Discuţii metodice despre predarea prin problematizare pe baza cărţii lui Eugen Rusu

De curând a revenit în preocupările mele lucrarea Problematizare şi probleme în matematica şcolară a Profesorului Eugen Rusu (Editura didactică şi pedagogică, 1978). În noiembrie 2015, fiind într-un context special, am şi scris o scurtă prezentare de carte despre aceasta; articolul poate fi găsit la adresa http://pentagonia.ro/prezentare-de-carte-eugen-rusu-problematizare-si-probleme-in-matematica-scolara/. Cartea este una dintre preferatele mele, eu personal având de mult preocupări în sensul “predării prin descoperire”, cum numeam eu acest tip de predare. Din primii ani de predare am simţit că aceasta este calea cea mai sănătoasă de a introduce o nouă temă de studiu în viaţa elevilor, că prin această modalitate îi pot conecta cel mai bine, atât emoţional cât şi intelectual, de noul subiect.

În toamna asta am început să o recitesc (după mai mult de zece ani) şi redescopăr cu bucurie gânduri şi idei la care am lucrat intens tot timpul la clasă, dar şi “idei noi”, aspecte ce nu le-am remarcat la precedentele lecturi. Însă, cel mai important este că observ interconectarea uluitoare a aspectelor găsite în această carte cu realitatea actuală din clasele mele (septembrie-octombrie 2023).

În prezentul eseu aş dori să discutăm câteva astfel de aspecte. De pildă, la pag.5, vorbind despre trecerea de la şcoala informativă la cea formativă, Eugen Rusu ne spune următoarele: Pentru a-şi îndeplini rolul de formare a omului, şcoala nu trebuie să pună pe elev în postura unui simplu receptacol de cunoştinţe statice, gata sistematizate; trebuie să-l stimuleze să gîndească şi să lucreze prin eforturi personale. Eforturi personale stimulate şi organizate prin problematizare: în loc de a da soluţii, a-l pune pe elev în situaţia de a le descoperi.

La pag.24 autorul reia ideea. Problematizare tocmai asta înseamnă: să nu avem în vedere numai rolul informativ, să nu ne mărginim la a furniza elevului nişte enunţuri şi nişte judecăţi gata aranjate. Să-l provocăm să le descopere. (…) Până le învaţă, toate chestiunile de matematică aplicată sînt probleme de cercetare, probleme euristice. (…) Elevul însă pînă stabileşte acele formule şi pînă ce transformă nişte activităţi în deprinderi, nu lucrează automat (…).

La pag. 28, autorul revine stăruind asupra exercitării regulate a gândirii creatoare, axată pe probleme în care raţionamentul nu este dat ci trebuie găsit, iar găsirea lui nu se face prin simpla aplicare a unor metode învăţate (…).

Cu alte cuvinte, noi nu ar trebui să le dăm elevilor din startul lecţiei un set de cunoştinţe sau reţete gata aranjate, căzute oarecum “din cer”, aidoma unor porunci din partea zeilor (profesorul jucând desigur rolul de “preot” al zeilor matematicii :). Dimpotrivă, noi ar trebui să-i îndrumăm pe elevi pe un drum de “descoperire” a noilor cunoştinţe, desigur în mod intuitiv pentru început, un drum de discuţie şi dezbatere, în acest fel elevii ajungând la o conectare mult mai intimă cu respectivele cunoştinţe, la o înţelegere reală însoţită de o convingere profundă a celor descoperite în final. Mai presus însă de învăţarea fiecărei lecţii, elevii învaţă astfel să gândească matematica, nu doar să reproducă nişte cunoştinţe sau să aplice orbeşte nişte reţete sau formule.

Pentru că în cazul matematicii negândite personal, ci pur şi simplu preluate (şi scrise în caiet) de la o prelegere simplă a profesorului de matematică sau dintr-o prezentare pe scurt dintr-o carte, ambele – atât cunoştinţele cât şi reţetele şi formulele – sunt de obicei neînţelese în profunzime Marea majoritate a elevilor nu au capacitatea de a prelua prin înţelegere cunoştinţele dintr-un text, fie acesta scris sau chiar şi vorbit (pentru că – da! – mulţi profesori predau de fapt în “texte vorbite”).

Aşadar, odată cu faptul că elevul învaţă să gândească matematica datorită activităţii de problematizare, prin extensie, ora de matematică îşi îndeplineşte totodată şi rolul cel mai înalt, anume să-l înveţe pe viitorul adult SĂ GÂNDEASCĂ! În acest sens Eugen Rusu ne dă din start un citat edificator: Mai degrabă un cap bine construit decît unul plin. Montagne (pag.3)

De abia după descoperirea respectivelor cunoştinţe profesorul trebuie să facă o rezumare a acestora (cel mai sănătos ar fi să o facă ora următoare, oarecum ca un fel de recapitulare). Odată făcută aceasta, elevii trebuie apoi îndrumaţi pe o cale de “automatizare” a aplicării respectivelor cunoştinţe, reţete, formule. Deci nu ar trebui să înlocuim “reţetarea” (practicată la ora actuală de majoritatea profesorilor), să o înlocuim cu “gândirea”, ci să le facem cu elevii pe amândouă, desigur în ordinea naturală: mai întâi cunoaşterea prin gândire, apoi generarea de deprinderi pe baza reţetelor deduse. Matematica este compusă din ambele aceste două faţete, atât gândirea brută, cât şi apoi aplicarea automată a unui reţetar de cunoştinţe.

În plus faţă de ce ne spune Profesorul Rusu, noi personal, în familie, am conştientizat toamna aceasta că există unii elevi – uneori chiar din cei buni la matematică – care înţeleg să se bazeze doar pe gândire şi refuză să facă şi al doilea pas, cel de exersare intensă pentru formarea automatismelor (poate din comoditate, din lene?).

În discuţia de faţă doresc să vă prezint cum aplic eu aceste idei – cu accent pe prima parte, neglijată la ora actuală – în predarea formulelor de arie ale principalelor figuri poligonale (triunghiuri şi patrulatere) în cadrul unei lecţii din toamna clasei a 7-a. Menţionez că lecţia respectivă o predau în acest mod încă din anul 2000!

*

Astfel, pentru a nu-l pune pe elev în postura unui simplu receptacol de cunoştinţe statice, ceea ce foarte multe cărţi sau profesori fac, dându-le formulele de arie în forma lor finală, gata “pre-gătite”, numai bune de aplicat, eu dezvolt împreună cu elevii un drum de cercetare pe parcursul căruia îi provoc cât mai mult să gândească şi le descopere singuri. Precizez că tot ce urmează se întâmplă într-o singură oră (mult mai relaxat în două ore, dar atunci neapărat legate, adică nu de pe o zi pe alta), deci neavertizat dinainte, astfel încât să eliminăm din start posibilitatea ca un elev să le cunoască de acasă şi desigur să “trântească” formula în faţa clasei, anulând astfel starea de “cercetare”, adică forţarea gândirii în căutarea soluţiei de către colegii săi. Dacă totuşi se întâmplă ca un elev să ştie o formulă, chiar şi aşa – redusă ca intensitate – faza de cercetare poate rămâne sub forma simplificată: Ok, şi cum putem demonstra această formulă? (poate cineva “a avut grijă” să-i arate aceste chestiuni “din timp”, sau poate chiar elevul respectiv a avut un puseu de curiozitate şi le-a căutat pe net; mizez pe ideea că nu le caută în timpul orei pe telefon – la noi telefoanele se strâng la începutul zilei şi stau într-o cutie).

După cum veţi vedea, pentru a veni în întâmpinarea nevoilor naturale ale predării prin problematizare, trebuie desigur să stabilim o altă ordine de parcurgere a elementelor din lecţie, decât cele ce se găsesc programă, în manuale sau în diferite auxiliare (de pildă mai întâi triunghiurile, apoi patrulaterele). Întotdeauna lucrurile au fost descoperite în altă ordine decât sunt acestea ulterior sistematizat prezentate în manuale, iar noi trebuie să ţinem cont de acest fapt atunci când îi îndrumăm pe elevi pe “un drum de cercetare”; cele două categorii pur şi simplu nu pot fi suprapuse în aceeaşi ordine.

Lecţia porneşte cu reactualizarea celor două formule cunoscute din clasa a 5-a, inclusiv a principiilor pe care acestea se bazează (se şi poate pune un subtitlu de felul formulele de arii “iniţiale”; chiar şi acestea vin împreună cu raţionamentul de deducere). Această reactualizare o fac eu personal, ca să mă asigur că imprim lecţiei “o linie şi o viteză” de parcurgere corespunzătoare, la care apoi elevii se aliniază, intrând ulterior şi ei în mersul lecţiei, formând astfel un dialog de generare a celorlalte formule. Astfel, începem cu: 1) Dreptunghiul. La acesta pornesc prin prezentarea unui hol dreptunghiular în care se pune gresie şi în care încap 7 plăci pe lungime şi 4 plăci pe lăţime (în caiete elevii desenează un dreptunghi de 7 pe 4 pătrăţele). Din start elevii se implică cu rezultatul de 28 de pătrăţele, iar eu scriu liniştit totul pe tablă, consemnând mai întâi aria de 7·4 = 28, în timp ce oral spun că avem “patru rânduri de câte şapte plăci”. Apoi, dedesupt scriu generalizarea, adică formula A□ = L·l (lângă litera mare A de mână semnificând aria pun jos un dreptunghi pentru o fixare cât mai vizuală). Urmează 2) Pătratul. Faptul că acesta este al doilea se bazează clar pe observaţia că pătratul este un caz particular de dreptunghi. Totuşi, chiar dinainte de a cunoaşte oficial aria dreptunghiului în finalul clasei a 5-a, elevii au apucat să cunoască numerele pătrate, acolo unde eu le-am desenat aceste numere în structuri pătrate de punctuleţe, astfel încât să înţeleagă de ce la puterea a doua pronunţăm “la pătrat”. Cu alte cuvinte, formula de arie a pătratului se deduce atât ca un caz particular al formulei dreptunghiului, cât şi oarecum separat de la numerele pătrate. Din start am desenat un pătrat cu latura de 5 (elevii pe caiete un pătrat cu 5 pătrăţele pe latură), după care scriem atât în cazul particular, cât şi general, cu latura notată cu a, astfel: A = a2 (lângă A mai jos un pătrăţel).

