Discuţii pe marginea interviului cu Radu Gologan – (I) Influenţa ecranului asupra învăţării matematicii

Interviul de pe Hot News cu dl. Profesor Radu Gologan de sâmbătă, 30 martie 2019 luat de Andreea Ofiţeru, aduce câteva puncte de vedere neevidenţiate până acum public de către o personalitate de vârf. Câteva pasaje din acest interviu merită analizate în profunzime; pentru prezentul eseu mi-am propus următorul citat:

Andreea Ofiţeru: A devenit matematica atât de grea?

Radu Gologan: E clar că e un declin al învăţării matematice, (…). Nu ştiu ce se întâmplă! Eu cred că felul de a se comporta şi de a judeca al copiilor din ziua de astăzi nu mai acceptă rigurozitate şi foarte multă informaţie despre care să aibă ei impresia că nu este utilă. Peste tot în lume predarea matematicii nu s-a schimbat aşa cum ar fi trebuit să se schimbe, dată fiind tehnologia, date fiind aplicaţiile matematice, dat fiind modul copiilor de a percepe informaţia altfel decât acum 40 de ani. Şi asta îi face să respingă, în mare parte, lucrurile pe care ei le văd formale şi care pentru foarte mulţi nu au niciun fel de frumuseţe în legăturile lor cu realitatea.

Aici, în spusele d-lui Profesor, găsim un mare adevăr, dar şi o periculoasă capcană decizională. Personal nu am vorbit cu dl. Gologan pentru a înţelege în detaliu cum vede dânsul aceste aspecte, aşa că scriu „de la zero”. După părerea mea, pericolul cel mare este ascuns în următoarea posibilă concluzie: tehnologia s-a schimbat foarte mult, putem spune că de fapt s-a accesibilizat total în ultimii 40 de ani, ajungând de facto până şi în ultima cocioabă din vârful muntelui (aţi remarcat reclama cu „ciobănaş cu 300 de minute”?); ca urmare şi predarea ar trebui să se schimbe în acelaşi sens, adică să includă folosirea tehnologiilor noi. Cu alte cuvinte, elevii ar trebui să stea toată ziua pe tabletă şi să „înveţe” pe tot felu’ de programe gata pregătite de alţii. Există chiar şi câteva înregistrări cu regretatul Academician Solomon Marcus exprimând puncte de vedere similare, fără să mai vorbim de periodicele promisiuni ale diferiţilor Miniştrii ai Educaţiei despre dotarea tuturor elevilor cu tablete ce ar uşura semnificativ ghiozdanele. Probabil că doar frica de a fi prinşi într-o nouă „afacere-scandal de tip Microsoft” a făcut să nu avem încă oficial clasele pline de tablete.

Şi ce-ar fi rău într-un astfel de scenariu? Există multe studii care arată influenţa nefastă, chiar distructivă, a folosirii ecranului asupra dezvoltării psihico-intelectuale a copiilor. Desigur că aceste studii sunt de obicei ascunse, neexistând nici o urmă de interes în a fi făcute publice. Evident că marile companii de tehnologie a ecranului (TV, calculatoare, deşteptofoane) au grijă ca lumea să nu cunoască aceste studii. Consider că orice decizie la nivel înalt în acest sens ar trebui luată şi cu consultarea specialiştilor în domeniu (singurul nume din România ce a ajuns până la mine în acest sens este al d-lui Profesor Virgiliu Gheorghe (câteva lucrări mai vechi ar fi: Efectele televiziunii asupra minţii umane şi despre creşterea copiilor în lumea de azi; Revrăjirea lumii sau de ce nu vrem să ne despreindem de televizor; Efectele micului ecran asupra minţii copilului); sunt sigur că dânsul ar putea prezenta argumente solide în sensul acestor studii). Şi totuşi, ce-i atât de rău în folosirea ecranelor? Când sunt întrebat de către un părinte de ce copilul său, deşi normal şi aparent inteligent, nu face totuşi faţă la învăţatul matematicii, eu îi prezint explicaţii de felul următor.

O argumentaţie simplă şi de suprafaţă, „la mintea cocoşului”, ar fi aceasta: învăţarea matematicii presupune eforturi de diferite feluri; de ce ar fi dispus elevul la astfel de eforturi când are la dispoziţie 24-7, adică non-stop, acces la internet şi deci la doate „dulciurile vieţii sociale”, adică atotcuprinzătorul internet incluzând Youtube, aşa-zisele site-uri de socializare (mai degrabă de „antisocializare”) sau mai noul Netflix. De ce ar fi dispus un elev să înveţe, să petreacă timp chinuindu-se la exerciţii plictisitoare sau cu probleme ce presupun un efort intelectual, dacă tot timpul are la dispoziţie lucruri mai interesante şi mai atractive de făcut, iar mintea sa este plină cu acestea? (chiar agresată de către acestea, de pildă renumitele grupuri de Chat)

Rezumându-ne la astfel de explicaţii, un părinte ar putea concluziona astfel: „OK, păi îi iau telefonul până când îşi termină temele şi am rezolvat problema”. Din păcate, lucrurile nu sunt chiar atât de simple (şi plecăm de la premiza că părintele care ia o astfel de măsură se asigură că elevul nu are acces la internet pe altă cale). Oricum, elevii sunt foarte inventivi, aşa că mulţi părinţi iau uneori decizia cea mai dură, trecând copilul pe telefon cu taste până la promovarea examenului (asta la EN mai merge, dar la BAC chiar nu mai poţi). Vă daţi seama în aceste condiţii cum ar arăta „învăţatul” în prezenţa constantă şi oficială a unei tablete pe care elevul îşi poate instala şi alte „dulciuri”, de pildă diferite jocuri? Nici nu vreau să mă gândesc!

Am calificat astfel de explicaţii drept superficiale pentru că de fapt distrugerea copiilor şi perturbarea activităţii de învăţare este mult mai profundă, fiind pornită la actualii elevi „din fragedă pruncie”. Când am ceva mai mult timp la dispoziţie, le prezint părinţilor următoarea teorie, care însă le arată „verde-n faţă” cum şi-au distrus singuri copilul, ca familie, şi că, probabil, cu greu se mai poate repara ceva.

Forma tradiţională de educaţie „cu 40 de ani în urmă” funcţiona în felul următor: copilul mic primea poveşti spuse (povestite liber sau citite) la culcare sau oricând avea cineva timp pentru el. În timp ce asculta povestea copilul îşi imagina cele auzite, îşi forma un „film interior” al poveştii respective, antrenându-şi astfel în mod real imaginaţia sa (ad-literam!). În cazul poveştilor citite, acestea erau de obicei din cărţi ce aveau din când în când câte o imagine, aşa „doar de sămânţă”, adică doar cât să-i stimuleze imaginaţia despre cum ar arăta un personaj (prinţesa din poveste sau Ionică din Amintiri) sau un loc al acţiunii (castelul vrăjit sau căsuţa de ciocolată etc.). Dar „filmul acţiunii” copilul trebuia să şi-l imagineze singur, cât îl ducea mintea şi imaginaţia sa, probabil că la început mai slab, apoi tot mai clar. Astfel, în cazul unor întâmplări „de groază”, cum ar fi lupul care o mânca pe bunica sau pe cei doi ieduţi neascultători, dar şi în cazul Happy-End-urilor ciudate, cum ar fi scoaterea bunicii din burta lupului sau finalul din Capra cu trei iezi, în astfel de cazuri imaginaţia limitată a copilului acţiona ca un fel de autoprotecţie: copilul îşi imagina doar cât putea suporta sufleţelul său.

Aceste ocazii erau destul de rare în viaţa copilului: până în urmă cu 30 de ani momentele cu cititul poveştii apăreau într-o frecvanţă de cel mult 1-2 poveşti pe zi (în cazuri cu totul excepţionale de 3 ori, să zicem o poveste la grădiniţă dimineaţa, o poveste la culcarea dupăamiaza acasă cu bona şi o poveste la culcare seara cu mama).

Imaginaţia se formează la început drept o capacitate de formare a unor imagini interioare conform celor povestite de o altă persoană. Succesiunea imaginilor respective formează „filmul interior” al poveştii. Mai târziu, când elevul învaţă să citească, acesta, pe baza antrenamentului din „cei 7 ani de acasă”, îşi continuă antrenamentul imaginaţiei, formându-şi la fiecare poveste citită „filmul interior”. Apoi, în mod similar, când elevul va citi în clase mai mari o problemă, el îşi va putea imagina totul ca într-un film, ce i se dă şi ce i se cere şi mai ales cum are de conectat cele două. Abia ulterior, la vârste mai avansate, elevul, mai degrabă tânărul, va reuşi să-şi imagineze singur o nouă situaţie care nu i-a fost dată din afară. Acesta este probabil apogeul imaginaţiei.

Care este situaţia la ora actuală din acest punct de vedere? Copilul primeşte de mic direct „filmul acţiunii” pe ecranul televizorului (în urmă cu 10 ani am numărat opt canale de desene animate normale şi unul pentru copii foarte mici). În aceste condiţii creierul lui nu mai este nevoit să facă efortul de a genera imaginile interioare, nici „filmul interior” al poveştii. Tot procesul prin care copilul învaţă şi se antrenează să-şi imagineze ceva primit verbal din afară, adică fără imagine, tot acest proces al imaginării este perturbat. În unele cazuri extreme nici nu mai este pornit, copilul rămânând într-o lume pură a imaginilor, nedezvoltându-şi deloc capacitatea de imaginare şi deci de înţelegere a unui mesaj verbal, fie acesta rostit sau mai târziu scris. Cu cât copilul stă mai de devreme şi mai mult timp în faţa ecranului, cu atât educarea imaginaţiei este mai atrofiată. Dimpotrivă, cu cât copilul stă mai mult împreună cu adulţi care îi vorbesc (ia-ţi mănuşile; adu prosopul din bucătărie etc.), cu atât el va fi totuşi forţat să ataşeze cuvintelor auzite imagini ale unor acţiuni de realizat. Citind aceste raţionamente, înţelegem imediat cât de dezastroasă este situaţia „abandonării” copiilor toată ziua în faţa televizorului sau în afara locuinţei în faţa deşteptofonului, sub motivul că „se plictiseşte”. În mod similar putem înţelege cum acţionează ca dezvoltator de imaginaţie joaca liberă a copiilor îmaginându-şi ceva în jocul lor. Un caz tipic era felul în care copiii îşi aranjau scăunelele la grădiniţă imaginându-şi că „merg cu trenul” (acum nici nu mai ştiu ce-i acela un tren şi cum este să mergi cu trenul).

Care sunt urmările unei astfel de vieţi în faţa ecranului în „cei 7 ani de acasă”, dar şi mai târziu? Să luăm exemplul scris-cititului. Copilul va învăţa literele, acestea fiind doar imagini, dar va întâmpina deja dificultăţi la scrierea lor, pentru că nejucânduse cu mâinile, ci stând toată viaţa sa în faţa ecranului, eventual apăsând pe butoanele telecomenzii, nu şi-a dezvoltat dexteritatea fină a mânuţelor (de aici unele idei moderne de a elimina din şcoli scrisul cu mâna şi a-l înlocui cu scrisul la tastatură; nu ne miră că aceste idei vin de obicei din America). De obicei însă, destul de repede copilul reuşeşte să lege literele citite în cuvinte, dar va rămâne posibil cu deficienţe în scriere. Apoi copilul este pus să citească şi chiar citeşte, dar nu înţelege ce citeşte. Noi asta iniţial nu observăm, dar vine cânva acel moment când observăm totuşi că el nu pricepe ce citeşte. Se poate întâmpla aceasta de pildă în cazul unei probleme de matematică. El citeşte mesajul textului, dar creierul său nu produce şi „filmul interior”; el înţelege fiecare cuvânt în parte, dar mesajul textului nu este perceput, deoarece vine sub formă de text, adică în cuvinte, nu sub formă de imagine, aşa cum a fost obişnuit creierul său. Este evident că am ajuns în zona analfabetismului funcţional, a persoanelor care ştiu scrie şi citi, dar care nu percep mesajul unui text.

