dreptunghic, lucrurile ar fi fost mai clare. Mai dau un exemplu: noţiunile de unghiuri complementare, respectiv suplementare, se înţeleg mult mai bine într-o prezentare unitară, după patrulatere, cu exemple clare din triunghiuri şi patrulatere. Anexez prezentei scrisori deschise scanarea notiţelor personale (din 2011) cu capitolul despre patrulatere pentru finalul clasei a VI-a, redactat conform principiilor predării intuitive specifice acestei clase. Precizez că tema liniilor mijlocii o las totuşi pentru clasa a VII-a când, la începutul semestrului I, pe post de “recapitulare şi completări” atacăm serios diversele demonstraţii geometrice. Pentru elevii buni acestea devin una din temele principale de lucru în clasa a VII-a.
    • Nu, introducerii din primul capitol din clasa a VII-a a numerelor reale. Elevii au nevoie să petreacă o vreme în calculul aproximativ al diferitelor mărimi care nu au rezultat întreg. De pildă, calculul înălţimii şi a ariei unui triunghi echilateral, dar şi lungimea şi aria cercului, au o puternică componentă practic-aplicativă de aproximare. Nimeni nu înţelege cât este lungimea unei borduri de 25π m din jurul unui sens giratoriu, aşa că apelăm la calculul aproximativ 25 ∙ 3,14 ≅78,5m. Din câte ştiu, în vest numerele iraţionale ca atare apar doar în liceu. Eu am împărţit clasa a VII-a astfel: în semestrul I dăm rezultate aproximative aritmetice (atât la cerc, cât şi teorema lui Pitagora – vezi primul comentariu de la categoria 4), iar în semestrul II trecem la calcul algebric, cu numere iraţionale, atât la algebră, cât şi la geometrie. Astfel împăcăm ambele direcţii de gândire matematică, studiind în semestrul I doar rădăcina pătrată, iar în semestrul II noţiunea de număr real.
    • Nu! acelei lecţii stupide de la capitolul despre cerc din clasa a VII-a despre proprietăţi: la arce congruente corespund coarde congruente şi reciproc, diametrul perpendicular pe o coardă, arce cuprinse între coarde paralele, coarde egal depărtate de centru. Acestea reprezintă doar drumul segmentat pentru demonstrarea faptului că tangenta la cerc este perpendiculară pe raza în punctul de contact. Dar această demonstraţie nu se predă în şcoli, deci nici teoremele pregătitoare nu-şi au sensul. Acestea doar îi chinuie pe elevi, care nu pricep ce vrea profesorul. Nici profesorii nu prea au probleme aplicative cu sens la această lecţie. Peste aceste teoreme se poate sări simplu, trecând direct la observarea perpendicularităţii tangentei pe rază. În schimb, există deosebite aplicaţii la “teorema ciocului de cioară” (cele două tangente dintr-un punct la un cerc sunt congruente), bine apreciate de către elevii buni. Propun reintroducerea în materie a acestei teoreme. Dacă tot am ajuns la propuneri, permiteţi-mi încă una: în contextul reintroducerii cercului în clasa a VI-a, se poate demonstra direct la nivelul acestei clase că triunghiul înscris în semicerc este dreptunghic (în conexiune cu “mediana pe ipotenuză”).
    • Nu (un Nu conştient şi experimentat) păstrării ordinii lecţiilor de geometrie din clasa a VIII-a. La această formă s-a făcut doar “o jumătate” de pas în sensul folosirii intuiţiei naturale a elevilor (intuiţia este activă în continuare; folosirea ei nu trebuie interzisă cu avansarea în vârstă; mai ales la elevii slabi intuiţia rămâne în continuare principala cale de acces la cunoştinţe). La ce ajută prezentarea corpurilor de la lecţia a doua, dacă elevii nu fac apoi mai nimic cu aceste corpuri? În tot semestrul I vin doar lecţii grele şi abstracte, nimic pentru elevii slabi care ar vrea şi ei să calculeze o arie, să aplice teorema lui Pitagora şi o formulă. În locul acestei ordini a lecţiilor vă propun următoarea ordine, în care predau cu rezultate foarte bune de aproape 20 de ani. Astfel: Capitolul I – Corpuri (I): Cubul, paralelipipedul dreptunghic, prismele, piramidele şi tetraedrul, cu reprezentare, elemente, arii şi volum, totul pe baze intuitive (la apotemă nu este nevoie de T3⊥ pentru că avem triunghiuri isoscele, iar înălţimea se înţelege foarte uşor). Capitolul II – Teoreme în spaţiu: Paralelism, perpendicularitate, T3⊥, unghi diedru . Capitolul III – Corpuri (II): Trunchiuri de piramidă, corpuri rotunde, cu reprezentare, elemente, arii şi volum. Astfel, elevii slabi primesc din start material de lucru, iar elevii buni, cu o scurtă întârziere primesc şi ei “hrană” pe măsura lor. Nu mai intră T3⊥ până la teză, dar până la sfârşitul primului semestru, până la olimpiadă şi simulare sigur se termină tot capitolul II.