Urmează formulele noi pe care trebuie să le deducem împreună (eu chiar scriu un astfel de titlu intermediar de felul Formule deduse). Traseul de parcurgere al acestora este stabilit în funcţie de uşurinţa de deducere a acestora, într-un proces de creştere a dificultăţii intuitive vizuale. O caracteristică interesantă este faptul că, faţă de primele două figuri formate doar din laturi orizontale şi verticale, toate cele care urmează au şi laturi oblice (dar asta nu le-o spun copiilor; cel mult o putem observa în final). Astfel, drumul nostru continuă cu 3) Triunghiul dreptunghic. Aici eu desenez pe tablă un triunghi cu cateta orizontală de 7 şi cea verticală de 4 (este evidentă strădania de a-i ajuta pe cât mai mulţi să observe pasul ce trebuie făcut) şi îl colorez fin cu latul cretei, dându-i o “textură de carton”, pentru ca elevii “să simtă” cât mai bine forma acestei figuri, cât şi noţiunea de arie.

Fac aici o pauză în descrierea lecţiei. Încă din clasa a 5-a eu îi obişnuiesc pe elevi cu acest tip de predare, în care eu spun ce spun şi brusc mă opresc sub forma unei întrebări: “aici cum merge mai departe”. Ca urmare, în clasa a 7-a elevii sunt deja obişnuiţi şi primii se şi oferă să zică, ridicând mâna şi anunţându-mă vocal că “ştiu!”. Îi ţin puţin în aşteptare astfel încât să apuce şi alţii să se concentreze şi să vadă ce-i de făcut, apoi aleg un elev care să spună. Este clar că acesta este jumătate din dreptunghiul de mai sus. Eu completez figura cu încă un triunghi trasat cu linie întreruptă (de fapt doar catetele acestuia) ca să vedem toţi acest fapt, după care putem scrie şi forma din cazul particular (cu rezultatul 14), cât şi forma generală. Aici, înainte să scriu formula precizez că lungimea şi lăţimea de la dreptunghi îşi schimbă denumirile în cateta1 şi respectiv cateta2.

Următoarea figură aleasă în acest parcurs este: 4) Paralelogramul. Pe acesta îl desenez cu baza de 7 pătrăţele şi înălţimea de 4, dar decalată cu 2 pătrăţele “la dreapta” (şi îmi iau timp să le explic clar elevilor, astfel încât să aibă şi ei figuri clare în caiete). “Oare, aici cum procedăm?” (uneori nu spun nimic, ci mă întorc cu un gest sugestiv şi cu ochii mari către clasă). Poate aici este prea devreme, sau poate mişcarea necesară este încă surprinzătoare la acest moment, dar uneori totuşi cineva “vede” ce-i de făcut şi mă cheamă timid la bancă să-mi arate ce idee a avut. În final prezint eu oricum mişcarea la tablă: trebuie să “decupăm” triunghiul din stânga determinat de înălţime şi de latura oblică (cu cele două pătrăţele din bază) şi să-l alipim în partea dreaptă a paralelogramului, formând astfel un dreptunghi ca cel de mai sus, deci cu aria de 28 (aici, fie haşurez întregul paralelogram şi las “imaginaţia” elevilor “să-l vadă” transformat în dreptunghi, fie haşurez doar triunghiul mic şi “îl direcţionez” cu o săgeată în noua poziţie, trasată desigur cu linie întreruptă). Deducem de aici formula cu denumirile adeptate noi figuri: B·h (de obicei deducerea o fac eu la tablă, dar am convingerea că cei mai mulţi au înţeles, datorită feţelor luminoase şi pline de entuziasmul descoperirii).

Figura următoare este 5) Triunghiul oarecare. Aici entuziasmul creşte pentru că se întrevede repetarea mişcării de la triunghiul dreptunghic (cu greu îi mai pot opri pe cei care observă aceasta). Respectăm totuşi “protocolul lecţiei” şi trasăm cu linie întreruptă partea a doua a paralelogramului din care suprafaţa triunghiului nostru reprezintă doar jumătate. Aici nu se mai schimbă notaţiile, aşa că figura îmi este de obicei dictată de către un elev (eu trbuie să fiu doar atent la elevi şi să-l aleg pe unul care n-a răspuns până acum; se vede clar pe ochii lor cei care au înţeles şi ştiu ce urmează să scriem). Apropos de “protocolul” instituit de la început, de obicei la acest moment elevii abandonează ideea efectuării mai întâi a calculelor pe cazul particular şi doar apoi a formulei generale, dictând direct formula (iar eu nu-i opresc).

Deducerea următoarelor două este tot mai grea, dar ne putem totodată baza şi pe faptul că elevii au acumulat “oarece experienţă”. Aşadar, trecem la 6) Rombul. Aici construim mai întâi centralizat toată clasa un romb în “poziţia balerină”, adică în jurul crucii formată de o diagonală verticală (cea mai lungă) şi o diagonală orizontală (cea mai scurtă), trasate cu linie întreruptă şi înjumătăţindu-se una pe cealaltă (poate unii elevi au chiar nevoie să li se spună câte pătrăţele fiecare). Cel mai bine să şi haşurăm suprafaţa rombului finuţ. Apoi urmează căutarea formulei prin procedeul problematizării: “oare cum o fi aici?”. La această figură elevii pot deveni creativi pentru că au deaja experienţe în domeniu. Unii iau două triunghiuleţe din jumătatea de jos a rombului şi le alipesc lângă jumătatea de sus, generând un dreptunghi cu baza cât diagonala orizontală şi înălţimea cât jumătate din diagonala verticală. Alţii fac acelaşi lucru dar din stânga în dreapta. Mai şunt apoi şi cei care văd că rombul poate fi încadrat într-un dreptunghi cu lăţimea orizontală şi lungimea verticală, care se formează prin adăugarea în exteriorul rombului a încă patru triunghiuri congruente cu cele patru sferturi ale rombului. Oricum o iei, toate duc până la urmă la aceeaşi formulă, deşi cei care au văzut ultima variantă se pare că reuşesc cel mai des – la vârsta asta, cu experienţă algebrică redusă – să verbalizeze clar formula: A = d1·d/2, chiar dacă de fapt iniţial sub forma L·l /2 , aşa că trebuie din mers să-i rugăm să o dicteze cu elemente ale rombului, nu ale dreptunghiului. Desigur, oricând pot apărea şi alte explicaţii: anul acesta un elev a decupat jumătatea de jos a rombului şi a alipit-o alături de cea de sus, transformând suprafaţa într-un paralelogram (merge şi aşa; ce frumos!).

Finalul formuleleor mai dificile îl reprezintă 7) Trapezul. Deja este clar demersul, astfel că elevii se pot apuca de lucru imediat ce avem toţi câte o figură “bună” în caiet: un trapez “scalen” înalt de patru rânduri (pătrăţele) şi la care ambele laturi oblice să aibă mijlocul în câte un nod al grilei de pătrăţele de pe foaia de matematică ( eu recomand baza mare de 9 pătrăţele, latura oblică din stânga cu piciorul înălţimii la două pătrăţele înspre dreapta, ca la paralelogramul de mai sus, iar baza mică de trei pătrăţele; astfel latura oblică din dreapta are o înclinaţie de 45o, ambele laturi oblice având mijlocul într-un nod de pătrăţele). Pe o astfel de figură se pot observa trei deduceri diferite ale formulei de arie (pe care – repet – elevii nici nu o cunosc de fapt, ei “bâjbâind” în înturneric ca într-o adevărată cercetare!). O variantă este cea de a dubla aria similar cu procedeele de la dreptunghi sau paralalogram, dublare făcută printr-un al doilea trapez congruent cu primul, ataşat în partea dreaptă cu “capul în jos”, obţinând astfel un paralalogram cu baza cât cele două baze ale trapezului însumate. Celelalte două variante se obţin pe baza mijloacelor laturilor oblice şi a liniei mijlocii, prin procedeul decupării unor triunghiuri din suprafaţa trapezului şi alipirea lor într-o altă poziţie. De pildă, se poate face o astfel de mişcare de două ori, în stânga respectiv în dreapta figurii, transformând trapezul într-un dreptunghi cu lungimea cât linia mijlocie; în mod similar se poate aplica doar o singură astfel de mişcare, transformând trapezul într-un paralelogram cu baza cât linia mijlocie. În unele clase apar doar două astfel de propuneri, în altele toate trei. Dacă apare doar una, atunci le mai prezint eu încă una pentru a le arăta clar ideea că întotdeauna pot apărea mai multe variante de gândire.