În anii când am fost director am însoţit din punct de vedere metodico-didactic colegele învăţătoare, urmărind în acest proces şi diferiţii copii care veneau la şcoala noastră. O legătură deosebită am avut cu învăţătoarea fiicei mele cât şi cu elevii din această clasă. Am putut astfel observa şi analiza împreună cu învăţătoarea diferite cazuri edificatoare în sensul celor spuse mai sus. Am putut astfel face comparaţia între un copil care nu a crescut „lângă” ecranul cu desene animate şi un altul care stătea toată ziua la televizor. La acesta din urmă se vedea clar suferinţa în momentul când trebuia să citească un text, pentru că nu înţelegea „filmul acţiunii”, lipsind imaginea, cu care era obişnuit. Vedeam pe acest copil cum aproape îl durea când era pus să citească. Nici nu mai discutăm de repulsia ce se forma faţă de citit. Ulterior, când a început să folosească internetul pe subiecte preferate, situaţia s-a mai atenuat, în aceste cazuri scurtele texte fiind de obicei însoţite şi de imagini. Însă, la performanţa de a lua „un 5” la EN nu s-a mai putut ridica. Au fost însă şi elevi la care am putut observa doar o avariere parţială. Vorbesc aici de elevi care nu pot înţelege singuri textul primit, dar care îl înţeleg dacă este puţin ajutat. Un elev chiar ştia ce trebuie să facă imediat ce d-na învăţătoare îi citea şi dânsa o dată cerinţa, fără nici o explicaţie suplimentară (discutăm desigur de texte surprinzătoare, nu de texte similare cu cele parcurse anterior). Este posibil să fi fost obişnuit aşa de acasă, de pildă ca bunica ce stătea cu el până veneau părinţii să-l fi obişnuit să-i citească cerinţa dacă vedea că acesta nu se descurcă.

Da, şi acum ajungem în clasele gimnaziale, poate la Simularea EN. Acum înţelegem altfel de ce unii elevi nu fac mai nimic la aceste testări, mai ales în cazul unor probleme în care ar mai trebui şi să gândească. Da, vorbim de fapt de generaţii întregi în care capacitatea de înţelegere a textului primit este neformată sau profund avariată. Cum ar trebui să arate predarea pentru a prevenii astfel de situaţii? Părerea mea este că atât învăţătoarele, cât şi profesorii ar trebui – cu mult tact şi răbdare – să folosească în predare cât mai multe „imagini povestite”, adică descrieri verbale ale diferitelor situaţii, prin care să oblige mintea copilului să-şi imagineze cele spuse.

Astfel, pentru a-i ajuta dar şi a-i forţa să-şi imagineze, pe lângă vorbit eu dau foarte mult din mâini la clasă. Dacă vorbesc de numărător sau de numitor, gesticulez cu mâna arătând deasupra sau dedesuptul unei linii imaginare de fracţie. Dacă vreu să accentuez că triunghiul de desenat trebuie să fie oarecare, atunci atenţionez verbal că trebuie să nu fie construit isoscel în timp ce formez cu antebraţele cele două laturi oblice ale unui triunghi scalen, diferit înclinate, adică cu vârful „într-o parte”. Prin clasa a 8-a chiar le povestesc elevilor despre ceea ce în engleză se numeşte „air quitar”, adică chitară de aer, însemnănd gestul acela făcut de o persoană ce imită un chitarist rock în timpul ascultării unui solo la chitară (Freddie Mercury făcea chestia asta cu suportul acela de microfon). Apoi le explic elevilor că eu folosesc această metodă pentru a-i provoca să-şi imagineze diferitele corpuri sau structuri spaţiale studiate. Astfel, gesticulez cu orice ocazie diferitele corpuri, cuburi, piramide, conuri, aproape „mângându-le”, deşi de fapt nu ţin nici un corp în braţe.

În acest sens, renumitele exerciţii cu „puncte-puncte” reprezintă pentru elevii din clasele gimnaziale o adevărată provocare, pentru că ei trebuie să-şi imagineze de pildă câte fracţii sunt în acea sumă (nu sunt patru câte sunt scrise în exerciţiu, ci sunt poate 20).

Deci, cum ar trebui adaptată predarea după dezvoltarea acestor tehnologii (eu i-aş spune direct tehnologia ecranului) şi cucerirea societăţii de către acestea? Pentru păstrarea omului ca om şi nu ca un utilizator subordonat maşinăriei, totodată handicapat de către aceasta, eu consider că soluţia nu este în dotarea copiilor cu aparate (renumitele tablete), ci în înţelegerea aspectelor umane date de-o parte sau nedezvoltate din ceea ce noi considerăm a forma imaginea completă a unui om şi pe care ne aşteptăm să o regăsim la elev după o anumită perioadă (cum este de pildă o capacitate de  imaginare sănătoasă), aspecte însă distruse de apariţia aparatelor de timpuriu în viaţa tot mai  multor copii (aidoma puiului de cuc ce instinctual îi aruncă pe fraţii săi vitregi din cuib). Această înţelegere ar trebui urmată evident de compensarea prin predare a deficienţelor cu care vin copiii la şcoală, odată cu adaptarea cantităţii, a momentului de introducere şi a dificultăţii materiei conform cu nevoile şi posibilităţile noilor „clienţi ai şcolii”. Această adaptare trebuie pornită de pildă cu poveşti multe în primele trei clase, atâta vreme cât se mai pot forma mecanismele imaginaţiei, dar întregul program ar trebui continuat cu aspecte remediale şi formatoare la toate clasele, măcar la cele primare şi cele gimnaziale.

Definiţiile şi regulile riguroase, de multe ori prezentate abstract şi într-un limbaj mult prea elevat, neadaptat vârstei respective, toate acestea îl resping pe elev în încercările sale de a se apropia de matematică. Între metodişti există chiar şi păreri directe împotriva definiţiilor (de pildă Dan Brânzei în Metodica predării matematicii, Ed. Paralela 45, 2000, sub titlul Durerea facerii definiţiilor). În acest sens, eu mă străduiesc să reduc la minim definiţiile, înlocuindu-le cu descrieri (m-am mai exprimat în acest sens şi cu alte ocazii).

Descrierile trebuie adaptate situaţiei. Astfel uneori fac descrieri şi prezentări punctuale, de pildă la începutul capitolului despre triunghiuri: copiii cunosc ce este acela un triunghi, forma fiind introdusă intuitiv deja în clasele mici. Ca urmare, în loc de definiţie, aici apare o descriere recapitulativă (alături de un triunghi scriu că triunghiul are: trei laturi [AB], [BC] şi [AC], şi trei unghiuri, acestea scrise cu o literă dar şi cu trei, oricum neapărat folosind ambele notaţii pentru unghi: de obicei folosesc notaţia ∢A pentru unghiul scris doar cu vârful său şi notaţia veche, cea cu acoperiş, pentru unghiul scris cu trei litere, unde aceasta este foarte sugestivă, având litera din vârf, cea din mijloc, chiar sub vârful acoperişului).

Alteori prezentarea unei noţiuni noi se poate face contextual împreună cu cele înconjurătoare. Este antologică „definiţia” numerelor prime dată de Profesorul Eugen Rusu într-un curs pentru profesori din 1960, unde de fapt apare o prezentare prin exemple a numerelor compuse şi a numerelor prime. (Aritmetica şi teoria numerelor – I – Aritmetica, Ed. Tehnică, pag. 96): „Definiţie. Orice număr natural este divizibil cu el însuşi şi cu 1, …. Se pune întrebarea: are el şi alţi divizori în afară de 1 şi el însuşi? Divizorii diferiţi de 1 şi de numărul însuşi se numesc divizori proprii. Unele numere nu au divizori proprii ( de exemplu 13) – ele se numesc numere prime; unele numere au divizori proprii (de ex. 12); ele se numesc neprime sau compuse.”

Alteori introduc diferite noţiuni înrudite în mod comparativ: împart tabla în două părţi şi scriu ba în stânga, ba în dreapta, studiind în paralel cele două noţiuni, evidenţiind aspectele comune şi aspectele ce le diferenţiază. Situaţii potrivite acestei metode sunt la proporţionalitatea directă respectiv inversă, la media geometrică în comparaţie cu media aritmetică, la fel şi la cele două tipuri de progresii; am folosit însă metoda şi la studiul patrulaterelor înscrise în cerc în comparaţie cu cele circumscrise unui cerc, dar şi la introducerea piramidei triunghiulare regulate în comparaţie cu tetraedrul regulat,pentru ca elevii să priceapă de la început care sunt deosebirile dintre acestea. La ultimul exemplu, am realizat cele două figuri de o parte şi de cealaltă a liniei de departajare, astfel încât să vadă că la tetraedru înălţimea este fixă, pe când la piramida triunghiulară aceasta poate să fie mai înaltă sau mai turtită decât tetraedru (cam aşa sunt acestea percepute în clasa a 8-a, iar alte detalii le prezint cu alte ocazii, de pildă la exprimarea cam răutăcioasă despre o piramidă triunghiulară regulată cu toate muchiile egale).

Faptul că un elev ştie pe de rost o definiţie sau o teoremă nu înseamnă că o şi înţelege, aidoma elevul acela din clasa primară care reuşea să citească dar nu înţelegea ce citeşte. Dl. Gologan chiar dă un exemplu într-un alt moment al interviului: Dar a scrie modul de X egal cu minus X şi plus X în anumite situaţii asta nu înseamnă matematică. (…) Dimpotrivă, există elevi care nu ştiu să-ţi dea o definiţie a unui obiect matematic, dar în aplicaţii îi vezi că le ştiu folosi corect. Eu prefer a doua variantă şi din acest motiv nu dau la teste niciodată elemente de teorie (definiţii sau teoreme), cu o singură excepţie: sesiunea de „teste fulger” din formule ce trebuie cunoscute (arii plane, formule de la corpurile studiate, calcul prescurtat, rapoarte trigonometrice, radicali din pătrate perfecte şi valori aproximative uzuale: la sfârşitul orei un test de 9 întrebări orale cu răspunsul scris pe loc, până la următoarea întrebare şi creionul jos la final, apoi corectate imediat cu un punct din oficiu; o hârtie A4 împăturită în două are patru pagini A5 pentru patru teste fulger, media acestora formând o notă).

