Mulţimile de numere ℕ⊂ℤ⊂ℚ⊂ℝ

De multe ori elevii sunt bulversaţi de denumirile date de matematicieni diverselor clase de numere: numerele naturale şi cele reale sunt ceva mai clare, pe când cele întregi şi cele raţionale nu coincid nici măcar la prima literă cu denumirea denumirea dată mulţimilor. Apariţia, din câte ştiu doar în România, a unei notaţii pentru mulţimea numerelor iraţionale, care nu respectă modelul de extindere al precedentelor mulţimi, îi bulversează şi mai mult pe elevi (nu avem, de pildă, o denumire pentru numerele raţionale care nu sunt întregi).

Fără pretenţia de a a fi găsit forma ideală de predare, vă prezint totuşi pozele tablei de la lecţia ce o fac de mulţi ani în această formă. Concret, lecţia le-o predau elevilor în patru forme succesive diferite, fiecare cu povestea ei (totul într-o oră, chiar mai puţin).

În prima formă le şi spun elevilor că îi invit la o călătorie cu un balon cu aer cald, în care vom survola de la mare înălţime matematica. Astfel, în timpul zborului vedem operaţia de bază (adunarea) cu operaţia de probă (scăderea). O adunare repetată înseamnă înmulţirea, care are ca operaţie de probă scăderea. O înmulţire repetată reprezintă operaţia de putere, având ca probă rădăcina (aici analogia este cam subţire, deoarece elevii nu cunosc decât rădăcina pătrată, da’ nu ne împiedicăm de astfel de detalii minore). Cele trei operaţii directe aplicate pe numere naturale dau întotdeauna rezultate naturale. Dimpotrivă, fiecare operaţie de probă, lăsată să opereze la întâmplare, generează un nou tip de numere.

Din câte ştiu, denumirile celor patru mulţimi au fost date de către David Hilbert, aşa că, cel puţin în cazul numerelor întregi şi a celor raţionale am căutat în limba germană. Astfel, litera Z a fost aleasă de la cuvântul Zahl (număr în germană, zählen = a număra) iar litera Q de la cuvântul Quozient (cât, adică rezultatul unei împărţiri, tot din germană). Nu sunt sigur, este doar o presupunere, dar această teorie le dă elevilor o explicaţie plauzibilă.

A doua formă oferită scoate în evidenţă exact ce am prezentat în prima parte, anume că fiecare operaţie de probă nouă duce la o extindere a mulţimii de numere. Imaginea este una de pungă în plasă în sacoşă în geamantan (putem spune şi pungă în sertar în dulap în cameră). Pentru stabilitatea înţelegerii am păstrat şi culorile folosite iniţial.

A treia formă este probabil cea mai cunoscută; singura observaţie ar fi că la trecerea de la mulţimea Z la Q le atrag atenţia elevilor că nu mai putem prezenta numerele într-o secvenţă ordonată fără lipsuri.

Ultima formă, cea a axei numerelor, se înţelege cel mai greu din această imagine. Pe tablă, eu am păstrat diferitele culori iniţiale şi am desenat numerele: la început cele naturale ca paşi, la fel apoi şi cele întregi, apoi cel raţionale cu multe liniuţe (cele care dau impresia de iarbă), iar în final am evidenţiat faptul că numerele reale umplu toată axa, trăgând în sfârşit concret axa numerelor. Deci, să fie clar: axa numerelor nu am desenat-o de la început, ci numerele le-am poziţionat iniţial doar aliniate.