În funcţie dacă ne rămâne timp, dacă nu atunci sigur în ora următoare, în finalul lecţiei mai putem adăuga încă două formule destul de des folosite, pentru a avea un tablou complet pentru faza aceasta a cunoaşterii: 8) Rombul-(2). Această formulă apare atunci când desenăm un romb în poziţia tipică unui paralelogram. De vreme ce i-am obişnuit pe elevi să le sugerăm desene de o anumită formă prin numărarea pătrăţelelor, fără a da multe explicaţii putem şi aici să îi îndrumăm spre un romb cu latura de 5 pătrăţele în care noi am integrat cu ajutorul unei înălţimi “triunghiul egiptean” (cel cu catetele de 3 şi 4 şi ipotenuza de 5; dacă elevii “se prind” pe baza scurtelor experienţe pitagoreice din finalul clasei a 6-a, bine, dacă nu e bine şi aşa, treaba rămânând într-o stare de “magie” pe care ei eventual vor dori să o verifice prin măsurare a laturii oblice, tot de 2,5 cm (adică de 5 pătrăţele); astfel, există două romburi diferite care se pot construi aici; eu îl recomand pe cel mai ascuţit, cel cu înălţimea de 3 pătrăţele, care arată mai clar ca figura rombului din mintea copiilor). Aici elevii observă destul de uşor că trebuie să preia formula de la paralelogram; noi trebuie să le spunem că preferăm să schimbăm denumirea bazei în latură.

În final luăm şi 9) Pătratul-(2). Aici vom desena un pătrat în poziţia tipică pentru romb, adică pornind de la o cruce a diagonalelor trasate cu linie întreruptă, una verticală şi cealaltă orizontală, ambele înjumătăţite, dar desigur şi egale. Elevii vor observa şi aici foarte uşor “mişcarea”, singura provocare pentru cei buni fiind rescrierea în forma d2/2; pentru cei mai slabi provocarea va fi chiar să înţeleagă diferenţa dinte faptul că la romb apăreau 1 şi 2 scrise mai jos, ca indici, pe când la pătrat apare acel 2 lângă litera d, dar mai sus iar asta înseamnă la puterea a doua şi nu o prescurtare.

*

După cum am mai spus, pe lângă uriaşele avantaje în sensul înţelegerii şi a formării de gândire, acest tip de lecţie prezintă şi anumite pericole. Atât elevii slabi, cât şi mulţi elevi buni vor înţelege că de fiecare dată la calculul unei arii ei trebuie să aplice “procedura” văzută în timpul lecţiei, adică de pildă, la romb să-l înscrie într-un dreptunghi etc. Cei slabi la matematică vor înţelege că aceasta este o lecţie foarte grea şi complicată, dificil de aplicat în exerciţii, pentru că trebuie memorate toate acele “mişcări”. Dimpotrivă, cei cu o gândire bună se vor simţi “în zona lor de confort”, pierzând de fiecare dată timp valoros cu rededucerea formulei.

Cu alte cuvinte, atât pentru cei cu o gândire superficială cât şi dimpotrivă, pentru cei cu o minte ageră, dar leneşi, va trebui să facem şi următorul pas, anume să rezumăm lecţia respectivă doar în forma ei seacă, adică la fiecare figură studiată să le evidenţiem cele trei componente de bază: denumirea figuri + o figură tip simplă în care sunt trasate doar elementele ce apar în formulă + formula în sine, înrămată pentru atenţionare că aceasta trebuie ştiută pe de rost.

Fie în timpul lecţiei, fie la această recapitulare eu le dau uneori elevilor şi alte formule “colaterale”. Una dintre acestea ar putea fi 10) Triunghiul isoscel. Pe aceasta o fac ca un fel de “glumă matematică”, dar din motive clar justificate: de-a lungul timpului am avut ocazia să întâlnesc situaţii în care câte un elev s-a blocat la cunoscutele exerciţii de aplicat teorema lui Pitagora pentru calculul ariei unui triunghi isoscel, pentru că în lista cu formulele de arie nu se regăsea şi o formulă pentru această figură (avem pentru triunghiul oarecare, adică cel scalen, avem pentru triunghiul dreptunghic, dar pentru cel isoscel nu avem; vorbesc de prima fază de aplicare, pe triplete pitagoreice, când oricum nu le dau triunghiuri echilaterale).

Tot aici putem desigur să mai adăugăm şi 11) Triunghiul dreptunghic-(2), de fapt adaptarea de la triunghiul oarecare, atunci când triunghiul dreptunghic este desenat cu ipotenuza ca bază şi mai avem cunoscută şi înălţimea pe ipotenuză. Alteori elevii îmi cer şi 12) Deltoidul (la capitolul cu patrulatere eu parcurg şi această figură, chiar dacă nu este în programa oficială; deşi fără folosirea denumirii apar din când în când probleme cu deltoid în diferite culegeri).

Când şi cum trebuie făcută această rezumare, asta este în sine o mare problemă. Dacă s-a parcurs lecţia principală într-o singură oră, atunci nu cred că mai este timp şi pentru rezumare (vorbesc aici de o parcurgere cinstită la o clasă obişnuită, nu de o turuială în viteză în care profesorul întreabă şi tot el răspunde imediat, pentru o eficienţă temporală – asta sigur nu poate fi numită problematizare). În acest caz rezumarea cunoştinţelor poate fi făcută doar ora următoare, dar pentru asta trebuie să ne asumăm că fie le dăm ca temă aplicaţii la care unii nu vor înţelege că trebuie doar să aplice rezultatele (chiar dacă am înrămat fiecare formulă din prima lecţie), fie ne asumăm că la prima lecţie, cea cu deducerea formulelor, încă nu le dăm temă din aceasta (fie ne bazăm cu indiferenţă că de fapt cineva le clarifică lucrurile acasă).

Eu personal prefer această a doua variantă pentru că aşa mă asigur că toţi elevii au priceput cum se aplică această lecţie şi că de fapt este una din cele mai uşoare lecţii. O fişă bună cu o grămăjoară responsabilă de exerciţii de aplicat după rezumare va ajuta mult în acest sens. Pentru a nu cădea într-o banalitate extremă, aceste exerciţii ar trebui să apară amestecate faţă de ordinea din lecţie (“dificultatea” temei constând în sarcina de a alege de fiecare dată formula corespunzătoare); la fiecare formulă vor apărea cel puţin câte trei-patru din fiecare cu diverse aplicaţii numerice (de pildă, la cele cu fracţie şi câte una la care nu se simplifică în final).

*

Spuneam că forma predării prin problematizare prezintă pericolul că anumiţi elevi vor înţelege că astfel trebuie procedat în cadrul aplicaţiilor de la temă sau de la teste, aşa încât în finalul lecţiei parcursă prin problematizare trebuie să le dăm un rezumat al cunoştinţelor ce vor fi transformate în reţete, în formule direct de aplicat. Şi atenţionez că trebuie să le precizăm clar că acestea trebuie să le înveţe şi să le aplice ca atare.

Dacă nu facem acest pas, se pare că mulţi elevi de azi înţeleg în mod “docil” că trebuie să aplice de fiecare dată forma cunoscută în faza de problematizare, pentru că aşa au fost obişnuiţi de către cei dinaintea noastră. De pildă, ne putem aştepta ca învăţătoarea clasei să nu fi folosit o astfel de tehnică de dezvoltare a gândirii, ci să le fi prezentat întotdeauna cunoştinţele noi ca un simplu “cod de reguli”, ca nişte reţete despre care nu ne interesează de unde vin, ci doar cum le aplicăm (pentru că de fapt în asta constă matematica verificată prin teste). Într-un astfel de caz elevii vor percepe că şi aici trebuie să facă la fiecare problemă “ca la clasă”. În mod similar, la o clasă de a 9-a ne putem aştepta ca elevii respectivi să fi primit toată matematică din gimnaziu direct în formatul de reţetă, pentru a fi aplicată cât mai repede în exerciţii şi probleme (că doar asta se dă la examen).

Astfel, povestind dimineaţa la cafeluţă cu soţia mea, citindu-i ideile din cartea despre problematizare a lui Eugen Rusu şi povestindu-i despre întâmplarea cu anumiţi elevi care înscriau rombul într-un dreptunghi pentru a-i calcula aria, soţia mi-a spus că şi ea a observat un fenomen similar la formulele de calcul de gradul trei, unde anumiţi elevi nu le aplicau ca atare în exerciţiile date la test, adică nu le aplicau ca “formule de calcul prescurtat”, ci refăceau de fiecare dată calculul aşa cum fusese dedusă formula prima dată la clasă (prin problematizare), după principiul: decât să mai învăţ o formulă nouă mai bine nu! (pentru că oricum “toate se găsesc la ora actuală pe internet”, cum zic unii, adică “la un clic distanţă”); mai bine o deduc de fiecare dată, că îmi este uşor (aşa se manifestă lenea la elevii inteligenţi matematic).