În preocupările mele de îmbunătăţire a predării m-am îndreptat şi într-o altă direcţie inspirată chiar „de la duşmani”, adică din mass-media cu care elevii sunt atât de obişnuiţi. Despre ce este vorba? Televiziunile comerciale au învăţat destul de repede că există în principiu două forme de a ţine o persoană captivă în faţa ecranului: pielea goală şi violenţa (vorba aceea: „se adună ca la urs”). Oamenii cu greu se pot opune impulsului de a privi o astfel de scenă. Prima categorie a intrat repede în procesul de selecţie oficială prin lege, pe când a doua categorie a dezvoltat variante şi variaţiuni ce cu greu pot fi urmărite şi catalogate. Un film este greu de urmărit dacă acţiunea prezentată nu are măcar un conflict, de obicei de confruntare a unui personaj negativ. Uneori rolul personajului negativ este luat de o boală sau un fenomen natural dezastuos ce urmează să se întâmple. Oamenii fiind obişnuiţi cu starea de tensiune generată prin aceste conflicte din orice film, o concluzie specială este că emisiuni paşnice cum ar fi diverse documentare sau relatări despre acţiuni sunt considerate de către public plictisitoare. Şi atunci ce se face? Simplu, se induce şi în acestea o stare de aparent conflict.

De pildă, într-un documentar care prezintă construcţia unei căsuţe în copac se induce stressul încadrării într-un termen şi toată emisiunea este prezentată ca şi cum s-ar lucra intens sub presiunea timpului. Foarte puţine emisiuni refuză încadrarea în acest stil de stress artificial indus doar de dragul audienţei (chiar şi în renumitul documentar România neîmblânzită, care este deosebit de paşnic, realizatorii au apelat totuşi şi la această tehnică, de pildă în situaţia palpitant-conflictuală între mistreţul încolţit şi haita respectivă de lupi).

De multe ori starea de situaţie palpitantă este indusă de prezentarea unei situaţii problematice, căreia la început nu i se cunoaşte o posibilitate de rezolvare: eşti ţinut captiv din curiozitate, ştiind că pe parcursul emisiunii, de obicei spre sfârşit, îţi va fi revelată soluţia. Unde folosesc eu aceste aspecte în predarea matematicii?

Este vorba de predarea prin problematizare. Le prezint elevilor pe scurt conjunctura în care ne poziţionăm şi ce urmărim. Dacă le prezint chiar rezultatul, teorema ce o urmărim, atunci găsirea demonstraţiei trebuie că le este accesibilă elevilor, aceasta fiind o predare simplă prin problematizare. Dacă însă nu le prezint elevilor concluzia la care vrem să ajungem, ci îi întreb doar „ce-am putea vedea aici?”, sugerându-le că acolo există o proprietate remarcabilă, atunci în acest caz predarea prin problematizare capătă clar accente de cercetare, prin care elevii se antrenează cu adevărat în căutarea noului. Dacă reuşim să regizăm bine acest scenariu, ca într-un documentar de televiziune, atunci elevii vor participa cu mare bucurie la crearea conţinutului, lecţia devenind brusc chiar mai palpitantă decât o emisiune care este pre-făcută (adică anterior realizată, la care privitorul poate avea doar un rol pasiv): aici, în cadrul unei asemenea lecţii, elevii simt că sunt parte integrantă a acţiunii, văd că ei pot influenţa mersul gândurilor, desigur dacă emit gânduri intuitiv raţionale (adică nu vin cu orice trăsnaie spusă la întâmplare, netrecută măcar minimal prin filtrul propriei judecăţi, asta desigur pentru a se proteja de dezaprobiul profesorului şi eventual de unele râsete ale colegilor).

Permiteţi-mi să vă prezint în final cum mi-a reuşit o astfel de situaţie în lecţia despre unghiuri formate de două drepte cu o secantă. După titlu şi prezentarea figurii (direct dreptele paralele a şi b tăiate de secanta d în punctele A şi B şi formând unghiurile notate cât mai simplu A1, A2, A3 şi A4, respectiv B1, B2, B3 şi B4, notate corespunzător în aceeaşi poziţie), le-am explicat care este dilema lecţiei, adică ce cunoaştem deja, dar şi ce încă nu am studiat. Astfel, ştim că în jurul unui punct, de pildă la A, la intersecţia a două drepte (dreptele a şi d) avem??? (am pus trei semne de întrebare încercând să vă arăt că în acel moment m-am oprit cu mâna arătând spre punctul A de pe tablă, m-am oprit cu un semn mare de întrebare pe faţa mea, iar atunci elevii au înţeles că trebuie ei să continue; elevii mei sunt obişnuiţi cu această tactică): unghiuri opuse la vârf, strigă unul plin de bucurie, după ce a ridicat mâna şi eu i-am spus numele. Care?, întreb eu, stârnind o mare de mânuţe ridicate. După ce apucă să spună perechile de unghiuri opuse la vârf congruente din A, vin cu o nouă întrebare: dar în B? (din nou mare bucurie şi răspunsuri fericite). Cu asta am făcut şi reactualizarea lecţiei precedente.

Acum vine întrebarea cea mare, cu îndreptarea atenţiei spre viitor: Dar, cum stau lucrurile în cazul în care vrem să privim un unghi de la A şi un unghi de la B? Vedeţi că nu le-am spus ce vrem să obţinem, ci le-am pus doar o întrebare oarecum deschisă. După un moment de reculegere a gândurilor încep să se ridice din nou mâinile. Aici le-am cam dat cuvântul pe rând tuturor care aveau ceva de spus, tratând fiecare intervenţie cu multă seriozitate şi răbdare, cu contra-întrebări de tipul: Da, dar oare de ce o fi aşa cum spui? Sau Nu, pentru că ar contrazice cutare sau cutare fapt deja lămurit. Încet, elevii au văzut şi au dezvăluit toate aspectele acestei lecţii. Urmare a întrebărilor mele repetate Dar de ce oare este aşa?, un elev chiar a observat că unghiul B2 poate aluneca de-a lungul dreptei d în poziţia unghiului A2, dând un motiv corect din punct de vedere intuitiv, pentru care acestea două sunt congruente.

Cam după 20 minute de la începutul lecţiei am oprit această discuţie (în care ei se implicaseră cu tot sufletul şi a cărei dezbatere ar fi dorit desigur să o continue), anunţându-i că au cam spus toate elementele acestei lecţii, doar că de-a valma şi că, în plus, le lipsesc desigur denumirile specifice acesteia. Ca urmare, i-am anunţat că voi prelua eu „microfonul” şi că le voi arăta acum lecţia ordonată şi cu denumirile corespunzătoare. Lecţia nu are în sine demonstraţii, dar ordonarea cu unghiurile corespondente la început permite o foarte bună justificare pentru această fază de dezvoltare a gândirii elevilor: alunecarea (translaţia) unghiului B2 în A2, evidenţiată cu culoare pe al doilea desen (cel de la subtitlul unghiuri corespondente; pe lângă desenul iniţial pe care am discutat, am făcut la fiecare nouă categorie un desen nou, pe care am colorat o pereche de astfel de unghiuri pentru o vizualizare cât mai bună). Lecţia continuă în acest fel şi vă daţi seama cât de superatenţi sunt elevii să vadă cum se desfăşoară lecţia în faţa lor, lecţie a căror elemente le-au intuit şi le-au spus ei sau colegii lor. În acest fel unghiurile, punctele şi dreptele, au devenit brusc personaje pline de viaţă într-o poveste la realizarea căreia elevii au simţit cum au contribuit din plin. Sunt ferm convins că toţi elevii care au avut atunci ceva de spus, dar şi mare parte dintre cei care au tăcut dar au fost atenţi, au înţeles cum funcţionează lecţia şi au plecat acasă cu satisfacţia muncii împlinite. Îmi place să cred că aceeaşi stare de mare bucurie ar fi avut-o şi orice adult ce ar fi asistat la acea oră de geometrie.

Închei aici cu convingerea că atragerea elevilor către matematică poate fi realizată foarte bine prin metode de tip problematizare, prin implicarea elevilor în dezbateri asupra subiectelor de studiat, aplicând o predare prin întrebări în paşi mici adaptaţi fiecărei vârste şi fiecărui colectiv, astfel încât elevii să fie atraşi într-un parcurs de tip cercetare şi descoperire sub îndrumarea profesorului, prin soaterea în faţă a situaţiilor uimitoare sau intrigante. O astfel de predare ţine doar de setarea profesorului în acest sens şi nu implică folosirea unor mijloace de tehnologie nouă (tablete, smarphone etc.), acestea atât cu dificultăţile în sensul costurilor, cât şi cu pericolele uriaşe ce le aduc cu sine în educaţie. Foarte ciudat este însă faptul că indicaţii în sensul celor de mai sus se găsesc în mod surprinzător în lucrări vechi din anii ‘60-‘70 (George Pólya sau Eugen Rusu). Da, este exact aşa cum explică dl. Profesor Gologan: elevii au ajuns la ora actuală să nu mai accepte matematica formală. Dar asta nu înseamnă să-i împingem necontrolat în “braţele” noilor tehnologii. Vechiile forme de predare bazate pe o relaţionare realistă profesor-elev, necunoscute la ora actuală pentru majoritatea profesorilor, forme de predare ce pot fi totodată prezentate ca “noi” (şi moda revine), aceste forme sunt mult mai sănătoase şi pe durată oferă o calitate formativă mult mai ridicată. VA URMA, CTG

PS Ataşez o “imagine” proaspătă despre folosirea tehnologiilor moderne în predarea matematicii. Săptămâna aceasta la un liceu de vârf din Cluj elevii trebuiau să facă o anumită temă la matematică pe o platformă. Un elev intră şi face câţiva itemi, după care iese cu gândul de a reveni după ce se mai informează cum se fac celelalte sarcini. La revenire: surpriză, nu mai are voie să intre, fiind condamnat la o notă proastă. Îşi anunţă colegii şi aceştia se repliază “de luptă”. Un alt elev care ştie mai bine matematica cerută intră, face cât poate de mult din test, dar înainte de ieşire salvează imaginea cu toate problemele. Acestea ajung la toţi colegii, care le pregătesc cu grijă înainte de a intra pe platforma respectivă, asigurând marea masă a colegilor cu note bune, dar false. Vă las pe dvs. să stabiliţi ce a greşit profesorul care a organizat toată treaba şi cum a contribuit cu această acţiune la dezvoltarea capacităţii elevilor de a fenta, de a fi necinstiţi, până la urmă de a-şi imuniza sufletul la actele de minciună şi de furt.

Ecouri la Simularea EN din martie 2019 – Interviu cu Radu Gologan

Odată cu anunţarea rezultatelor la dubla Simulare la Evaluarea Naţională de anul acesta s-a pornit din nou cunoscutul „scandal”: presa analizează şi strigă – în numele societăţii şi al părinţilor – iar marile peronalităţi răspund la întrebările puse în fel şi fel. Pe d-na Ministru Andronescu am auzit-o pe la toate buletinele de ştiri. Ce va ieşi din acţiunile preconizate de dânsa „om videa!”, cum spunea un filozof de rând, sau, cum spunea bunică-mea în situaţii de criză, „a fi cum a fi!”.

Interviul de pe Hot News cu dl. Profesor Radu Gologan de sâmbătă, 30 martie 2019, aduce câteva puncte de vedere neevidenţiate până acum în mod oficial şi merită analizat în câteva citate. Respectivul video-interviu luat de Andreea Ofiţeru, este de găsit la adresa https://www.hotnews.ro/stiri-educatie-23059411-video-interviu-iau-elevii-note-mici-matematica-profesorul-gologan-antrenorul-olimpicilor-predarea-trebuia-schimbe-masiv-odata-tehnologia-copiii-percep-informatia-altfel-decat-acum-40-ani.htm?cfathp

*

Matematica nu s-a schimbat şi nici nu e mai grea decât înainte, dar cu toate acestea notele copiilor la evaluările naţionale sunt mai mici. Care este explicaţia? Profesorul Radu Gologan pune declinul învăţării matematice pe seama faptului că predarea nu s-a schimbat masiv cum ar fi trebuit de fapt, date fiind tehnologia şi modul copiilor de a percepe informaţia altfel decât acum 40 de ani: „Asta îi face să respingă, în mare parte, lucrurile pe care ei le văd formale şi care pentru foarte mulţi nu au niciun fel de frumuseţe în legăturile lor cu realitatea”. Punctul nevralgic este, în opinia sa, că există „foarte puţină pregătire didactico-pedagogică şi foarte puţină didactică a predării matematicii” în cazul profesorilor.