Titus Grigorovici

Repetarea calendarului (3)

În continuarea explicaţiilor din postarea precedentă pe tema repetării calendarului, doresc să vă prezint în această ultimă parte notiţele mele din zilele de început a anului 2017, atunci când am rezolvat această problemă. “Marea idee” a fost să figurez cei şapte ani normali pe un cerc, la fel şi cei şapte ani bisecţi posibili. Iniţial am încercat parcursul unei perioade de 28 de an pendulând pe cele două cercuri după principiul: trei paşi succesivi pe cercul calendarelor normale şi un pas (dublu) pe cercul calendarelor bisecte. Astfel am obţinut prima dată lista succesiunii celor 14 calendare posibile într-un ciclu de 28 de ani după care succesiunea începea din nou de la capăt:

a, b, c, F, f, g, a, E, d, e, f, D, b, c, d, C, g, a, b, B, e, f, g, A, c, d, e, G, → a

Cel mai interesant în acest şir este faptul că un calendar – de exemplu cel notat cu a – nu se repetă echidistant (nici nu avea cum, 28 nefiind divizibil cu 3), ci într-un ciclu de → 6 ani→11 ani → 11 ani →. Anii bisecţi apar doar o dată într-un ciclu de 28 de ani. Singura provocare în acest moment a fost dorinţa de a cuprinde într-o singură formă circulară (de fapt heptagonală) cele două cercuri de calendare. În imaginea alăturată vedeţi rezultatul acestor strădanii, împreună cu notiţele colaterale din acel moment. De pildă, vedeţi în partea dreaptă o primă încercare de a stabili care au fost precedenţii trei ani şi următorii trei ani care au calendarul identic cu anul 2017. Astfel, au acelaşi calendar anii 1989→1995→2006→2017→2023→2034→2045.

În acest moment este evidentă nevoia de a cuprinde într-o imagine circulară repetitivă, în care să se vadă imediat care sunt anii cu calendare identice, respectiv să vedem fizic ce formă are ciudata periodicitate (6, 11, 11). Astfel, pe figura următoare se vede aranjarea pe un cerc împărţit în 28 de părţi (centura mijlocie) a celor 14 calendare posibile (şapte normale, fiecare de trei ori, respectiv cele şapte bisecte, fiecare o singură dată) pe centura interioară. Pe centura exterioară sunt notaţi în mod corespunzător anii actuali, dar şi precedenţii cu 28 de ani în urmă (pe poziţia 1 anul ’01 pentru 2001 etc., cât şi 2001 – 28 = 1973, notat ’73).

Surpriza a apărut când am început să conectez cu o aceeaşi culoare poziţiile celor trei ani identici dintr-un ciclu de 28, obţinând acele triunghiuri isoscele, a căror combinare arată foarte “mistic”. Efectiv arată ca şi cum m-aş fi întors de la un curs de specializare din Tibet. Pe baza acestei imagini putem stabili imediat că actualul calendar (2017) va putea fi folosit din nou în 2023, pe când calendarul anului viitor de-abia în 2029.

Ultimul pas în această mică cercetare a fost să caut ce se găseşte pe internet legat de repetarea calendarului. Fără pretenţia unei căutări exhaustive, totuşi nu am găsit teoria mai sus prezentată, ci doar câteva tabele cu confirmarea rezultatelor (pentru întreaga perioadă de aproape două secole până în 2100, an ce nu va fi considerat bisect). Cuvinte de căutare ar fi same calendar (pentru engleză), respectiv identische Jahre (pentru germană).

În caz că nu aţi ajuns şi dvs. la aceste concluzii, vă doresc să petreceţi clipe plăcute în procesul de de descifrare a notiţelor prezentate. Ah, da, şi fiţi vigilenţi la calendare vechi. În plus, este evident că un calendar frumos merită ţinut, pentru că îi vine vremea din nou.

Titus Grigorovici

Compararea fracţiilor ordinare – Un studiu al diferitelor metode

Elevii vin din clasa a IV-a cu o parte din această lecţie învăţată. Dacă se începe capitolul de fracţii ordinare din semestrul I în clasa a V-a cu o preocupare intensă pentru reprezentarea fracţiunilor şi a fracţiilor în diferite forme geometrice (părţi din disc-lipii, pătrat, dreptunghi, triunghi etc.) şi se folosesc acestea în diferite probleme de pătrundere a fenomenului, atunci elevii vor enunţa de la sine – adică din înţelegere şi din amintiri din clasa a IV-a – primele criterii de comparare a fracţiilor ordinare. Deci, aceste prime criterii ar trebui să fie enunţate de către elevi pe baza unei minime experienţe, adică predominant intuitiv, profesorul ajutând procesul cu fineţe, dând doar exemple cu semnul întrebării.