Probabil că la vremea când Eugen Rusu scria acele rânduri, învăţarea formulelor ca atare era de la sine înţeleasă, dar acum trebuie să ne asigurăm că elevii primesc acest mesaj şi apoi să includem în predare şi faza de fixare a acestora prin aplicaţii elementare, şi astfel transformarea acestora în deprinderi, pe baza cărora elevul să lucreze automat. Constantin Titus Grigorovici

P.S. Căutând prin aparatul de fotografiat am găsit o poză cu tabla de la această lecţie din toamnă. Nu o consider neapărat o variantă perfectă, dar – împreună cu descrierea de mai sus – se poate forma o idee coerentă asupra predării prin problematizare la această lecţie (desigur că în poză nu apar toate acele momente de gândire şi de discuţie cu elevii, ci doar forma finală de pe tablă, ce se regăseşte şi în caietele elevilor).

Ataşez în continuare şi o variantă de tabel rezumativ cu formulele “curate”. Nici acesta nu este neapărat într-o formă perfectă, dar se poate înţelege despre ce am vorbit mai sus.

Legat de aceste poze trebuie să fac câteva precizări. În primul rând, este clar de ce formula triunghiului echilateral nu apare aici, ci vine mai târziu; la fel de pildă şi formula de arie a cercului sau alte formule cunoscute. Eu le şi spun elevilor că aceasta este doar o primă tranşă de formule, cele mai simple, şi că lista va continua.

O a doua idee este legată de linia mijlocie in trapez. Pe prima poză nu apare o demonstraţie la formula trapezului pe baza liniei mijloci, pentru că anul acesta am avut o parcurgere atipică, încercând să ajung rapid la anumite lecţii, dar neglijând altele (în toată starea de bulversare de pe urma grevei din vară). Astfel, atunci când am făcut lecţia cu arii, elevii încă nu cunoşteau linia mijlocie; am făcut-o ulterior, destul de repede, iar atunci am prezentat şi cum aceasta ajută la alte variante de deducere a formulei de arie a trapezului.

Despre excesul folosirii jargonului de specialitate (2)

Una din cele mai mari probleme ale şcolii româneşti, iar predarea matematicii este în elita acestui curent, o reprezintă adresarea profesorilor către elevi într-un limbaj mult prea elevat, înţesat de cuvinte sofisticate, străine lumii ce compune limbajul dobândit la nivel uzual şi folosit de elevi până la ora respectivă. Acest articol este scris ca un semnal de alarmă adresat tuturor acelora care exagerează în acest sens. Iată a doua parte a materialului strâns, cu precizarea că acesta creşte avântat chiar în timp ce lucrez.

Problema este una foarte veche în România. Eu o văd ca reprezentând situaţia “specialistului” care s-a întors de la studii, dintr-o “altă lume”, iar acum, aici, între oamenii de rând, îşi etalează “superioritatea” în fiecare moment prin folosirea unui limbaj din care cei din jur înţeleg un singur lucru: cât de deştept este acesta, deci cât sunt ei de proşti prin comparaţie. Este un fel de bullying intelectual subtil, dar eficient pe durată (“picătura chinezească”?). Unul dintre efectele clare este că şi alţii îşi vor dori să facă studii ca să ajungă “deştepţi” (ca să se poată şi ei “da deştepţi”), după care şi ei se întorc între oamenii de rând şi reiau ciclul.

Când am descris problema ca fiind una foarte veche în România nu am glumit defel: îmi pot închipui copiii de boieri sau din clasele superioare ce se întorceau după anii de studiu de la Viena sau Paris, cum vorbeau într-un limbaj în mare parte neînţeles de către cei rămaşi acasă. Fenomenul s-a păstrat şi în interiorul graniţelor ţării: ne imaginăm tânărul care “întră în pâine” după absolvirea studiilor şi care în domeniul său de specializare şi-a însuşit un limbaj specific, el putând comunica doar în acest limbaj. Problema este că deseori specialistul o face cu mare plăcere, simţind în timp ce vorbeşte admiraţia trezită în faţa celorlalţi.

Până în secolul XIX România nu a avut cu adevărat ştiinţe, deci evident că nu s-a confruntat nici cu nevoia generării termenilor de specialitate. Apoi, românii au preluat ştiinţele de la ceilalţi împreună cu termenii corespunzători, rareori termenii fiind înlocuiţi cu unii de producţie autohtonă. Fenomenul nu este unul tipic nouă; de pildă romanii au preluat aproape ad-literam din greacă foarte mulţi termeni de specialitate, aceştia fiind apoi trecuţi natural şi în alte limbi latine. Francezii au foarte mulţi termeni preluaţi din latină, care era pe vremuri limba activităţilor culte. Dimpotrivă, englezii sau nemţii, care s-au rupt de la o vreme de biserica catolică – total sau parţial – au dezvoltat încet o terminologie specifică, pe parcurs ce dezvoltau şi descopereau diferitele elemente de ştiinţă (desigur că au practicat şi împrumutul, dar mai ponderat). La noi însă – prin uriaşa dezvoltare a ştiinţelor din secolele XIX-XX – fenomenul a ajuns la cote inimaginabile, ducând la un comportament lingvistic năucitor.

Actualmente, acest limbaj împănat cu diverse cuvinte de specialitate a ajuns să penetreze multe din activităţile societăţii noastre. Dau aici două exemple întâlnite zilele acestea în traducerile televiziunilor de orientare mai ştiinţifică. Ţin minte că nu de mult, pe un canal din familia National Geographic, expresia “on the forest flor” a fost tradusă “pe litiera pădurii” (în legătură cu animalele ce trăiesc pe jos). Noroc că urmăresc şi sonor comentariul original, pentru că altfel n-aş fi înţeles despre ce este vorba (tradus mot-a-mot din engleză ar fi “pe podeaua pădurii”). De foarte curând, pe 30 iunie 2023, pe canalul Viasat History, într-o emisiune despre marea expoziţie itinerantă cuprinzând artefacte găsite în mormântul lui Tuthankamon, un reprezentant al firmei nemţeşti ce se ocupă cu transportul în siguranţă a acelor obiecte extrem de valoroase, explica despre procesul de mutare a acestora că  “das ist eine relativ lange Sache” (mot-a-mot tradusă: “asta este o treabă relativ lungă“); în traducerea de pe ecran a apărut că această activitate este “cronofagă“.

Am făcut această analiză a fenomenului, incluzând şi două exemple aleatorii despre felul cum fenomenul jargonului de specialitate penetrează viaţa noastră de zi cu zi, pentru a sublinia realitatea acestuia în toate domeniile în care ştiinţa se intersectează cu viaţa noastră. Elevii resimt desigur intens astfel de situaţii, matematica fiind una dintre materiile de vârf în acest sens. Mai ales în reforma începută prin 1978 în materia de liceu, o componentă de bază era reprezentată de exprimarea riguroasă, iar acest aspect a fost surprins magistral de realizatorii filmelor Liceenii prin porecla dată profesoarei de matematică: “Isoscel“. Un cuvânt extraterestru, pronunţat probabil cu multă emfază de profa de mate a dus la această poreclă (oare, careva din echipa de scenarişti chiar a avut în copilărie o astfel de situaţie?). Oricum, îmi pot închipui că situaţia din acele filme i-a mai liniştit pe mulţi profesori din avântul lor de a accentua prea teatral diverşii termeni de specialitate din lecţia de matematică (am descris cuvântul “isoscel” ca extraterestru, prin comparaţie de pildă cu “echilateral”, din care în româneşte mai înţelegi câte ceva).

Ideea pentru acest dublu eseu mi-a venit în urma lecturării unui articol din aprilie de pe republica.ro, scris de dl. Andrei Conţan, care începe cu o descriere nu tocmai măgulitoare a şcolii româneşti prin care am cam trecut cu toţii (chiar şi această parte ar merita o analiză temenică, dar las pe seama cititorilor treaba asta, subiectul respectiv îndepărtându-se prea mult de tema discuţiei noastre). Totuşi, destul de repede autorul vine cu un pasaj magistral ce ne duce direct în centrul subiectului limbajului împănat până la refuz cu cuvinte tehnice, în faţa cărora elevul nu are altă şansă de supravieţuire decât pura toceală, învăţatul pe de rost în formele sale cele mai brute şi extreme. Aşadar, iată citatul respectiv:

Am în minte că în clasa I am exersat la tablă propoziția „Ana are mere” cu presiunea de a mă ridica la nivelul așteptărilor bunicii, care profesa la aceeași școală generală.

Apoi, la finalul clasei a VIII-a, în lupta cu materiile ”de bază”, „Ana are mere” ar fi trebuit redat sub forma: „Ana este deținătoarea unui obiect sferic de natură fructiferă, clasificat ca specie pomiferă Malus, conform taxonomiei botanice, cu o compoziție chimică bogată în zaharuri, fibre și substanțe antioxidante, conform analizelor nutriționale efectuate.”

Iar la finalul clasei a XII-a, așteptările erau de a reproduce fidel texte de nivelul: „În lumina contemplației, se poate afirma că există o entitate numită Ana, iar această entitate posedă o manifestare fizică în formă de sferă comestibilă, cunoscută sub numele de măr. În esență, Ana și mărul sunt două aspecte diferite ale aceluiași fenomen, iar această dualitate poate fi percepută ca o iluzie a minții umane, care încearcă să distingă și să definească obiectele fizice din lumea materială. Prin urmare, există o legătură subtilă și interconectată între subiect și obiect, care poate fi explorată prin introspecție și contemplare profundă.”