Într-adevăr, de obicei pregătirea didactică a studenţilor nu este luată în seamă serios. Sunt foarte puţine licee în care studenţii trimişi de la Matematică să facă practică pedagogică sunt luaţi în serios. Dar nici pregătirea didactică a actualilor profesori prin diversele cursuri de formare continuă nu este luată cu adevărat în serios, nici de către formatori, dar nici de către cursanţi, care o tratează ca o simplă formalitate. Astfel, dl. Gologan spune explicit: Este o problemă de pregătire a profesorilor. (…) ducem lipsă de profesori tineri, care să continue o activitate care era un atu al educaţiei româneşti, profesori de matematică capabili să înţeleagă bine programa şi să o predea mai departe.

În acest interviu dl. Prof. Gologan începe cu următoarea idee: programa s-a mai simplificat un pic. Mai ales în ultima vreme încercăm să dăm nişte indicaţii autorilor de manuale în aşa fel încât manualele să fie mai aerisite şi să nu se insiste pe chestiuni foarte riguroase. Regăsim aici ideea despre care am atenţionat şi cu alte ocazii: stradania din partea autorităţilor este de a simplifica şi descongestiona materia de gimnaziu, cel puţin la clasele 5-6 unde avem deja şi manuale noi.

Iată cum vede Radu Gologan situaţia profesorilor din preuniversitar: Profesorii de matematică, pe care îi ştiu foarte bine acum, sunt o masă destul de speriată de ce vine de sus, de lucrurile formale pe care trebuie să le facă. Pentru că nu ministrul este cel care dă ordine ca birocraţia să crească. Ministrul se gândeşte să reducă birocraţia şi atunci vine cu câte o idee nouă care în loc să le distrugă pe celelalte vechi se adaugă la ele. (…) Astfel, dosarul catedrei a ajuns acum să fie plin de fişe de toate felurile.
Finalul interviului păstrează această linie: Dacă aţi fi ministrul educaţiei care ar fi prima măsură pe care aţi lua-o? Radu Gologan: Asta numai dacă aş visa. În primul rând, aş distruge birocraţia. Sunt convins că ar fi o luptă teribilă pentru un astfel de om care ar încerca să distrugă birocraţia din sistem, pentru că asta e cea mai rezistentă fiară din orice societate. Atunci când s-a instalat nu poţi să-i faci nimic. Poţi să fii ministru, cât de bun ai fi, eşti mâncat la prima posibilitate (cu prima ocazie).

Acestea ar fi câteva gânduri spicuite din respectivul interviu, cu câteva scurte comentarii punctuale. Recomand oricui să citească articolul integral, respectiv să asculte înregistrarea interviului, precizând că eu nu am preluat nici măcar un sfert din ideile expuse. Subiectul nu este nici pe departe epuizat, unele afirmaţii din acest interviu necesitând o aplecare mai detaliată şi mai profundă asupra afirmaţiilor în cauză, aşa că închei cu un clasic VA URMA! CTG

Suma lui Gauss şi alegerile europarlamentare după CTP

Joi 23 mai 2019, într-o emisiune înainte de alegerile europarlamentare din 26 mai, la postul de televiziune Digi 24, gazetarul Cristian Tudor Popescu a ţinut o scurtă lecţie despre Suma lui Gauss. Merită să urmăriţi pasajul respectiv la următoarea adresă https://www.youtube.com/watch?v=Gqr9OH8vWVQ (daţi contorul la momentul 6.30 şi urmăriţi până la 10.30, sunt doar 4 minute). TitussG.

Ecouri la Simularea EN din martie 2019 – Elevii nu pot sau nu vor?

Următorul text este preluat în mare parte din emisiunea România în Direct de luni 25.03.2019 de la Europa FM, emisiune moderată de dl. Moise Guran. Dacă preferaţii să ascultaţi emisiunea întreagă (cca. o oră), o găsiţi la adresa https://www.europafm.ro/programe/romania-in-direct/?utm_source=MENIU&utm_medium=link (accesaţi a doua înregistrare din ziua respectivă).

Moise Guran: 63% dintre elevii clasei a VIII-a nu ştiu cele patru operaţii simple aritmetice; astăzi îi analizăm puţin şi pe ei, pe copiii noştrii. La România în direct vă întreb: nu vor sau nu pot mai mult? S-au desfăşurat simulările pentru Evaluarea Naţională; pentru prima oară s-au dat simulări şi la clasa a VII-a, pentru prima dată s-au introdus şi grile la clasa a VII-a, … vă spun că e un stres atunci când se schimbă metoda de examinare, întotdeauna a fost, … examenele sunt din ce în ce mai uşoare, dar pe de altă parte rezultatele rămân într-o zonă în care te îngrozeşti de ce afli. … câteva pasaje din analiza domnului profesor Ştefan Vlaston publicată pe Adevărul.ro … cele patru operaţii. …. ştiţi că ele au o ordine de derulare pe care dacă nu o respecţi, rezultatul nu e cel bun;  … cum e posibil ca după opt ani de şcoală să nu poată face nişte operaţii simple. … Concluzia domniei sale este următoarea: şcoala nu se pliază pe cerinţele şi pe talentele elevilor, ci procedează invers: elevii să se plieze pe cerinţele şcolii. Aşa ceva nu e posibil, pentru că nu toţi elevii au aceleaşi resurse şi înclinaţii pentru diferitele discipline. Pentru că programa la matematică este prea stufoasă pentru majoritatea elevilor, 63% nu învaţă nici ce ar putea, cele patru operaţii elementare. Din acest motiv în Germania se despart încă din clasa a V-a, filiera teoretică de filiera tehnologică. La filiera tehnologică se pregătesc elevii care vor urma preponderent şcoala profesională pe o curriculă mult simplificată. În Germania 70% dintre elevi urmează şcoala profesională la recomandarea imperativă a profesorilor şi a psihologilor. … Haideţi să-i analizăm un pic şi pe copiii noştri. … sau, matematica aia nu ne foloseşte la nimic în viaţă?

Robert: din punctul meu de vedere, ei pot şi ei vor, numai că ei sunt mult mai adaptaţi, ei încearcă să se adapteze mult mai bine la situaţia prezentă mai bine decât vedem noi. Noi o vedem prin intermediul … cutumelor, prin intermediul vremurilor pe care noi le-am trăit.Copiii pot şi vor, numai că nu sunt lăsaţi, nici de către părinţi nici de către dascăli. Copiii vor să se adapteze la viaţă, să înveţe lucrurile care să-i ajute în viaţă, să-şi atingă scopurile pe care ei … Numai că şcoala nu-i ajută şi nici părinţii nu-i ajută în această idee … Ei se zbat, vin plini de curiozitate în prima zi de şcoală, … prin clasa a VII-a sunt vai de capul lor, pentu că nu li se dă ceea ce au nevoie. MG: spuneţi că ei resping şcoala asta, dezvoltă o aversiune faţă de şcoală? Robert: Da, pe de o parte, iar şcoala îi respinge pe ei. … din cauza demotivării. … ei sunt dornici de achiziţii, dar nu prin metodele învăţate la şcoală … soţia mea este învăţătoare, de cca. 25 de ani: materia care se făcea într-o săptămână, acum trebuie să se facă într-o zi; aşa cere programa. … copiii nu înţeleg de la şcoală, copiii muncesc, dar nu înţeleg …

Irina: … vina este împărţită între copii şi profesori … sunt copii foarte buni şi în general profesorii lucrează doar cu ei, ceilalţi nu sunt băgaţi în seamă. În momentul în care un copil nu este prea priceput … se râde de un copil care iese la tablă şi nu ştie … cine vrea poate; copilul meu – recunosc – nu vrea! Noi muncim ca să facem faţă examenelor (pentru clasa a VIII-a). Nu-i place, se cunoaşte că învăţăm această materie doar din obligaţie, pentru că avem examen. … MG: deci, matematica este un chin pentru copii. De ce matematica este un chin pentru copii? Trebuie să existe o explicaţie.

Florin: Vina este la programă; programa noastră este ca un meniu la o nuntă: nu poţi să mănânci tot la o nuntă, aşa şi cu programa şcolară. … Aşa copiii se suprasaturează repede, clachează, renunţă, şi asta o fac fiecare, depinde, în a 2-a, a 4-a, a 5-a. Degeaba predă profesorul materie tot mai complicată, dacă el a rămas tot la nivelul ăla. MG: Da, profesorul merge înainte cu o parte a copiilor, care reuşeşte să ia peste 5. Florin: Da, şi cu adevărat 20% din copii înţeleg cu adevărat materia…. Mi-e greu să cred că 30% din elevi ştiu în clasa a 12-a ce-i aia o integrală, nu să o rezolvi, că aia înveţi o metodă, ci ce-i întradevăr acolo. Problema-i cu materia, că este foarte foarte complicată. …Degeaba îl dai la pregătire în clasa a 5-a, că el le-a pierdut pe drum în clasa a 3-a, a 4-a…. Ce facem cu un elev al cărui părinţi nu are bani şi nici nu ştie să explice? Cu copilul trebuie să lucrez acasă. Dacă nu se lucrează, copilul va uita şi asta crează frustrare. … Normal că nu-ţi place matematica dacă tu nu reuşeşti, nu ai satisfacţia că ai reuşit singur să faci o problemă. Şi-aşa se-adună şi s-a blocat. MG: explicaţia dvs. este de tipul că “ ar vrea da’ nu pot, iar când nu mai pot, după aia nici nu mai vor, n-au de ce să mai vrea” …