  1. Fracţii cu acelaşi numitor: dacă două fracţii au acelaşi numitor, ordinea este aceeaşi cu ordinea numărătorilor. Exemple: .
  2. Fracţii cu acelaşi numărător: dintr-un exemplu bine ales (vezi primele două exemple) elevii vor putea explica faptul că dacă două fracţii au acelaşi numărător, atunci ordinea lor este inversă ordinii numitorilor. Exemple: .
  3. Metoda grafică elementară: la compararea fracţiilor , acestea se pot reprezenta fiecare ca parte dintr-un întreg circular; din compararea celor două desene alăturate se poate stabili care fracţie este mai mare.
  4. O metodă grafică aparte: fracţiile şi se pot compara reprezentându-le grafic prin împărţirea unui dreptunghi cu lăţimea de 5 şi lungimea de 7 pătrăţele. Pentru prima fracţie împărţim cu o culoare întregul pe lăţime în cinci fâşii din care haşurăm cu această culoare trei fâşii, iar pentru a doua fracţie împărţim întregul pe lungime cu o altă culoare în şapte fâşii din care haşurăm cu această a doua culoare doar patru fâşii. În final avem dreptunghiul întreg împărţit de fapt în 35 de pătăţele, prin cele două culori, şi trebuie doar să numărăm câte sunt mai multe, cele din prima sau cele din a doua culoare. Este clar că această metodă deschide uşa pentru aducerea la numitor comun, dar este recomandabil să lăsăm mai spre final metodele foarte generale (cunoscând o metodă generală, elevul va accepta mai greu alte metode; în acest caz nu ne putem atinge unul dintre obiectivele majore ale unui învăţământ sănătos: deschiderea cât mai largă a minţii elevului).
  5. Fracţie subunitară < fracţie supraunitară: dacă au înţeles cele două tipuri de fracţii vor putea rezolva direct şi aceste exemple; apoi se trece în caiet regula.
  6. Compararea fracţiilor subunitare faţă de jumătate: elevii cu simţul dezvoltat pentru fracţii vor observa uşor dacă o fracţie subunitară reprezintă mai mult sau mai puţin decât jumătate. Exemple: .
  7. În general, compararea celor două fracţii faţă de o altă cantitate intermediară: de exemplu putem ordona crescător fracţiile şi , comparându-le (eventual grafic) cu fracţia intermediară , care este destul de cunoscută şi vizual. Deci . Un exemplu în acest sens ar fi şi următorul: fracţiile  şi  pot fi comparate cu .
  8. Comparând diferenţele până la un întreg: în cazul fracţiilor şi , diferenţele până la un întreg sunt . Este evident că .
  9. Scoţând întregii din fracţie, cu cantităţi de întregi diferite: în acest caz ordinea este dată de întregi. Exemplu: .
  10. Scoţând întregii din fracţie, cu cantităţi de întregi egale: în acest caz ordinea este dată de părţile fracţionare, după celelalte criterii. Exemplu: .
  11. Aducând fracţiile la acelaşi numitor, prin amplificare sau prin simplificare. Aceasta este lărgirea cadrului de aplicabilitate a primei metode. Pentru deschiderea cât mai clară a gândirii elevilor este evident că trebuie să oferim şi exemple cu simplificare. Exemple:
  12. Aducând fracţiile la acelaşi numărător, prin amplificare cât şi prin simplificare. Aceasta este desigur lărgirea cadrului de aplicabilitate a celei de-a doua metode. Această metodă este importantă, la fel, pentru formarea la elevi a unei gândiri căt mai deschise. Aici este important să alegem exemple la care aducerea la numitor comun să fie mult mai dificilă decât aducerea la numărător comun (din punct de vedere al calculelor). Exemple: .