Las aici o pauză de uimire şi de râs; puteţi reciti pasajul respectiv – Magistral! – pentru că descrie în mod fabulos şcoala românească (ad literam fabulos!, adică aidoma unei fabule). În plus, cel mai bine se înţelege o critică atunci când se vorbeşte despre alţii, nu despre persoanele de faţă, caz în care critica ar trezi impulsuri de apărare şi contraatac (în cazul de faţă critica fiind despre cei de limba română, nu despre noi, cei de matematică).

Cum putem schimba azi învățarea? se întreabă Andrei Conţan şi tot el începe să aducă şi anumite răspunsuri. Iată în continuare ideile selectate din acest articol, idei ce mi-au îndreptat atenţia înspre redactarea eseului de faţă (Gaspar Gyorgi a apărut ulterior cu explicaţiile sale):

Mă regăsesc acum, 20 de ani mai târziu, de partea cealaltă a „catedrei”, într-un mediu online sau hibrid, oferind cursuri de formare profesională viitorilor profesioniști în IT. Obiectivul e unul singur: ca participanții la lecție să înțeleagă în termeni simpli domeniul în care vor intra pentru a putea naviga cu mult curaj și curiozitate printre problemele de care se vor lovi. De 5 ani de zile de când lucrez sub această paradigmă (…) am observat schimbări remarcabile în rândul participanților:

Explicațiile simple sunt mult mai ușor de reținut și redat, şi îmbunătățesc astfel memoria.

Explicațiile simple i-au ajutat pe cursanți să se implice în activitățile de grup, iar informațiile devin identificabile și ușor de înțeles.

Explicațiile simple i-au ajutat pe cursanți la construirea încrederii de sine.

În IT, o abilitate tot mai rar întâlnită e ca angajații să fie capabili să explice o tehnologie sau un produs complex în termeni simpli, ușor de înțeles, nu pentru că managerul are nevoie să înțeleagă, ci ca dovadă că inginerul înțelege complet problema de care se lovește.

A cunoaște numele unui concept nu înseamnă că îl și înțeleg, (…) Prin simplitate în comunicarea noastră, am putut ajuta la înlăturarea barierelor și face conceptele tehnice mai accesibile unui public mai larg.

Pentru început, folosesc 3 idei de bază:

– În introducerea unui concept tehnic, evit utilizarea jargonului.

Evit termenii tehnici care ar putea fi nefamiliari. În schimb, mă concentrez pe utilizarea unui limbaj simplu, de zi cu zi, pe care oamenii îl pot înțelege cu ușurință. (…)

Simplific la maximum, inspirat de poveștile celebrului profesor Richard Feynman – „organizarea și simplificarea sunt critice” – repet procesul de simplificare până când obțin o poveste pe care o pot spune oricui ascultă.

Revin la tema de la începutul articolului: de prea multe ori, vrem mai degrabă să părem deștepți decât să învățăm. Aceasta este o oportunitate ratată de a învăța. Dacă ai o conversație cu cineva și acesta începe să folosească jargon pe care nu îl înțelegi, roagă-l să îți explice ca și cum ai avea 12 ani. Nu numai că îți vei supraalimenta propria învățare, dar o vei supraalimenta și pe a celorlalți. Chiar și pe a celui care îți vorbește.

Mai clar nu ştiu dacă se poate, sau altfel spus: “Congruent, adică egal prin suprapunere“! Recomand lecturarea întregului articol (îl găsiţi la adresa https://republica.ro/cand-folosim-cuvinte-pompoase-ratam-oportunitati-de-a-invata-cum-putem-facilita-invatarea-in-companii ) şi adăug aici alte câteva citate edificatoare:

Dăm din cap chiar și atunci când nu înțelegem despre ce vorbește cineva. Chiar și atunci când ne interesează tema. (…) În goana după recunoștință și validare, folosim cuvinte mari și complicate pentru a impresiona. Mesajul se pierde în traducere, întrebările clarificatoare nu sunt adresate de teama stigmatizării, (…) De prea multe ori, vrem mai degrabă să părem deștepți decât să învățăm ceva nou și folositor.

Vedem cum se regăseşte o idee şi la Gaspar Gyorgi şi la Andrei Conţan. Este vorba de observaţia că într-un domeniu de specialitate, absolventul specialist este prin natura specializării sale imersat într-un limbaj supraelevat, inaccesibil semenilor de rând, chiar celor cu care are apoi de interferat şi cărora trebuie să le aducă plusvaloarea studiilor sale. Practic, datorită limbajului dobândit, el este pus în situaţia de a nu-şi putea îndeplini în mod eficient menirea ce şi-a asumat-o prin studiile făcute. Iar dacă acest specialist nu are o doză bună de empatie, nu simte că vorbeşte “prea sus” în faţa celor din jur, de fapt nu simte că “vorbeşte cu pereţii”, atunci se ajunge în stări de felul celor descrise mai sus, anume că el ajunge cel mult doar să fie adulat de către “proştii” din jur, el nedevenind la rândui formator intelectual.

Plecând de la ultima frază exprimată putem deduce şi o altă consecinţă extrem de dăunătoare ce s-a dezvoltat în societatea noastră, anume faptul că cei din jur îşi vor forma această părere despre un specialist, anume că este un om “atât de deştept” încât “oamenii de rând” nici nu prea înţeleg ce spune. Astfel, din păcate, acesta ajunge să fie adulat de către “plebea” din jur, fiind deseori luat ca model comportamental. Şi “următorii” vor trage să-şi însuşească un astfel de jargon de specialitate, nu pentru a ajunge mari specialişti, ci doar pentru a fi şi ei adulaţi la rândul lor. Societatea noastră este înţesată de aşa-zişi “specialişti” care doar asta fac, să se împăuneze cu folosirea unui jargon de specialitate, cu citate înalte şi evocarea unor nume sonore (vă rog să observaţi ce veţi simţi în curând, atunci când voi veni cu un citat din Schopenhauer despre cum ar trebui să abordăm teorema lui Pitagora, ceva de genul: Uau, cel care vorbeşte de ăla “e deştept tare”, sau dimpotrivă, “se dă mare” în faţa noastră “aruncând” în jurul său cu astfel de nume pompoase).

Sunt clare şi absolut edificatoare ideile reluate mai sus. În mod special, ca o mică divagaţie, aş accentua puţin o idee interesantă din articolul mai sus evocat. Astfel, Andrei Conţan spune într-un anumit moment că: Explicațiile simple sunt mult mai ușor de reținut și redat. Și îmbunătățesc astfel memoria. Este evident că aici dânsul se referă la o învăţare raţională şi sănătoasă, nu la simpla toceală neînţeleasă. Când elevul se obişnuieşte doar să tocească, el se obişnuieşte automat ca să o facă pentru a o putea reda (la test sau la ascultarea din lecţia respectivă), dar tot automat se întâmplă şi fenomenul opus, anume că de fiecare dată el trebuie să uite rapid ce a învăţat înainte, pentru a face loc în memoria de scurtă durată elementelor din viitoarea lecţie. Este evident că astfel se antrenează doar memorarea papagalicească de scurtă durată, neglijându-se masiv memoria profindă şi logică. Dimpotrivă, în urma unor explicaţii simple, deci de înţeles şi uşor de redat, memoria logică se antrenează şi se îmbunătăţeşte. Ţin minte în acest sens nişte eleve de a 9-a “bune tocilare”, care nu reuşiseră să cuprindă într-o frază descriptivă cu sens următoarele trei elemente: 360o în jurul Ecuatorului; 24 de ore pentru o zi; 15o pentru un fus orar. Nefiind punctate la test, ele reproşau de zor că au stat până la 3 noaptea să înveţe, consumând mai multe cafele (la geografie s-a întâmplat asta). Păi, dacă nu gândeau, ce să le faci?

Dar să revenim spre final la matematica noastră. După cum spuneam şi în prima parte a eseului de faţă, calea de mijloc este probabil cea mai sănătoasă. Nici exagerarea folosirii jargonului de specialitate la clasă nu este în regulă, dar nici evitarea folosirii termenilor tehnici nu poate duce la ceva bun; elevii trebuie totuşi să le înveţe şi să le poată folosi până la urmă. De obicei totul se poate rezolva prin tact pedagogic.

Ţinând cont că Evaluarea Naţională în finalul clasei a 8-a este o examinare la nivel naţional (mulţi neavând parte de o predare strălucită sau de un deosebit tact pedagogic la clasă), EN fiind vitală şi decisivă pentru mase uriaşe de absolvenţi, este evident că autorii subiectelor ce se dau la această EN sunt foarte atenţi în exprimare. Astfel, putem observa o mare grijă pentru controlul jargonului de specialitate, prin evitarea oricăror derapaje ce ar putea fi ulterior reproşate de către mass-media, şi este foarte bine că se întâmplă aşa.

La fel de bine este şi faptul că în auxiliarele de pregătire a EN se pune accentul şi în sensul opus, pe încărcarea limbajului, pentru ca elevii să se înveţe şi să nu aibă surprize neplăcute la examen. Doar că această abordare este bună numai atunci când elevul se pregăteşte sub îndrumarea strictă a unui adult care se pricepe la aceste aspecte. Altfel, dacă n-are cine să-l iniţieze pe elev în folosirea limbajului extrem, acesta se sperie şi sigur nu mai învaţă, cel puţin partea respectivă. Dau aici un citat întâlnit în ultima perioadă pentru a fi clar înţeles la ce mă refer: Fie A şi B punctele de intersecţie a reprezentării grafice a funcţiei f cu axele Ox, respectiv Oy ale sistemului de axe ortogonale xOy, iar P mijlocul segmentului AB. Determinaţi lungimea segmentului OP. Nu vreau să susţin aici că acest text ar putea fi redactat mult mai scurt, dar observ că lungimea sa păstrând acel limbaj abstract timp de peste două rânduri îi face pe mulţi elevi să abandoneze ideea de a rezolva această cerinţă. Am şi alte exemple ce emană mult mai clar înverşinare în a-l prinde pe elev “în offside”. Ce părere aveţi de pildă despre exprimarea prismă dreaptă cu baza pătratul ABCD în loc de denumirea oficială de prismă patrulateră regulată? Mie îmi sună a îmbârligarea limbajului cu orice preţ.