Ana: … unul dintre copii eminent la matematică şi la celelalte; copilul al doilea în schimb, primii patru ani, practic şcoala primară, a evoluat excepţional; trecând în ciclul gimnazial am întâmpinat problema că profesorul de matematică, o doamnă, îi teroriza, nu ştia să le explice. Copilul meu nu mai învăţa la matematică. Venea acasă cu note din lucrări, o dată cu 2, o dată cu 10. Întrebând “care este nivelul fiicei mele?”, mi-a spus “nu ştiu doamnă, nu lucrează acasă, nu face, nu nimic, nu cutare, nu în sus, nu în jos. Dar în schimb, profesorul nu era de calitate. MG: Asta-i concluzia dvs.! Ana: între timp şi alţi părinţi s-au plâns la şedinţe; toţi spuneau că elevii vin acasă cu lecţiile neînvăţate (cred că vroia să spună neînţelese-CTG). … Profesorii nu ştiu să atragă elevii, să explice; matematica pe înţelesul copiiilor! Al doilea punct este că se lucrează foarte mult cu elevii care acasă reuşesc părinţii să-i ajute, să depăşească lacunele cu care vin de la şcoală, şi pe urmă profesorul lucrează doar cu cei care sunt pregătiţi. MG: deci dvs. spuneţi că profesorul la şcoală lucrează doar cu copiii care au înţeles de acasă materia. Ana: Da, şi vă spun de ce: în clasa a 7-a, văzând cum este, am început şi eu să dau copilul la meditaţii, la pregătire la o altă doamnă. Pentru că doamna profesoară de la şcoală, eu cred că făcea tendenţios lucrul acesta, pentru a merge copiii la dânsa în pregătire. Toţi cei care mergeau în pregătire, erau cu note superioare, ceilalţi nu, îi apostrofa în timpul orelor, îi făcea în toate felurile, idioţi, cretini, proşti, “ca şi părinţii voştri” (expresie: “nu puteţi pentru că sunteţi ca şi părinţii voştri!”) MG: Ana, ceeace descrieţi dvs. sunt lucruri foarte grave; n-aţi făcut şi dvs. o sesizare la direcţiune, la inspectorat … Ana: Credeţi-mă că îmi pare rău toată viaţa că nu am dat în judecată această profesoară, că nu am târât-o în tribunal, pentru că mi-a distrus copilul. Eu a trebuit să merg cu ea la psiholog, datorită acestei doamne profesoare. Mai mult de atâta, după ce am trimis-o la pregătire, a luat la capacitate 9.64. Deci, copilul meu nu avea probleme; problemele erau la profesoară, la cadrul didactic, cel care avea obligaţia … Acum este în anul 2 la facultate în exteriorul ţării. … Inclusiv şi programa şcolară este extraordinar de stufoasă şi, de multe ori, profesorul se plângea că el trebuie să-şi facă programa. Pe el nu-l interesează că copilul nu înţelege nimica, pentru că el are obligaţia să-şi facă programa. Aici este una dintre problemele majore. Păi, treci peste o lecţie când vezi că elevii nu au reuşit să asimileze absolut nimica. MG: E în felul următor: profesorul trebuie să găsească un compromis între viteza cu care se mişcă toată clasa – ştiţi cum se spune: viteza unei flote este viteza celei mai încete corăbii – pe de altă parte trebuie să meargă mai departe cu cei care muncesc mai mult, înţeleg mai mult, de care se ocupă părinţii mai mult, sau nu trebuie să meargă? E un întreg conflict acolo şi pentru profesor. … Cred că ar trebui cu toţi să recunoaştem că orele de matematică sunt un supliciu naţional pentru copiii noştri. Hai să întelegem de ce, şi care-i poate vina noastră a părinţilor? Sau poate a copiilor sau poate a profesorilor de matematică? Sau poate a programei? Hai să ne sfătuim.

Rareş: … este inevitabil: nu o să găseşti un părinte care să zică “copilul meu este de vină.”, pentru că şi bufniţa zice că puiul ei este cel mai frumos. … eu lucrez cu studenţi: este un dezinteres general … nu aş putea să dau cauza … este multifactorial. … este ceea ce transmite părintele copilului şi cum reuşeşte să-l motiveze … undeva se pierde. … MG: … la fel şi la matematică copiii memorează tot felul de exerciţii pe care sunt trimişi să facă tone de exerciţii acasă. Şi face şi face…, trebuie să le scuipe. În realitate nu-i ajută. Rostul matematicii, acela de a-i ajuta osatura raţională a omului, că ăsta e rostul matematicii, nu se mai produce în momentul în care copilul face mecanic nişte exerciţii, aceleaşi tipuri de exerciţii până-i intră în reflex. De ce? Pentru că nu mai trebuie să gândească ca să le facă! Rareş:  Da, dar făcând exerciţiile, având o bază serioasă, vei putea merge la matematica superioară. MG: Sau nu, pentru că nu toţi fac matematici superioare. În afară de asta, 2 + 2 se rezolvă cu un calculator; avem toţi telefoane celulare cu calculator? Avem! De ce trebuie să ştim chestiile astea? Rareş: Asta este generaţia nouă. Este poate un regres, sau poate un progres? Numai timpul ne va arăta. MG: Să nu ne arate prea târziu, despre asta este vorba.

Dana: Să stabilim de la început: sunt mămica unui “băieţel” în clasa a 8-a, sunt profesor de matematică şi predau într-o şcoală din mediul rural, unde copiii nu-şi permit meditaţii acasă. Punctul meu este că lipseşte motivaţia învăţării. Mă uit la băieţelul meu de clasa a 8-a. MG: Nu dvs. trebuie să le daţi motivaţia învăţării? Dana: Corect, aşa este. Poate (el poate, băieţelul, adică este capabil-CTG); vine acasă, îi explic “uite, mamă, de ce trebuie să învăţăm”. Merge la şcoală; vine: “m-am lămurit: nu mai îmi trebuie învăţat”. Ceilalţi, cei din mediu rural, singurul lucru care-l visează este să termine şcoala şi să plece în străinătate la muncă. Eu tot le explic, că-i mai uşor pixul decât sapa sau roaba sau statul la căpşuni, dar … Caut de ani de zile să-i motivez, nu am reuşit decât la foarte puţini. Şi familia are cumva un rol important, dar dacă mă uit la copilul meu pe care nu reuşesc să-l motivez foarte bine, că mi-l demotivează societatea cumva. MG: Cum îl demotivează societatea? Dana: Nu ştiu. Nu are exemple: “am ajuns vedetă, bogaţi fără multă carte” … MG: Matematica nu e cumva un joc? Copiii de azi nu sunt tentaţi de jocuri? Dana: Mă uit la elevi, cât de bucuros este cel care a înţeles şi cât de relaxat este cel care a scăpat de oră fără să-l întreb nimic. Pentru că l-am văzut că stă undeva acolo, şi este dezinteresat, l-am scos la tablă, a “pictat” ceva – ajutat de colegi, ca să nu-l pun în situaţia neplăcută de a nu şti. Într-adevăr, şcoala nu trebuie să umilească … dar în acelaşi timp există lucruri şi la matematică care trebuie reţinute. Părerea mea este că şcoala nu sprijină într-adevăr învăţarea. Copiii aceştia nu merg la meditaţie; eu trebuie la şcoală să fac în aşa fel încât să ia 5 cu ce muncesc eu la clasă. Vă daţi seama, satisfacţia mea şi a copilului care reuşeşte să ia 5 fără ore suplimentare. Am avut copii care au luat şi 10, dar aceia au fost motivaţi. MG: Motivaţi cum? Dana: Motivat, el personal, undeva în genă. MG: Studiile arată că ne naştem cu toţii genii, dar pe parcurs ne prosteşte societatea. Sau, mă rog, aproape toţi ne naştem genii, da’ pe parcurs … Dana: De ce sunt familii întregu unde toţi merg bine şi sunt familii întregi unde toţi trăiesc din ajutorul social? MG: Pentru că şcoala nu suplineşte în nici o formă acolo unde familia greşeşte; da, soscietatea noastră este o societate în suferinţă. Dana: Eu suplinesc acolo unde familia greşeşte, dar … MG: Eu am avut o relaţia bună cu matematica. Atât de bună, încât şi acum dacă cineva îmi dă o problemă de geometrie – cu geometria am rămas – nu mă pot abţine să nu m-apuc s-o rezolv. La vremea respectivă nu aveam foarte multe jocuri, poate. Poate am avut norocul eu de a da de nişte dascăli care ne predau matematica ca pe un joc. Aşa cum copiii astăzi mor de nerăbdare să se întreacă pe calculatoare la tot felul de jocuri, pe vremea aia ne întreceam la matematică. Ce-o fi fost în capetele noastre, nu ştiu. De ce copiii nu mai percep matematica ca pe un joc? De ce-i un supliciu, de ce-i un chin matematica? Dana: De ce? Pentru că deşi materia s-a redus la jumătate (am văzut întâmplător, zilele trecute, un subiect pe care l-am dat noi la clasa a 8-a, şi nu mi-a venit a crede: “am ştiut eu să fac asta în clasa a 8-a?”) … Eu mă străduiesc să fac matematica un joc. Cine nu mă lasă? Este cel care vine şi-mi spune: “Cum, Madam, aici eşti cu materia? Păi da’ dumneata trebuie să fi nu-ştiu-unde, păi, cum adică, nu te ţi de programă?” … trebuie regândită, astfel încât copilul să se regăsească acolo, să înţeleagă “la ce-mi trebuie mie volumul unui corp”.

Mihaela: Sunt mămica unui “băieţel în clasa a 8-a (CTG: şi asta cu “băieţel”? În a 8-a nu mai sunt băieţei!!! Nu m-am mai putut abţine, scuze!) şi a unui băieţel în clasa a 4-a. Despre învăţământul gimnazial nemulţumirile mele ca părinte sunt mari. Există un dezinteres total al profesorilor, sunt foarte multe subiecte ambigue. … Sunt de acord cu doamna dinainte; şi eu mă străduiesc foarte mult cu fiul meu din clasa a 8-a. Este foarte greu de motivat în condiţiile în care exemple … Ce am observat la băiatul meu? Am început clasa a 5-a undeva între 8 şi 9. În clasa a 6-a ne-au schimbat profesorul, ne-a venit un domn profesor de matematică al cărei familie trăieşte undeva în străinătate. O oră venea la şcoală, zece nu venea … MG: Staţi, staţi. Matematica este o chestiune esenţială şi trebuie învăţată, ca să n-ajungem toţi prim-miniştrii! Matematica ne areanjează pur şi simplu modul de a raţiona. Pentru a avea ordine “în casă”, asta-i matematica. Lumea nu înţelege, foarte mulţi nu înţeleg rostul matematicii. Rostul ei este să putem gândi “în capetele noastre”. … Mihaela: Nu s-a luat nici un fel de măsură.   Profesorul de matematică mi-a spus că el încearcă să predea “un alt fel de matematică”, pe care eu nu-l înţeleg …nu au teme la matematică pe motiv că legea le interzice … când vine la şcoală le predă căte 7-8 teoreme într-o oră, fără nici un fel de aplicaţie … ei în clasă nu acumulează nimic …MG: Cât a luat la simulare? Mihaela: 4,90. Calculele le face, dar la noţiuni de algebră sau la noţiuni de geometrie, mai dificile, deja suntem depăşiţi. Eu sunt conştientă că nu toţi profesorii sunt aşa, că am avut noi ghinionul ăsta. MG: Dar, nu vă daţi seama pe semestrul II, înainte de Capacitate. Mihaela: Dintr-a 6-a mi-am dat seama, numai că am ezitat să-l mut, … m-am gândit la integrarea lui într-un nou colectiv…