  4. NU, cu avertisment! Consider că introducerea acestor elemente prezintă un mare risc, pe care îl voi expune:
    • Mutarea teoremei lui Pitagora în clasa a VI-a prezintă un multiplu pericol major. Ar mai avea oarecare sens dacă am parcurge o primă parte de rădăcină pătrată la nivel intuitiv aritmetic (cum era prin anii ’90). Aceasta însă lipseşte. Mă îngrozesc de felul cum profesorii vor turna în elevii de clasa a VI-a elemente din arsenalul cunoscut din clasa a VII-a legat de teorema lui Pitagora. Cum vor arăta subiectele de la EN a clasei a VI-a incluzând numerele pitagoreice? În plus, în acest mod teorema lui Pitagora este coborâtă la nivelul banal de observaţie, subminând ideea unei demonstraţii pe viitor. Teorema cu cele mai multe demonstraţii din toate câte sunt, nu va mai avea nevoie de demonstraţie în mintea elevilor. Cea mai importantă teoremă din toate timpurile este redusă la nivelul unei reţete. Totuşi vin cu o propunere de remediere. În ultimii 15 ani am predat teorema lui Pitagora în semestrul I din clasa a VII-a, într-un capitol complex, format din trei părţi: 1) rădăcina pătrată; 2) ariile patrulaterelor şi a triunghiurilor; 3) Teorema lui Pitagora (demonstrată prin arii; există chiar două demonstraţii, din care una foloseşte şi congruenţa triunghiurilor), cu aplicaţii în calculul perimetrelor şi al ariilor. Mutarea respectivă este deosebit de benefică atât elevilor slabi, cât şi elevilor buni. În plus rezolvă şi o problemă de fond a acestei mutări (neprecizată în proiect dvs.), anume că parcurgerea acestei teoreme mai repede este cerută de profesorii de fizică, care altfel o explică ei elevilor înaintea noastră. Revenind la demonstrarea teoremei lui Pitagora, menţionez că eu parcurg cu elevii în clasa a VII-a cel puţin trei demonstraţii diferite, la lecţiile corespunzătoare (pe lângă demonstraţia cu arii amintită şi demonstraţia cu teorema catetei arhicunoscută, mai aleg şi o demonstraţie pe bază de arii şi formule de calcul prescurtat (în conexiune cu următorul punct).
    • Neintroducerea formulelor de calcul prescurtat în clasa a VII-a este o mutare inexplicabilă, un deja vú ce aminteşte de conul de penumbră în care au fost înghesuite sistemele de ecuaţii în ultimii ani. Elevii au nevoie de o perioadă de jumătate de an în care să se obişnuiască cu noua mişcare matematică, cu noul raţionament specific calculului prescurtat, astfel încât să le poată folosi eficient în semestrul I din clasa a VIII-a. Mutarea propusă va bulversa din nou o mare parte din materia de studiat, la fel cum a făcut-o şi mutarea sistemelor din clasa a VII-a în finalul clasei a VIII-a. Formulele de calcul trebuie să apară în clasa a VII-a, chiar şi dacă apar numai într-un singur sens. Astfel, elevilor slabi eu le cer doar direcţia de explicitare, de tipul (3x + 1)2= 9x2 + 6x + 1, nu şi direcţia inversă de transformare în produs. Legat de acest subiect am încă o propunere: personal, accept ideea unei “fobii” oficiale faţă de cuvântul polinom (dezvoltată în gimnaziu la începutul anilor ’90 pe vremea renumitelor probleme de divizibilitate cu teorema lui Bezout), dar nu le putem spune la nesfârşit Operaţii cu numere reale reprezentate prin litere (etc.). (clasa a VIII-a, pag.28) Aşa cum la expresiile cu fracţii s-a acceptat noţiunea de Fracţii algebrice, tot aşa propun ca la fostele polinoame să folosim noţiunea de Sume algebrice.