Spuneam la început că materialul pentru acest eseu se adună în timp ce lucrez. Iată în final o idee sugestivă, care deşi nu are aparent nimic de-a face cu matematica, analizată mai profund se dovedeşte deosebit de potrivită aici. Citez în continuare din d-na Dr. Mihaela Bilic, medic nutriţionist care ţine emisiunea Frecvenţa gustului la Europa FM. În data de 23 iunie, într-o emisiune despre cum îi învăţăm pe copii să mănânce, dânsa spunea: Copilul trebuie să guste de mai multe ori dintr-un gust ca să se obişnuiască cu acesta. Este evident că acelaşi principiu se aplică şi la alte lucruri noi aduse în viaţa copilului, iar elementele de matematică, îndeosebi cele ce implică cuvinte noi, străine limbajului obişnuit al vârstei, şi mai ales la clasele mai mici, acestea trebuie introduse cu mult tact şi răbdare. CTG

P.S. În perioada când redactam acest eseu am participat la un curs Waldorf, unde am lucrat în grupe de lucru şi am audiat multe conferinţe (dar am şi ţinut un curs de desen geometric). Conferinţele au fost ţinute de diverşi docenţi din străinătate (Israel, Ungaria, Cehia, Germania, Franţa şi Maria Britanie). Am aici o observaţie din partea celor care au participat la grupul de lucru condus de docentul britanic, anume cât de mult au apreciat simplitatea felului său de adresare, de vorbire. Am remarcat şi eu modestia cu care dânsul vorbea, modul liniştit şi deloc pompos de adresare în conferinţa ţinută în plen (cu toţii erau reprezentanţi ai Cercului de la Haga, întrunirea internaţională a reprezentanţilor ţărilor în care funcţionează pedagogie Waldorf). Evitând tot timpul jargonul de specialitate specific pedagogiei Waldorf (da, avem şi noi aşa ceva, iar uneori este cvasi-inaccesibil), dânsul atrăgea automat auditoriul într-o stare de linişte, din care fiecare putea urmări clar ideile prezentate.

P.P.S. Din pură întâmplare sunt în posesia unui citat ce scoate în evidenţă starea opusă celor spuse în primul P.S., anume despre atitudinea de prezentare îngâmfată, fără intenţia de a te şi face înţeles de către cei pe care ţi-ai asumat să-i “luminezi”. Iată citatul (ce se referă, după cum am înţeles, mai mult la colaborarea de mentorare a unui coleg începător):

Ca să pot ajuta cu adevărat pe cineva, trebuie să înţeleg mai mult decât acesta – dar mai întâi trebuie ca eu să înţeleg ce a înţeles acesta. Dacă nu îmi reuşeşte asta, atunci ceea ce înţeleg, ceea ce ştiu eu în plus nu-i va fi de nici un folos.

Dacă ţin totuşi să dau relevanţă cunoaşterii şi inţelegerii mele suplimentare, atunci ţine doar de mândria şi de vanitatea mea, că nu vreau (că nu mă străduiesc) să-l ajut, ci că mai degrabă vreau să fiu admirat de către acesta (că mai degrabă ajung să-mi doresc să fiu admirat de către acesta).

Nu cunosc defel autoarea, dar dau totuşi sursa, aşa cum mi-a parvenit: Søren Kierkegaard, “Samlede Værker” (Opere alese), Kbh 1964, Vol. 18, Pag. 96-97.

Despre excesul folosirii jargonului de specialitate (1)

Una din cele mai mari probleme ale predării matematicii – şi nu numai – o reprezintă adresarea profesorilor către elevi într-un limbaj mult prea elevat, înţesat de cuvinte sofisticate, străine lumii ce compune limbajul dobândit la nivel uzual şi folosit de elevi până la ora respectivă (mult prea elevat, dar şi prea repede elevat). Acest articol este scris ca un semnal de alarmă adresat tuturor acelora care exagerează în acest sens. Noi trebuie să conştientizăm că nu sunt puţini aceştia care folosesc un limbaj “extraterestru” pentru vocabularului majorităţii elevilor, care au chiar ca una din liniile ghidante în meseria de profesor să vorbească în acest mod.

Analizând lucrurile la nivelul diferitelor trepte de şcolarizare, plecând de sus putem constata următoarele. La nivelul facultăţii de matematică reprezintă o normalitate folosirea unui limbaj tehnic cât mai elevat şi mai sofisticat. Acolo sunt matematicienii între ei şi se pot potenţa cât doresc în această direcţie (la fel în orice altă facultate cu limbajul specific ştiinţelor respective). Coborând în treapta a doua a liceului, la clasele cu bacalaureat la matematică, te poţi aştepta ca elevii să fi dobândit deja arta însuşirii rapide a unor noi termeni de specialitate; coborând însă mai mult, la primele clase de liceu, se simte că la acestea este nevoie de “puţin tact” în introducerea noilor termeni. Cât despre clasele gimnaziale, care oricum au în componenţă elevi de toate nivelele şi toate orientările intelectuale, aici folosirea inadecvată şi prea incisivă a unui jargon de specialitate devine profund dăunătoare, acţionând distructiv în direcţia tuturor celor care nu se întâmplă să fie “matematicieni pur sânge”. Această afirmaţie capătă un nivel de profunzime maximală în primele două clase gimnaziale, acolo unde avem combinaţia dintre elevi mici (care majoritatea n-au trecut încă în stadiul de gândire operaţională formală), pe de-o parte, şi profesori specialişti de matematică în locul blândei învăţătoare (profesorii venind cu impulsul puternic de a-i pune cât mai repede “pe linia” matematicii pe cei mici).

Aceste afirmaţii ajung la stadiul acut mai ales când ne referim la introducerea elementelor de geometrie în clasele 5-6, aceasta fiind o materie cu totul nouă (99,99%) faţă de ce cunoştea elevul până în acel moment. Mai ales dacă analizăm felul în care începem geometria, anume prin introducerea unei liste foarte lungi de elemente noi ce reprezintă însă doar structura figurilor geometrice, “partea atomică” a acestora, plină de cuvinte noi pentru copii, înţelegem cât de dramatică şi disperată este percepută situaţia de către majoritatea elevilor. Din punct de vedere psihologic, noi ar trebui să plecăm de la pătrate, triunghiuri şi cercuri, elementele cunoscute elevilor, pe care să le disecăm încet şi să ajungem la componentele acestora, la segmente şi unghiuri, şi la relaţiile dintre ele. Dar nu, noi începem de la componente – care nu au nici cea mai mică relevanţă pentru elevi – pentru că doar aşa ştim să predăm geometria, aşa se predă această materie din punct de vedere riguros ştiinţific. În acest proces însă, pentru cei mai mulţi geometria reprezintă materie care luni la rând aduce doar un şir aparent nesfârşit de cuvinte noi – fără nici cea mai mică relevanţă pentru elevul obişnuit, vocabularul de specialitate crescând mult peste orice nivel de suportabilitate normal. Cât despre clasele primare, aici nu văd mari pericole în acest sens, deoarece este puţin probabil ca învăţătoarele să alunece în astfel de extreme ale vocabularului de specialitate.

Ca în paranteza de mai sus, trebuie spus că aceasta este situaţia în cazul oricărei ştiinţe (geometria reprezentând totuşi vârful de lance), doar că matematica este una dintre cele ce apar imediat din clasa a 5-a, alături de biologie, geografie şi istorie. În plus însă, dintre acestea matematica este singura care-şi poate justifica atitudinea “agresivă” în implementarea unui limbaj prea încărcat cu motivaţia examenului din finalul gimnaziului.

În general, fiecare materie are nevoie de jargonul ei de specialitate pentru a se exprima, iar în consecinţă copiii sunt practic bombardaţi cu cuvinte noi ce se schimbă de la o oră la alta într-un ritm de multe ori prea rapid, mult prea rapid (evident că şi religia se integrează în acest trend, doar că acolo măcar nu-i stres, acolo toţi primesc 10 din oficiu). Efectul psihologic rezultant este desigur faptul că mulţi elevi au tendinţa de “a nu mai auzi” cele spuse de profesori la diferitele ore, nici vorbă de a mai şi încerca să înţeleagă ce spun aceştia (cu trimitere evidentă spre dezvoltare de analfabetism funcţional dacă obiceiul nu este întrerupt în timp util prin trecerea elevului în faza de înţelegere).