Monica: Şi eu sunt mama unui “băieţel”, băiat, deja are 15 ani în clasa a 8-a (CTG: No! Că în sfârşit  şi-a dat seama o mămicuţă cât sunt de penibile, cum nu sunt ele în stare să vadă că le-a crescut “puiuţul”). Eu zic că de fapt vina este a sistemului. MG: E prea uşor, na, na, nu merge! Sistemul suntem noi toţi, părinţi, profesori, şcoală, curriculă, ăsta e sistemul. Sistemul e ţara în care m-am născut, lăsaţi sistemul, haideţi să mergem mai aplicat decât atât. Monica: … Înainte era motivaţia “ai carte, ai parte”. MG: Şi acum nu mai e? Monica: Dacă te uiţi în jur, nu cred că mai merge aceaşi motivaţie pentru ei. MG: Dacă te uiţi la telvizor, nu. Dacă te uiţi în jur îţi dai seama că merge exact aceaşi motivaţie! Monica: Da, dar la vârsta lor ei asta percep, ce văd la televizor, ce văd printre prieteni. MG: Poate stau prea mult la televizor? Monica: Da, şi asta este posibil. Copiii sunt motivaţi până la urmă şi de profesorul care predă, de modul cum predă. MG: De la asta am pornit, nu vor sau nu pot, copiii noştri? Monica: Cred că şi una şi alta. MG: Mai întâi nu vor şi apoi nu mai pot? Monica: Da, da! Până când ajung la maturitatea aia să zică că “da, îmi trebuie” se acumulează, acele pierderi din clasa a 5-a. MG: În clasa a 5-a realizezi că ora de matematică e un supliciu, că nu înţelegi nimic din ce spune profesorul. Dacă profesorul este şi sever … Monica: Dar nu-i adevărat! De ce trebuie să fie aşa? E o generaţie nouă. Nu mai ajunge doar să scri cu creta pe tablă şi să ştergi, să înşirui o serie de formule, desene şi atât. Şi învăţaţi pe din afară. Facem cinci tipuri de probleme şi gata, s-a terminat ora de matematică. Au tablete, trebuie să le pui geometria în spaţiu să vadă 3D, există metode… MG: Ştiţi că geometria în spaţiu este o forţare a minţii. E ca şi cum i-ai spune unui fotbalist că poate să învingă într-un meci fără să alerge foarte repede. De ce? Deoarece se poate acum şi pe calculator să fugi şi gata. Monica: Nu-i aşa. Din moment ce tu faci materia ta foarte plăcută, îi dai elevului o finalitate practică, să vadă, să înţeleagă, o să înveţe. Copilul meu este bun la matematică şi tot ce înseamnă fizică, chimie unde vede practic la ce foloseşte, acolo este bun. MG: OK, nu zic că n-aveţi dreptate, nu zic nici că aveţi dreptate. Evident că adevărul e undeva la mijloc, aspectele se intersectează. … Sistemul suntem noi toţi, e imposibil să nu fie şi vina părintelui. …

Este extraordinar cum uneori se aliniază stelele şi intră în direct astfel de ascultători, care se completează atât de bine şi reuşesc să acopere în măsură atât de mare un subiect. Poate se întâmplă mai des, dar eu nu ajung decât arareori să ascult România în Direct, iar din aceste cazuri situaţiile care ne interesează apar poate o dată pe an. Oricum, sincere mulţumiri d-lui Moise Guran pentru această emisiune. Am lucrat câteva ore bune să o transcriu, pentru a asigura ideile şi valorile cuprinse în aceasta, dar nu-mi pare rău. CTG

Almdudler – Salutări matematice din Austria

Deşi vorbesc nemţeşte, nu am o preocupare prea frecventă prin ţările germane. Deseori ajung să mă întâlnesc cu spiritul german şi aici acasă. Cu un astfel de moment m-am confruntat în toamnă la Târgul de la Negreni, unde am găsit un pahar de Almdudler, o băutură nealcoolică (răcoritoare) făcută din diferite plante specifice zonelor muntoase. Dar nu pentru Almdudler am cumpărat eu acest pahar (se pronunţă alm-dudlăr), ci pentru însemnările de pe spatele acestuia pentru indicarea diferitelor cantităţi ce ar trebui vândute. Acestea sunt, de jos în sus: 2 cl, 1/8 l şi 0,25 l. Bănuiesc că este un pahar multifuncţional, adică în funcţie de vreme şi de vârstă: 0,25 l pentru Almdudler, 1/8 l pentru Jagertee şi 2 cl pentru Jägermeister (prietenii înţeleg ce vreau să spun).

Dacă 0,25 litri te-ai aştepta să găseşti şi pe un recipient mioritic, optimea de litru cât şi scrierea în trei sisteme diferite sunt total improbabile să fie imprimate pe un recipient românesc. Oare de ce??? (temă de gândire şi autoreflecţie) Apropos, putem da elevilor la testarea iniţială de la începutul clasei a VI-a să ordoneze în mod crescător cele trei mărimi (aranjate desigur în altă ordine).

Sau invers: puii de austrieci ies de pe băncile şcolii capabili să înţeleagă ce-i aia o optime de litru sau să înţeleagă că o optime de litru este jumătate din 0,25 litri? Cum fac ei şcoală, de vreme ce reuşesc asta, la ei nefiind stupid să fie scris aşa ceva pe un pahar? Cât despre centilitri, văd că se descurcă, deşi – pe de altă parte – ştiu că nu învaţă la şcoală supraunităţile intermediare până la kilo (deca- şi hecto-). Servus!

SCRISOARE METODICĂ 2019 (IV)

Autorităţile responsabile de conducerea predării matematicii şcolare au fost, probabil, sesizate că noua programă de matematică pentru clasele gimnaziale şi modificările aferente nu sunt percepute ca atare de către profesori. Astfel, cel puţin până acum, la clasele V-VI, matematica a ajuns să fie în multe cazuri chiar mai grea decât era înainte. Ca urmare s-a decis să se redacteze o scrisoare metodică prin care să se accentueze noua direcţie. Deşi în noua programă există nenumărate momente în care se cere profesorilor scăderea gradului de dificltate al acestei discipline la nivelul marii mase al elevilor, cel puţin pentru primele două clase ale ciclului gimnazial, se pare că există destule semnale ajunse până la Minister că profesorii nu au perceput, sau nu au priceput această nouă orientare, acţionând în viaţa de zi cu zi de multe ori contrar. Deşi pentru clasele V-VI se cere o predare mai intuitivă, există multe exemple că profesorii nu se pot debarasa “de la o zi la alta” de vechile obiceiuri, care pot fi clasificate în două direcţii: pe de o parte avem predarea înţesată de exagerări definiţioniste şi o ciudată vrie teoreticistă, pe de altă parte o preocupare excesivă pentru stressarea întregii clase cu probleme foarte grele, mult peste posibilităţile majorităţii, în numele forţării celor buni din clasă în vederea unei prezentări cât mai onorabile la concursurile şcolare.

Astfel, noua scrisoare metodică 2019 accentuează şi repetă aspecte din programă, dar aduce şi multe precizări lămuritoare pentru perceperea noii direcţii, cu care mare parte din profesori încă nu se pot adapta. Nu am pretenţia că eseul meu îi va convinge pe aceştia că într-adevăr s-a schimbat pardigma. Cred, mai degrabă, că există reale posibilităţi de a-mi stârni aprige duşmănii. Îmi asum însă acest risc cu gândul la ceilalţi pe care îi voi putea porni să depună totuşi o minimă preocupare în a înţelege cele redactate aici şi a face efortul de a citi cu mai multă preocupare noua programă şi gândurile exprimate în această scrisoare metodică (gânduri prezentate cam ciudat şi destul de alambicat).

Toate cele expuse până acum în primele trei părţi ale prezentului eseu “stau în picioare” doar dacă acceptăm (măcar parţial) ca adevărată istoria prezentată pe scurt în prima parte, cuprinzând cele cinci etape prin care susţin eu că s-a ajuns în situaţia actuală a predării matematicii şcolare româneşti. La punctul (1) vorbeam despre o luptă dintre metodişti şi teoreticieni. În cadrul reformei uitate din 1980, prezentată pe scurt la punctul (3), am arătat cum teoreticienii au ieşit învingători în această luptă, atraşi fiind de a se alia cu problemiştii întru folosul noilor cerinţe de la acea vreme exprimate de Ceauşescu, de creştere a nivelului rezultatelor la olimpiadele şcolare. Respectivele teorii le-am prezentat in extenso cu alte ocazii.

Ce argumente am în susţinerea acestui punct de vedere? În primul rând sunt amintirile din copilărie (am absolvit clasa a VIII-a şi împreună cu soţia mea facem parte din ultima generaţie care a învăţat pe vechile manuale şi pe vechea metodică). În paralel apar amintirile din liceu când asistam deseori la discuţiile părinţilor mei, profesori de matematică în Liceul din Or. Victoria, care dezbăteau acasă problematica predării şi absurdităţile cerute de noua linie.

Ca profesor am simţit că ceva nu este în regulă în forma învăţământului gimnazial pe care am găsit-o după absolvirea facultăţii (cam peste 10 ani) şi am vrut să mă las de meserie. După un an sabatic (mi-am luat un an de concediu fără plată 1995-96) m-am hotărât totuşi să rămân, iar de atunci caut soluţii de schimbare şi îmbunătăţire a predării. În căutările mele am găsit în multe lucrări urme ale acelui “război” dintre metodişti (tradiţionalişti) şi reformatori (teoreticieni modernişti). Îmi repugnă lucrările acestora din urmă pentru că le simt poziţia şi părerile rupte de orice legătură cu posibilităţile şi nevoile elevilor la diferitele vârste şcolare. Reiese din lucrările lor cum aceştia stăteau în “turnul lor de fildeş” universitar şi predicau, dând sfaturi şi impunând o modernizare teoreticistă, artificială şi egocentristă.

Dimpotrivă, mă atrag puternic lucrările metodiştilor, pentru că simt cum acestea mă încarcă spre folosul elevilor, mă ajută să fac pe zi ce trece ore tot mai frumoase şi mai atractive pentru majoritatea elevilor. Faptul că astfel sunt pregătit pentru a face faţă în mod onorabil noului val de elevi, având – în comparaţie cu generaţiile precedente – o atenţie tot mai scăzută, cu capacităţi de imaginaţie şi de concentrare tot mai reduse de la un an la altul, avariaţi fiind de folosirea tot mai intensă şi mai precoce a ecranului, tot mai multe ore pe zi, faptul că sunt pregătit pentru toate aceştia  mă bucură şi îmi dă energie pentru a le vorbi şi altor colegi despre această cale.

Dacă nu credeţi pasajul cu avarierea tot mai precoce a atenţiei şi a concentrării copiilor (acţiune iniţiată şi condusă de obicei chiar de către familie, desigur în mod inconştient), vă propun o imagine din seara asta, când redactez acest pasaj de text (23 martie 2019): conduceam seara către casă, când la un semafor, în maşina de pe banda alăturată am văzut cum o mamă, aşezată pe banchetă alături de scaunul special în care era un copil mic ţinea sus în dreptul tetierei şoferului (probabil soţul) un telefon inteligent în poziţie de ecran pe care se derulau scenele unui film de desene animate (scaunul copilului nu era fixat cu faţa în sensul direcţiei de mers, ci era chiar rotit oarecum cu 45o la stânga, aşac ă eu nu vedeam direct copilul). Este evident că mama respectivă făcea asta pentru ca copilul să stea cuminte, antrenându-l însă, de pe acum astfel încât să nu se poată concentra singur asupra peisjului de afară (clădiri, maşini, lumini şi oameni în semiîntuneric). Acest copil va veni peste câţiva ani la şcoală şi vom avea pretenţia să stea cuminte în bancă şi să fie atent şi să înveţe, fără o distracţie alertă ca în desenele animate. Iar peste încă şase ani, în gimnaziu fiind, vom dori să reţină definiţia proporţionalităţii inverse, de pildă, şi să o aplice corect, chiar dacă noi i-am dat-o cât de alambicat posibil. Oricum, în această paranteză fie spus, eu am convingerea că principala cauză a presiunii din partea societăţii asupra autorităţilor competente în stabilirea liniei matematicii şcolare, pentru simplificarea acesteia, îşi are sursă în starea tot mai avariată a atenţiei şi a capacităţii de concentrare a copiilor, cauzată de folosirea tot mai intensă a ecranului. Spun acestea cunoscut fiind efectul de slăbire a atenţiei, a concentrării şi a imaginaţiei ce îl aduce după sine folosirea excesivă a ecranului la vârstele formării acestor aptitudini, generând o adevărată stare pandemică de tip ADHD.