Închei cu speranţa sinceră că se vor dovedi de folos cât mai multe din observaţiile făcute. Totodată, precizez că stau la dispoziţia dvs. pentru eventuale lămuriri pe care le-aţi considera necesare.

Titus Grigorovici

Profesor Şcoala Waldorf Cluj-Napoca












Consultarea naţională a proiectului pentru programa şcolară de matematică la clasele de gimaziu

Au apărut proiectele de programe pentru clasele V-VIII. Proiectul pentru programa de matematică poate fi găsit la adresa http://www.ise.ro/wp-content/uploads/2017/01/Matematica.pdf

În anunţul MEN şi IŞE se precizează că procesul de consultare se adresează cadrelor didactice, inspectorilor școlari si altor categorii de specialiști care ar putea oferi un feedback relevant cu privire la proiectele de programe școlare pentru clasele V-VIII. Pentru a colecta opiniile, comentariile si propunerile dvs., vă rugam să parcurgeți pașii următori:

  • Pasul 1. Descărcați programa școlară;
  • Pasul 2. După parcurgerea programei in integralitatea acesteia, accesați chestionarul de consultare;
  • Pasul 3. Completați chestionarul alegând variantele de răspuns care se potrivesc cel mai bine opiniei dvs. și oferiți, dacă este cazul, propunerile si observațiile dumneavoastră în spațiile dedicate întrebărilor deschise.

Chestionarul conține întrebări punctuale cu privire la elementele constitutive ale programei: competențe generale, competențe specifice, exemple de activități de învățare, conținuturi, sugestii metodologice. De aceea, lectura atentă a proiectului de programă școlară este esențială pentru a oferi un feedback relevant care să conducă în mod direct la îmbunătățirea proiectelor de programă școlară.

Consultarea se va derula in perioada 27 ianuarie-13 februarie 2017. Vă mulțumim pentru interes și pentru participarea dvs. la procesul de consultare!

Chestionarul on- line se găseşte la adresa https://www.surveymonkey.com/r/programe_gimnaziu

Ca urmare, stimaţi colegi, vă propunem „o mică vacanţă”, adică haideţi să studiem în această vacanţă intersemestrială propunerile respective. La o primă privire aruncată peste acestea am văzut lucruri foarte interesante.

Spor la lucru!

Prof. Mariana şi Titus Grigorovici

Minus cu minus fac plus

Sper că toată lumea a înţeles că minus cu minus fac plus, mai ales că, începând de azi vară, Carla’s Dreams ne tot explică cum stă treaba în melodia Imperfect. Am crede că lucrurile sunt clare, dar nu-i chiar aşa.

Prin toamnă, aveam pe tablă la clasa a VII-a o ecuaţie în care a apărut –8 –5. Elevii îmi dictau spontan când o nouă elevă a decis +13, grăbită să dea ea prima răspunsul. M-am întors mirat şi am întrebat “+?”. Iar ea, încercând totodată să înfrunte şi colegii care protestau, mi-a răspuns: “Da, păi nu minus cu minus fac plus?”. I-am dat singura replică posibilă: “Ba da! Dar numai la Carla’s Dreams”. Săraca fată, s-a blocat.

Apoi am început să-i lămuresc situaţia, pentru a nu o lăsă în ceaţă. Era evident că venise cu lucrurile neclare, aşa că am început să-i explic cu calm şi cu blândeţe că se spune minus ori minus fac plus. Asta pentru a scoate în evidenţă că la adunare/scădere nu se aplică această regulă, ci doar la înmulţire şi la împărţire. I-am povestit puţin despre 8 lei datorie şi încă 5 lei datorie, şi a fost de acord cu mine că dă o datorie de 13 lei.

Acel cuvânt “cu” îi derutează pe mulţi elevi, sugerându-le o aplicare pe adunare, mai ales că regula în această formă este atât de cunoscută (şi părinţii lor tot aşa o cunosc). Ajută, desigur, la această derută şi modul superalambicat de explicare a adunării numerelor întregi. Asta după ce noile numere au fost introduse cât mai corect ştiinţific, fără pic de intuiţie, elevii percepându-le ca foarte grele. Eu întotdeauna le atrag atenţia elevilor în clasa a VI-a asupra acelui cuvinţel şi asupra pericolului ce ne paşte prin folosirea sa greşită.

Problema este una larg răspândită, expresia minus cu minus fac plus fiind folosită în mai toate limbile, făcând parte din elementele de matematică ce au penetrat fondul de cultură generală: din păcate fără a fi şi înţeleasă întotdeauna. Uitaţi ce scria Paul J. Nahin în lucrarea O poveste imaginară; Istoria numărului radical din –1, Ed. Theta, 2000, la pag. 6, în 1.2 Atitudini negative faţă de numerele negative:

… suspiciunea faţă de numerele negative pare atât de stranie astăzi oamenilor de ştiinţă şi inginerilor numai pentru că aceştia au uitat frământările prin care au trecut în şcoala primară. De fapt, oameni inteligenţi dar fără pregătire tehnică continuă să trăiască aceste frământări chiar şi în anii de maturitate, după cum o atestă următorul cuplet, atribuit de obicei poetului W.H. Auden (Wistan Hugh Auden, 1907-1975):

Că minus ori minus face plus

O vom lua de bună: asta e!

Motivul n-ar fi prea complicat

Deci n-are rost să discutăm de ce.

Aşa că, mare atenţie la Carla’s Dreams şi la reţetele sale despre defect plus defect. Şi, vă rog din suflet, aveţi grijă cum predaţi înmulţirea numerelor întregi.

Anna’s Dreams