Apoi, trebuie vorbit aici şi de cantitatea de cuvinte noi introduse “pe unitate de timp”. Un coleg a reuşit în urmă cu cca. 20 de ani să contabilizeze la o clasă de a 9-a în ziua cea mai densă a săptămânii, cumulat la toate materiile 142 de itemi noi (din câte ţin minte). Ne putem imagina câţi dintre aceşti itemi fuseseră termeni noi de specialitate. Părerea, impresia că odată definit, un astfel de termen este clar înţeles şi însuşit de către elevi este pur şi simplu utopică, iar aşteptarea ca ei să înveţe acasă noţiunile respective şi să le poată folosi automat începând de ora următoare, asta este una din cauzele faptului că elevii nu învaţă să gândească ci înţeleg prin învăţare doar simpla toceală. Astfel, cuvântul nou nu intră într-un vocabular natural al elevului, ci rămâne suspendat undeva între necunoaştere şi o folosire artificială, dar de fapt neînţeleasă. Eu simt aici că putem vorbi de o folosire de faţadă a acestor cuvinte, un fel de mascaradă de obicei neînţeleasă, de genul “la orele astea vorbim cu astfel de cuvinte”.

Uneori apar referiri la acest fenomen al limbajului prea sofisticat şi în alte părţi decât în procesul de învăţământ din şcoală. De pildă, în emisiunea Antrenorul părinţilor din data de 4 iunie 2023, Gaspar Gyorgi îi explică Mirelei Retegan următoarele: G.G. … oameni care veneau şi-mi spuneau: “Gaspar, e un pic ciudat felul în care vorbeşti” – pentru că atunci vorbeam mult mai mult în jargon de specialitate decât o fac acum – “dar, dincolo de asta, ce ajunge la mine este ca spui ceva important şi aş vrea să mă ajuţi să înţeleg un pic mai bine, aşa că te rog vorbeşte pe limba omului obişnuit, încearcă să-mi explici în aşa fel încât să-mi fie un pic mai uşor de înţeles”. M.R. … eu asta fac aici, îl ajut pe Gaspar să vorbească pe limba omului obişnuit. G.G. … ăsta e paradoxul psihologiei în România, că în facultate eşti învăţat să-ţi însuşeşti un limbaj de specialitate, iar după aceea, pentru a te înţelege cu oamenii trebuie să renunţi la acel limbaj de specialitate (urmăriţi înregistrarea https://www.youtube.com/watch?v=a2hqWYlXmAE între minutele 37:20 – 38:00). Da! Fără comentarii!

Folosirea unui limbaj inaccesibil este clar una din cauzele eşecului şcolii actuale din România, a procentajului uriaş de elevi cu analfabetism funcţional în toate direcţiile. Accesibilizarea limbajului duce evident la accesibilizarea mesajului transmis, dar pentru asta profesorii trebuie să conştientizeze că “soluţia problemei” este la ei şi să nu mai dea simplu “vina” pe elevi.

Desigur că nici evitarea introducerii termenilor noi nu este o soluţie viabilă pe durată; cu greu ar mai putea avea loc evoluţia elevilor pe drumul învăţării matematicii (practic a oricărei ştiinţe) fără cuvintele ce-i compun limbajul specific. Ca în orice domeniu, nici aici nu este bine a trece dintr-o extremă în cealaltă. La fel ca oriunde şi aici calea de mijloc este de obicei cea mai sănătoasă.

Profesorul care stăpâneşte “arta predării matematicii” ştie cum să introducă în limbaj un nou cuvânt, o nouă expresie, astfel încât să nu “îi şocheze” pe elevi, să nu îi repulsioneze. Mai ales în clasele 5-6 este important ca profesorul de matematică să ia în calcul frica de matematică cu care vin elevii din ciclul primar şi să încerce să preîntâmpine adâncirea lor în această stare.

Mi-a fost dat să cunosc o astfel de atitudine grijulie la profesori din Germania, la care am observat de-a lungul timpului expresia “triunghiurile cutare şi cutare sunt congruente, adică egale prin suprapunere“. Observăm cum folosirea termenului nou, străin limbajului uzual al copilului, este însoţit imediat în exprimarea adultului de “o traducere” mai accesibilă elevilor (pe germană termenul “deckungsgleich” înseamnă mai exact “egal prin acoperire” fiind şi mai apropiat în limbajul uzual decât traducerea mea “egal prin suprapunere“). În spaţiul de cultură în limba germană ideea este atât de împământenită încât şi dacă dăm spre căutare cuvântul “deckungsgleich”, toate adresele oferite pe net, inclusiv wikipedia.org, dau automat în text ambele “kongruent (deckungsgleich …)“.

Personal nu cred totuşi că ar fi sănătos să înlocuim definitiv, adică pe durată cuvântul “congruente” cu expresia “congruente, adică egale prin suprapunere” după modelul nemţilor, dar am preluat ideea că la început să folosesc expresia combinată, până când simt că elevii s-au obişnuit cu cuvântul “congruent” în cadrul lecţiei despre metoda triunghiurilor congruente (adică pentru o vreme, oarecum pe parcursul clasei a 6-a, până când am percepţia clară că elevii şi-au însuşit noţiunea).

Desigur, asta funcţionează doar cu condiţia să fi făcut înaintea lecţiei respective – măcar printr-o “poveste” descriptivă – analiza situaţiei de “egalitate prin suprapunere” prin constatarea că foile cu triunghiurile construite de doi elevii puse una peste cealaltă pe geamul clasei vor arăta prin transparenţă suprapunerea perfectă a celor două triunghiuri (construite pe aceleaşi date, de pildă prin cazul de construcţie LUL; asta este de fapt ideea introducerii acestora mai întâi sub formă de “cazuri de construcţie”, ducând deci la triunghiuri “egale prin suprapunere” numite apoi “congruente”, iar doar ulterior drept “cazuri de congruenţă” în cadrul unei noi metode de demonstraţie).

Legat de “exerciţiul” aici evocat, precizez că eu nu am mai făcut acest exerciţiu concret la clasă de peste 20 de ani – este şi greu de făcut, deoarece elevii desenează de obicei în caiet; ca să-l pot face ar trebui să le cer construcţia pe coli de hârtie separate şi de obicei nu consider să-mi iau acest timp. Făcându-l concret, aş avea garanţia că toţi elevii au priceput, dar nu acesta este obiectivul meu aici; oricum elevii slabi ai clasei nu vor beneficia de idee pentru că ei oricum nu vor învăţa cu adevărat metoda triunghiurilor congruente la demonstraţii (sau, poate greşesc?). Pe de altă parte, elevul mediu, elevii din blocul central al Clopotului lui Gauss, acesta îşi pot imagina exerciţiul, cu condiţia măcar să ne luăm 2-3 minute să il povestim, iar de aici mai departe vor putea conecta cu “imaginea” imaginată în acest moment (iar asta întăreşte capacitatea de imaginare a elevilor, mai ales în aceste vremuri când ei sunt obişnuiţi să vadă totul pe ecrane).

În mod similar, în cazul cuvintelor “complementare” sau “suplementare”, eu folosesc pentru început, pentru o vreme, măcar în apariţiile izolate din clasa a 6-a expresia dublată că “cele două unghiuri au împreună 180o, adică sunt suplementare” sau “unghiurile B şi C sunt complementare, adică au împreună 90o” (măcar din când în când, cel puţin la apariţii noi, când nu le-am folosit de mult). Apoi, trec destul de repede la folosirea curată, spunând simplu “complementare” sau “suplementare”, Important este să le acord elevilor timpul să se obişnuiască cu noile cuvinte, fără ca să apară în ei senzaţia că nu înţeleg ce vorbesc (probabil, mai reiau ideea de dublare descriptivă a cuvântului şi la primele apariţii din clasa a 7-a, dar apoi gata). CTG

Prea devreme! – (4) Elemente de trigonometrie de liceu în gimnaziu

Elevul de gimnaziu este confruntat deseori cu elemente de matematică peste nivelul intelectului său, peste posibilităţile sale de asimilare sau peste capacităţile sale de înţelegere. M-am ocupat de acest subiect într-o serie de trei părţi în această primăvară, dar subiectul nu este defel epuizat. Există multe alte exemple în acest sens, de care nu am vorbit, aşa încât se pare că trebuie să continuăm şirul eseelor pe tema “prea devreme!”.

Cel mai rău este atunci când elevului – mai ales celui de gimnaziu, adică neselectat în urma examenului – atunci când elevului i se pun în faţă noţiuni sau cunoştinţe ce urmează a-i fi predate mult mai târziu şi pentru care nu are elementele de bază în a le înţelege (nici nu mai vorbesc de competenţele necesare). Vorbesc aici în general de situaţii când îi este predat ceva ce foloseşte o terminologie sau se referă la noţiuni ce vor veni de-abia în viitor. Am vorbit de un astfel de exemplu în situaţia dreptelor coplanare, noţiune folosită în clasa a 6-a la definirea situaţiei de paralelism, dar trebuie conştientizat că există multe astfel de situaţii. Aproape că putem spune că a devenit un modus-viendi din partea unor profesori de a-i confrunta pe elevi cât de des posibil cu elemente necunoscute din viitor.

Probabil cel mai flagrant exemplu din această categorie mi-a scăpat din atenţie atunci când am tratat subiectul acesta în primăvară. Este vorba despre folosirea unor elemente din trigonometria de liceu în cadrul orelor din clasa a 7-a. Multă vreme am crezut că acest fenomen apare doar în cazul profesorilor care predau şi la clase de liceu, iar din avânt aceştia nu mai reuşesc să facă distincţia dintre forma lecţiei minimaliste din clasa a 7-a şi cea generalistă din liceu. Se pare însă că apucătura respectivă este imitată, este preluată şi de către profesorii care predau în şcoli gimnaziale, după principiul că “şi ei pot”. Fără să mai discutăm de autorii de diferite cărţi, care la rândul lor diseminează apucătura respectivă.