Haideţi să vedem în finalul acestui nou mega-eseu câteva din cele mai dragi mie citate din lucrările metodiştilor, citate care atestă existenţa luptei despre care v-am vorbit, o luptă acerbă, dar mocnită, ale cărei urme editoriale se găsesc pe parcursul anilor ’60-‘70. Este vorba de citate predominant din lucrările Profesorului Eugen Rusu, dar şi ale Profesorului A. Hollinger (ambii profesori metodişti la Universitatea din Bucureşti), care ating aspectele evocate în prima parte a acestui eseu, anume în punctele (1) şi (3) ale scurtului istoric al evoluţiei predării matematicii în România. Pe acestea le văd ca argumente în susţinerea celor exprimate adât de dur şi sec în scurtul istoric din prima parte. Prnim în acest sens cu câteva citate din Eugen Rusu. Să începem cu lucrarea Psihologia activităţii matematice (Ed. ştiinţifică, 1969) în care la pag. 72-73 găsim:

Din confruntarea între trecut şi prezent se constată că aspectul istoric al matematicii şi aspectul logic actual au, fiecare, caracteristici proprii prin care se deosebesc, uneori foarte adînc. (…) Să enunţăm, pe scur, principalele deosebiri.

Unde începe construcţia? Construcţia unei case începe cu temelia; cu atît mai solidă cu cît vrem să facem mai multe etaje. Într-o construcţie axiomatică, temelia o constituie axiomele, şi definiţiile; pe baza lor se construiesc primele teoreme; pe acestea toate, alte teoreme şi mai înalte etc. Dar opera de construcţie istorică, a acestui edificiu nu începe de la bază, ci de la mijloc; pe măsură ce unii oameni construiesc în sus, adăugînd noi teoreme, alţii construiesc în jos, spre temelie. De pildă, întîi s-a găsit teorema lui Pitagora apoi pe de o parte , relaţii metrice mai complexe bazate pe ea,pe de altă parte s-a mers spre fundamente, la teoreme care păreau evidente – cum ar fi că o latură e mai mică decît suma celorlalte două – care se stabilesc ferm. (Acesta) este un fapt foarte evident, dar asupra căruia se insistă (de către teoreticienii purişti) tocmai din cauza analogiei cu construcţia care-i face pe unii să creadă că trebuie început cu temelia. (…)

Dimpotrivă, Maurice Fréchet, profesor la Sorbona, afirmă: “Nici o ştiinţă nu s-a construit vreodată punînd apriori axiomele, fără legătură cu experienţa”. (…) Citîndu-l, a. D. Aleksandrov adaugă: “Menţionăm că unii formalişti contemporani uită acest lucru şi cred că este cel mai raţional să expună şi chiar să dezvolte teorii plecînd de la axiome care nu sînt precedate de nici un fel de analiză a conţinutului real pe care sînt menite să-l sintetizeze”.

Eugen Rusu accentuează aici parcursul istoric nu “de amorul artei”, ci convins fiind că – în majoritatea cazurilor – acesta este un model foarte eficient pentru organizarea materiei de predat în şcoli, avertizând printre rânduri asupra pericolului introducerii sistemului axiomatic de la prima parcurgere a materiei, pentru că aceasta n-ar avea nici un sens pentru elevi. De unde trebuie început pentru elevi? De acolo de unde a început istoric cunoaşterea.

Ceva înainte, la pagina 65, dânsul chiar precizase că: în geometria greacă preeuclidiană (…) accentul preocupărilor cade pe propoziţii care nu sînt evidente senzorial, care dezvăluie implicaţii ascunse, deci surprinzătoare şi emoţionante. (De aici, de la lecturarea acestui pasaj, cred că aveam eu ideea exprimată în urmă cu un an în seria de articole despre Criteriul psihologic al intuiţie în selectarea teoremelor de demonstrat, publicate pe acest blog în primăvara lui 2018).

Pasajul cu implicaţii ascunse, deci surprinzătoare şi emoţionante îmi duce gândul către toţi acei elevi cărora ajung să le predau şi care au deja atenţia distrusă, avariaţi fiind de ani şi ani de folosire abuzivă a ecranului de la vârstele cele mai mici: cum pot eu să le atrag atenţia la ora de geometrie, dacă nu vreau să recurg la o atmosferă de dominare poliţienească, prin care să-i ţin sub control fără frica notelor? Un răspuns posibil, o reţetă ce am găsit-o în aceste cărţi este chiar aici: structurându-le materia într-un mod cât mai palpitant (aşa cum sunt ei obişnuiţi din mass-media), vânând implicaţii ascunse, deci surprinzătoare şi emoţionante! Facem un salt la pag. 112-113 unde găsim noi dovezi ale războiului ce avea loc între tradiţionaliştii metodişti şi reformatorii teoreticieni:

Psihologul E. Fischbein arată: “Descoperirea adevărului matematic se realizează printr-un proces mintal constructiv în care observaţia, confruntarea, analogia, sinteza, experimentul joacă un rol tot atît de important ca în ştiinţele naturii. Metoda axiomatică nu ca un procedeu în sine, ci ca o verigă a mersului dialectic al cunoaşterii …”

Sublinierea acestor lucruri simple n-ar fi fost necesară acum 10 ani. Ea a devenit necesară astăzi ca reacţie împotriva poziţiilor înguste ale unora dintre modernizatori care au în vedere numai planul pur logic al matematicii. (…)

Pentru a înţelege următorul pasaj, îmi permit să rezum câteva din ideile exprimate de Profesorul Eugen Rusu în prima parte a cărţii. Astfel, dânsul subliniază că există două laturi ale matematicii. Pe de o parte avem matematica-proces, care în şcoală este responsabilă de formarea gândirii. Pe de altă parte avem matematica-rezultat, care în şcoală apare sub acumularea de cunoştinţe. În mod similar, construcţiile pur logice reprezintă o acumulare de gândire rece, seacă. Dimpotrivă, construcţiile intuitive reprezintă antrenarea de gândire vie. Atenţionez aici asupra legăturii evidente cu prima ţintă din scrisoarea metodică: Asigurarea calităţii educaţiei prin centrarea activităţii didactice pe proces, în egală măsură cu centrarea pe rezultate. Iată cum exprimă Profesorul Rusu aceste aspecte:

O primă amputare gravă constă în a lăsa la o parte matematica-proces, pe plan psihologic sau istoric, şi a avea în atenţie numai matematica-rezultat. O a doua amputare se face asupra acesteia (a predării matematicii), reţinînd în atenţie numai construcţiile pur logice, negîndu-le pur şi simplu pe acele cu o bază intuitivă. Se uită că “pur logic” nu există; că în procesul de construcţie a sistemului pur logic, omul care construieşte se lasă ghidat, cu sau fără voie, de modelul sistemelor care, deşi axate tot pe logică, au şi o bază intuitivă – şi tocmai prin aceasta se obţin construcţii logice a căror valoare depăşeşte calitativ şi adînc o construcţie artificială, pur arbitrară – în ipoteza în care ea ar fi posibilă. (…)

Cine uită, cine neglijează? Tocmai unii din cei mai înalţi specialişti, tocmai cei care au ajuns acolo sus, suind pe nişte ramuri pe care acum cată a le tăia de sub picioare. Şi care vor să impună (…) ca la toate nivelele învăţămîntului să se predea direct şi numai matematica strict logică.

Pedagogii îmbrăţişează cu interes, uneori cu căldură, ideea de a întregi învăţămîntul matematic, pe cît posibil, cu prezentarea construcţiilor pur logice. Ei se opun nu acestei includeri, ci limitării la aceste aspecte. Susţin modernizatorii extremişti că ceea ce e pur logic şi corect logic se poate înţelege. Iar pedagogii susţin nu numai că acest aspect este prea parţial faţă de bogatul fenomen al matematicii, util pentru cultură tocmai în complexitatea lui, ei susţin şi că aspectul logic, luat izolat, nu se poate înţelege. Se poate sau nu? (…)

Următorul citat este preluat din prefaţa lucrării Matematică modernă, matematică vie, de André Revuz (Ed. didactică şi pedagogică, 1970, pag. 3-4), din prefaţa cărţii semnată de Eugen Rusu, care este şi autorul traducerii.

Problemele învăţămîntului matematic nu au aceeaşi structură cu cele strict matematice. O demonstraţie matematică dacă e corectă, stabileşte un adevăr şi dă o convingere unanimă, de nezdruncinat. Argumentarea unei teze în domeniul unei problematici cu implicaţii de ordin psihologic şi social – cum este aceea a învăţămîntului – nu este de acelaşi tip. Enunţurile înseşi sînt aici mult mai bogate în nuanţe, valoarea lor fiind mai legată de ele decît de scheletul brut. Procesul de formare a convingerilor este şi el mai complex; criteriului logic i se adaugă şi criterii sau consideraţii de altă natură. În particular, frumuseţea expunerii trage, sensibil, în cîntar. Ceea ce e bine venit cînd ea se adaugă argumentelor de fond; ceea ce ar reprezenta şi un mic pericol dacă am lăsa ca ea să tindă a le înlocui.

Există în lucrarea de faţă, unele teze asupra cărora s-a căzut în general de acord, cum ar fi aceea privind importanţa şi necesitatea introducerii în liceu a noţiunilor fundamentale de matematică actuală – mulţimi şi relaţii, structuri. Expunerea de aici ne ajută să le înţelegem mai profund; în plus, ea nu se mărgineşte să arate această necesitate în abstract, ci indică sensuri şi metode efective de lucru.

Mai ales al doilea alineat stă dovadă ca exemplu asupra faptului că a existat clar o dispută legată de introducerea sau nu a noţiunilor moderne la acea vreme în matematica şcolară (aici se vorbeşte oricum despre matematica de liceu; introducerea mulţimilor în gimnaziu reprezintă un subiect colateral). În primul aliniat găsim clare, dar subtile “săgeţi” la adresa celor care criticau probabil faptul că matematica şcolară nu era abordată într-o formă riguroasă, cu axiome, definiţii adevărate şi demonstraţii complete. Astfel, profesorul Rusu avertiza că abordarea matematicii în învăţământul preuniversitar are un profund caracter emoţional, că este – la aceste nivele de vârstă – departe de răceala seacă a matematicii pure şi absolute, că este dominată în egală măsură de legile matematicii cât şi de legile psihologice, şi că trebuie acceptată ca atare. Evoluţia din anii ’80-’90 a predării matematicii şcolare arată că tabăra metodiştilor (cu Eugen Rusu cel mai vocal şi mai activ membru) a pierdut în faţa taberei universitarilor care doreau introducerea unor teme noi şi a metodelor specifice matematici pure în şcolile de masă.  Îmi pot închipui foarte bine disputele din acei ani pe acest subiect între Profesorii ”sânge pur” matematic şi metodiştii, cei ”sânge mâl”, pe culoarele Universităţii din Bucureşti (am folosit un limbaj colorat împrumutat din renumita serie despre Harry Potter, unde lupta are loc între vrăjitorii puri, copii din ambi părinţi vrăjitori, şi vrăjitorii priviţi de ceilalţi ca impuri, cei care au un părinte ”încuiat”, adică nevrăjitor. Analogia cu situaţia analizată aici este evidentă!).