Ultimul exemplu deschide evident calea spre o generalizare ce ar reprezenta pasul spre o abordare algebrică a situaţiei. Dar, acum în clasa a V-a, încă nu este vremea pentru aşa ceva. Acum, în această lecţie, obiectivul a fost unul mai modest (dar prin aceasta mult mai ambiţios), anume ca elevii să petreacă o oră cât mai profundă în compania fracţiilor ordinare, întru înţelegerea acestora. Atât şi nimic mai mult. Şi totuşi, este de aşteptat ca seminţele plantate cu această ocazie să rodească pe viitor, iar atunci vom simţi din plin roadele acestei lecţii.

Titus Grigorovici

În primăvara lui 2015

Frumuseţea de cretă a matematicii

Ştim, copiii urăsc tabla înmulţirii, urăsc cărţile, lecturile suplimentare, memorarea şi dacă s-ar putea nici un fel de manuale, nici un fel de teme, nici un fel de BAC, cu toţii direct la facultate, fără examen de admitere, bineînţeles. Dar, lăsând la o parte cum vor unii din minister să bramburească învăţământul şi sistemul de educaţie, acesta “sfânt”, care “dă profilul unei naţii”, să recunoaştem că aritmetica, tabla înmulţirii, chiar dacă n-o fi ea frumoasă, este totuşi necesară.

Numai că uneori ai nevoie de profesori dedicaţi care să ştie să-i facă pe elevi să descopere frumuseţile matematicii. Ştim, aceştia sunt ca diamantele, nu se găsesc la orice colţ de stradă, dar când ei există parcă mai avem un licăr de speranţă. Iată un exemplu prin care învăţătorii sau profesorii devotaţi meseriei lor l-ar putea da elevilor plictisiţi, înfrăţiţi doar cu jocurile de pe tabletă sau smartphone.

Am preluat integral, inclusiv titlul, articolul de mai sus din ziarul Magazin, Nr. 52 din 29 dec. 2016, pag. 12, pentru că pur şi simplu merită, reprezentând o pledoarie deosebită pentru o matematică de suflet. Titlul este de-a dreptul magnific. Articolul nu este semnat, doresc însă cu drag să felicit autorul pledoariei respective. Merită să zăbovim un pic asupra conţinutului.

În primul rând, să spunem câte ceva despre “sursa” celor patru seturi de “exerciţii”. Acestea sunt foarte vechi, fiind oarecum din repertoriul universal. Apar împreună sau doar unele în diferite cărţi, dar le putem găsi şi în diferite locuri pe internet. Într-o vreme umbla un Power Point pe e-mail, în care acestea aveau prin prezentare “ataşată” o aură mistică (în 2011, exact aceleaşi patru seturi cu titlul Frumuseţea matematicii).

Apoi, ar trebui să vorbim şi despre momentul cel mai potrivit de folosire al acestora. Părerea mea este că şi-ar găsi locul pe prima fişa de lucru dată elevilor la începutul clasei a V-a, cu cerinţa ca fiecare elev să verifice cât mai multe nivele din fiecare exemplu. Elevii slabi vor face doar câte 2-3 din fiecare; elevii harnici vor face seturile complete. Mesajul este însă unul clar: matematica este frumoasă, dar nu este grea; fiecare poate să facă după forţele sale câte ceva. În plus, aceste exerciţii reprezintă o recapitulare minunată a înmulţirii şi a adunării, fără a fi plictisitoare, ci având chiar o doză bună de “joc”. Este evident că o astfel de fişă poate fi dată doar dacă 1) profesorul de matematică nu consideră că este “sub demnitatea sa”; 2) învăţătoarea nu lea dat deja clasei respective.