Peste câţiva ani, pe când era clar că se porneşte această reformă, într-un ultim efort de a mai salva ceva, de a argumenta cum ar trebui să aibă loc predatul la ora de matematică, Profesorul Eugen Rusu a mai scos o lucrare magistrală: Problematizare şi probleme în matematica şcolară (Ed. didactică şi pedagogică, 1978). Îmi place acest titlu, mai ales a doua sa parte, cea cu probleme în matematica şcolară. Pentru a nu fi atât de evident că dânsul considera că sunt mari probleme în felul cum se schimba predarea matematicii, Eugen Rusu a cuprins în finalul lucrării un capitol de Probleme de matematică şi exerciţii de pedagogie pe marginea lor, parte care ocupă jumătate din carte, dând astfel titlului cărţii posibilitatea unei înţelegeri inofesnsive. Citez de la pag. 22-24, unde Eugen Rusu „analizează” noua line ce se prefigura, de preocupare foarte intensă spre rezolvarea problemelor.

(…) Acceptăm deci probleme gratuite, în primul rând pentru că sînt frumoase şi antrenante şi pentru că educă. Dar nu putem face din ele o ocupaţie exclusivă, un scop în sine; trebuie să avem în vedere că educăm nu pentru performanţe ci pentru viaţă; trebuie să acordăm mai multă atenţie acelor probleme care, pe lîngă rorlul educativ, tip sport, au şi calitatea de a deschide perspective, posibilităţi spre probleme ştiinţifice reale. Nu formăm un simplu sportiv; (…) Deci: şi probleme-sport, spre a-i cultiva calităţi psihice, dar şi o bază destul de largă şi solidă care să-i permită trecerea naturală de la sport la o muncă utilă sau de la o muncă utilă la o altă muncă utilă.

Îmi permit să intervin aici în citatul Profesorului Rusu, pentru a atenţiona asupra aspectului sportiv. Se prea poate ca anumite persoane să se fi simţit lezate de asocierea făcută în scurtul parcurs istoric din partea I a eseului între olimpismul matematic şi cel sportiv în politica lui Ceauşescu. Vedeţi că şi Eugen Rusu a atenţionat asupra acestui aspect, reuşind chiar să strecoare o frază destul de „inocentă” în cartea sa din 1978 (la 2 ani după nota 10 a Nadiei Comăneci).

Programa în linii mari. Liceul trebuie să asigure experienţa de gîndire a celor trei feluri de matematică: euristică, logică, aplicată.

În primul rînd, elevul trebuie pus în situaţia de a resimţi atracţia pentru problematic, de a afla lucruri noi, fără a avea informaţii nici din afară, nici de la propriile-i simţuri. Să se minuneze şi să se entuziasmeze pentru acest fapt. Să-şi dea seama că nu e o acţiune automată, că o problemă poate apare ca simplă post-factum, dar că ea poate rezista inexplicabil de mult încercărilor de rezolvare – prin aceasta să trăiască şi neliniştea cercetării, şi modestia şi curajul de a eşua provizoriu, şi satisfacţia succeselor.

Apoi, elevul trebuie să-şi dea seama – tot prin propria lui experienţă – ce înseamnă un raţionament logic bine articulat, ce înseamnă adevăr probabil, bănuit prin intuiţie, sau ghicit sau conturat prin schiţe provizorii de raţionament şi ce înseamnă a-l pune sub semnul dubiului pentru a-l stabili ferm sau, după caz, pentru a-l infirma. (…)

Problemele (atît cele propriu-zise cît şi cele care reprezintă problematizarea teoriei) au deci mai multe roluri care schematic s-ar prezenta astfel: A. Rol informativ -1. direct utile în practică; -2. necesare culturii generale; B. Rol formativ -1. exerciţiul gîndirii logice; -2. manifestarea atracţiei pentru problematic, educarea gîndirii creatoare. (…)

Problematizarea tocmai asta înseamnă: să nu avem în vedere numai rolul informativ, să nu ne mărginim la a furniza elevului nişte enunţuri şi nişte judecăţi gata aranjate. Să-l provocăm să le descopere.

Mai târziu în carte, la pag. 59-60, Profesorul Rusu ajunge la analiza prezentării axiomatice a unei teorii, combătând ideea includerii acestei linii în matematica şcolară (pe atunci se discuta în România despre introducerea formei axiomatizate doar la liceu; ulterior tendinţa s-a extins şi la gimnaziu).

Dacă în planul înalt al ştiinţei pure şi al filozofiei matematica nu este reductibilă la axiomatică – deşi procesul de axiomatizare are o valoare incontestabilă – iar rigoarea nu este absolută, cu atît mai mult în matematica şcolară trebuie pusă în valoare matematica vie – completă – trecerea de la o justificare la o demonstraţie mai riguroasă trebuie înfăţişată ca o problemă şi, amplificînd, trecerea de la o teoremă la un sistem de teoreme, cu structură axiomatică, ca o problemă mai întinsă.

Cînd lucrurile apar atît de clare încă din planul teoriei, mai este nevoie de experimentare, mai putem risca o experimentare ce costă atît de mult?

Vă rog să citiţi şi să recitiţi ultima frază. Profesorul Eugen Rusu nu putea să facă mai mult decât să avertizeze din tot sufletul asupra evitării acestui experiment. Care au fost rezultatele acestuia peste ani? Păi vedem acum, când ne străduim (ne căznim!) să reparăm ce se mai poate repara. Textul continuă:

O astfel de experienţă a fost făcută în Franţa (dar a fost mai mult sau mai puţin proiectată şi schiţată practic şi în alte ţări). Nu ne îngăduim să criticăm situaţia din afară, dar, şi în planul educaţiei, schimburile de idei în lume au devenit atît de active, încît putem cunoaşte aceste experienţe şi trage, pentru noi, unele concluzii. Avem în faţă două articole publicate într-o revistă de circulaţie (Renaud de la Taille, Math. „modernes” les risons logiques d’enterrer la réforme. În: Science et Vie, mars, 1972 şi Réformes des math.: pourquoi l’echec, în Science et Vie, noiembrie, 1973) (…)

„Axiomele nu dezvăluie adevăratul lor sens decît pentru acel care cunoaşte deja în mod temenic obiectele şi relaţiile unei teorii. Axiomatica nu este decît faza finală a unei teorii încheiate, cercetarea condiţiilor minimale din care decurge logic această teorie. Putem deci să ne ridicăm împotriva caracterului apriori al axiomelordate fără motivaţie în clasele elementare … . Nimic nu ne arată din faţa ascunsă a matematicii, din faţa intuitivă, inductivă, din tatonările care au condus la axiome. Stranie atitudine pentru un învăţămînt care se pretinde nedogmatic”.

Rezultatul? G. Choquet, profesor la universitatea din Paris, după ce mărturiseşte „am fost unul din promotorii reformei” spune textual „generaţia actuală a şcolarilor noştri va primi o formaţie matematică ce nu o pregăteşte nici pentru cercetarea matematică nici pentru utilizarea matematicii în tehnică”. Analog, D-na Lelong-Ferrand, prof. univ. Paris „un învăţămînt tot atît de îndepărtat de realitate ca şi de adevărata matematică”. În termeni şi mai alarmanţi, Acad. J. Leroy: „un învăţământ dement … pune în pericol tehnica şi ştiinţa franceză”.

Am amintit aici aceste articole (…) pentru acei – puţini – reformişti ai învăţământului, lipsiţi de un contact autentic cu el. Pentru cei care activează autentic în învăţămînt şi, în primul rînd, pentru cei care fac un învăţămînt axat pe problematizare, spre care toţi înclinăm în mod natural chiar înainte de a auzi de teoria pedagogică respectivă, argumentele decisive nu sînt nici în teorii, nici în experienţele altora, ele sînt oferite de faptele vii. A problematiza înseamnă a urmării cum elevul descoperă treptat implicaţii logice, teoreme şi cum, într-o fază superioară caută a le adînci şi sistematiza, înseamnă a stimula şi a sprijini acest proces de gîndire viu. (…)

Obiectivele noastre principale rămîn: a face pe elev să resimtă plăcerea de a descoperi implicaţii logice; a-l ajuta să-şi întărească gîndirea investigatoare şi gîndirea logică – prin exercitarea ei în condiţii favorabile.

Dimpotrivă, de la Reforma uitată încoace, majoritatea elevilor au fost împiedicaţi să-şi întărească gîndirea investigatoare şi gîndirea logică, prin crearea unor condiţii repulsive, exclusiviste la adresa lor, datorită preocupării învătământului matematic doar în direcţia elitelor. Această lucrare din 1978 este ultima semnată de Profesorul Eugen Rusu (despre care să am eu cunoştinţă). În 1978 au apărut noile manuale de Liceu iar în 1981 au fost introduse noi manuale şi în Gimnaziu. Din aceste lungi citate este clar că breasla matematicienilor nu poate spune că nu a fost avertizată despre consecinţele evidente ce vor avea loc în urma acestei reforme.

Profesorul A. Hollinger a fost un alt reprezentant de vârf al taberei metodiştilor care au pierdut acest ”război”. Superbele sale manuale de geometrie gimnazială au fost înlocuite cu unele de inspiraţie universitară, la trei ani după introducerea unora similare în liceu. La început pasul geometriei absolutist riguroase către liceu a putut fi suportat de către marea masă a elevilor inteligenţi, deoarece aveau bazele solid puse, în mod intuitiv introduse, adaptat vârstelor gimnaziale şi ideii de primă trecere prin această ştiinţă, de către manualele lui Hollinger. Când însă, s-a introdus o adaptare a geometriei absolutist riguroase şi în gimnaziu, de la prima trecere prin geometrie, atunci a avut loc o cădere masivă a înţelegerii acestei materii de către marea masă a elevilor. O situaţie similară a avut loc şi legată de procesul aritmetico-algebric.

După eliminarea manualelor sale de geometrie gimnazială, Profesorului Hollinger i s-a permis un ultim ”cântec de lebădă”, acea minunată culegere cu Probleme de geometrie din 1982. Iată cum începea prefaţa acestei culegeri: Lucrarea de faţă are ca punct de plecare o anumită idee despre predarea geometriei în şcoala generală. Care este această idee, Hollinger nu ne spune clar, pentru că ar fi trebuit să critice oficial linia noilor manuale.

Dacă la aritmetică şi algebră elevul mijlociu îşi însuşeşte cel puţin un minim de cunoştinţe şi este capabil să le aplice, sînt foarte mulţi elevi care nu se aleg aproape cu nimic din tot ce li se predă la geometrie. (…) Este evident că Hollinger se referea la manualele noi şi la linia de predare a acestora. Acest citat se potriveşte însă de minune şi ca o analiză lucidă a situaţiei actuale din clasele gimnaziale. Eseul de faţă nu-mi permite reluarea întreagă a acestei prefaţe, dar mă bazez că cititorul o va căuta şi o va lectura cu atenţie, mai ales prima pagină, care ar trebui să fie analizată de către orice profesor responsabil.

Starea actuală a matematicii şcolare, cu problemele ei grave, subliniate pe faţă sau printre rânduri şi de către scrisoarea metodică 2019, ne arată care a fost preţul plătit de societatea noastră în urma înfrângerii metodiştilor în acel “război” din anii ’60-’70, preţ plătit în numele absolutizării importanţei concursurilor şcolare. Repet pentru ultima dată: nu concursurile şcolare sunt de vină, ci absolutizarea importanţei acestora, subjugarea preocupării şi a atenţiei profesorilor doar acestui obiectiv.

Prof. C. Titus Grigorovici