Concret, este vorba pe scurt de două gafe punctuale. În primul rând este vorba de folosirea noţiunii de funcţie (functii trigonometrice; funcţia sinus etc.) într-un moment în care elevii nici măcar nu cunosc cuvântul funcţie, darămite să-l şi înţeleagă. Deşi vor face curând aşa ceva (dependenţe funcţionale), sau în clasa a 8-a (funcţia de gradul I), elevii vor înţelege cu adevărat ce-i aia o funcţie doar ceva mai târziu, adică în liceu (iar funcţiile trigonometrice sunt oricum o categorie de funcţii cu “apucături speciale”). În aceste condiţii, cum îşi permit diverşi colegi la clasă sau în lucrări scrise destinate elevului de a 7 să folosească aici cuvântul funcţie? Mega-stupid!!!

Dar cum ar trebui să le spunem acelor “chestii” ce se introduc aici (sub numele de sin, cos, tg, ctg)? Păi, simplu: acestea sunt nişte rapoarte în adevăratul şi cel mai curat sens al cuvântului. Da, acestea sunt nişte rapoarte, aşa că ar trebui să se folosească denumirea generală de RAPOARTE TRIGONOMETRICE.

În al doilea rând apare aici ca o a nouă gafă de proporţii epice impulsul de a le da elevilor în tabelul cu valori al rapoartelor trigonometrice şi valorile pentru 0o respectiv pentru 90o. Oare cât de inaccesibil este pentru colegii care fac aşa ceva următorul raţionament?

Rapoartele trigonometrice se definesc iniţial, adică în clasa a 7-a, pentru un unghi ascuţit al unui triunghi dreptunghic, folosindu-se în acest sens laturile acestui triunghi (de pildă, sinusul ca raportul dintre cateta opusă şi ipotenuză). Termenii de catetă opusă sau catetă alăturată implică prin natura lor poziţionarea într-un unghi ascuţit al triunghiului dreptunghic. Ori, nu există nici măcar un triunghi dreptunghic care să aibă un unghi ascuţit de 0o sau de 90o. Exemplul acesta este edificator pentru atitudinea unor colegi faţă de nivelul elevilor cărora li se adresează şi faţă de ideea că aceştia ar trebui să-l şi înţeleagă întrucâtva.

Situaţia acestor două exemple scoate în evidenţă fără de tăgadă atitudinea multor colegi: datoria lor este să le turuie elevilor noua lecţie, fără nici cea mai mică preocupare ca aceştia să şi înţeleagă ceva. De aici încolo este problema individuală a elevilor, despre cum înţeleg ei acele elemente sau dacă le tocesc pur şi simplu, sau dacă le sunt explicate de către cineva. De vreme ce privesc astfel lecţia de matematică, aceşti colegi nu au deci nici cea mai mică reţinere în a include în lecţie elemente de neînţeles, ce urmează să apară în viaţa elevilor doar ulterior. Această “durere în cot” faţă de înţelegerea elevilor a ajuns reprezinte o caracteristică generală a unor coleg, un fel de blazon de atitudine prin care aceştia se susţin în faţa celorlalţi ca “profesori buni”, de excelenţă.

O componentă interesantă a situaţiei sesizate o reprezintă atitudinea autorităţilor locale. Am auzit uneori ca inspectorul de matematică să îi “dojenească” pe colegii care dau la teste elemente de materie care au fost eliminate din programă (de pildă, îmi vine în minte acum exemplul operaţiilor cu măsuri de unghiuri reprezentate prin grade minute şi secunde). Dar nu am auzit punerea în discuţie a situaţiei de faţă din trigonometrie. Asta poate pentru că întotdeauna se vorbeşte despre neincluderea în lucrările de control a elementelor din afara materiei. Cu alte cuvinte, nu este nici cea mai mică problemă dacă se fac la clasă elemente din afara materiei, este însă interzis ca acestea să fie incluse în evaluare.

OK, dar elevul când încearcă să înveţe lecţia, el nu ştie să elimine cunoştinţele despre valorile rapoartelor trigonometrice pentru 0o sau 90o. El nu ştie că la test nu va primi din acestea. Pe el doar îl încurcă masiv în strădaniile sale de a înţelege lecţia. În cazul unui elev care ar încerca singur să înţeleagă lecţia, acestea îl încurcă cu siguranţă.

Din păcate oricum sunt tot mai rari elevii care se încumetă la un astfel de demers, de a înţelege singuri lecţia. Cei mai mulţi apelează la ajutorul unui adult. Iar dacă adultul respectiv este un părinte care ţine minte doar varianta ultimă învăţată, cea din liceu, atunci oricum nu are cine să-i sesizeze elevului că aici aceste elemente trebuie pur şi simplu şterse din lecţie.

În aceste condiţii “se pierde cu totul în peisajul matematic” o a treia “mică gafă” pedagogică întâlnită într-un auxiliar care oferă (ca mai toate) şi un rezumat al lecţiei. Tabelul cu valorile rapoartelor trigonometrice pentru unghiurile uzuale (30o, 45o, 60o) este dat întotdeauna cu aceste valori sus, în capul tabelului, pe prima linie, iar cele patru rapoarte pe prima coloană, adică vertical. Am fost de-a dreptul “şocat” când am văzut acest tabel invers, cu valorile unghiurilor pe coloană şi rapoartele pe linie. Discutând acasă situaţia ne-am dat seama că forma tradiţională corespunde reprezentării grafice a funcţiilor trigonometrice din liceu unghiurile, ca arce în radiani, sunt pe axa absciselor, deci orizontal, pe când valoarea funcţiei pe axa ordonatelor, adică vertical. Ce observaţie faină!

Dar, haideţi să ne uităm puţin cum stau lucrurile în programa oficială. Pentru că uneori prostiile din materia care ajunge la elevi se bazează la origine pe anumite cuvinte scăpate din neatenţie în programă (vezi exemplul cu dreptele paralele). Deci, în programa oficială scrie astfel: Noţiuni de trigonometrie în triunghiul dreptunghic: sinusul, cosinusul, tangenta şi cotangenta unui unghi ascuţit. Aşadar, totul este foarte clar: nu apare cuvântul funcţie; cât despre unghiuri, se precizează clar că se referă la unghiuri ascuţite. Din păcate, în urma programei vin autorii de cărţi pentru elevi şi profesorii la clasă. Iar aceştia aduc cu ei haosul. Putem astfel întreba pamfletist, de când putem înlocui aici intervalul deschis (0o, 90o) cu intervalul închis [0o, 90o] în cazul unghiurilor ascuţite ale unui triunghi dreptunghic?

Singurul aspect ce ar putea fi adus ca reproş autorilor programei este faptul că au abordat o linie prea blândă, conciliantă, prin expresia Noţiuni de trigonometrie de fapt “lăsănd portiţa deschisă” ca fiecare să folosească denumirile pe care le doreşte. Astfel, dacă în sensul apariţiei în lecţii a unghiurilor de 0o respectiv 90o este clar un abuz faţă de ce scrie în programă, dimpotrivă în sensul folosirii denumirii de funcţii trigonometrice nici nu pot fi traşi profesorii respectivi la răspundere.

Dacă este să vorbim despre cum apar aceste elemente de trigonometrie în lecţii – la clasă sau în culegeri, se pare că este iarăşi vorba despre acea stare de “showing off”, de a te da mare că stăpâneşti materia şi terminologia hipercorect. Astfel, am întâlnit auxiliar în care autorii definesc rapoartele sin, cos etc., pe care apoi le numesc imediat funcţii trigonometrice. Aceşti autori doresc de fapt să-i satisfacă pe ceilalţi adulţi, de obicei profesori, fiindu-le frică de criticile acestora că nu au folosit teminologia cea mai înaltă şi riguroasă, neglijând total aspectul că elevii nu cunosc aceşti termeni şi că folosirea lor duce sigur la tot mai mari frici şi neînţelegeri din partea elevilor, îndepărtându-i pe tot mai mulţi de matematică.

Apropos, oare de ce trebuie să apară în diferite cărţi relaţii între rapoartele trigonometrice specifice mai degrabă materiei de liceu? De ce trebuie să ajungă la elevi relaţii de tipul sin2x + cos2x = 1 sau tgx = sinx / cosx? Refuz să dau aici cu presupusul.

Nu am luat la studiu toate manualele oficiale de clasa a 7-a, dar m-am întâlnit cu fenomenul sesizat într-un auxiliar, iar aste este suficient de dăunător în condiţiile în care tot mai mulţi profesori sunt nemulţumiţi de manuale, aşa încât le recomandă clar claselor folosirea auxilarului în loc de manual. Cu inspiraţie din acestea le predă profesorul lecţia la oră, sau – mai rău – din acestea sunt puşi elevii să-şi copieze lecţia, în timp ce profesorul mângâie telefonul, navigând cu mintea în alte părţi.

Putem pune desigur şi astfel problema: oare câţi colegi conştientizează că trigonometria gimnazială se petrece în triunghiul dreptunghic, pe când cea de liceu în cercul trigonometric? Ce-i acela, vor întreba unii. Şi chiar aşa, oare cum se face trecerea de la trigonometria cu unghiuri ascuţite la trigonometria cu unghiuri mai mari? Cum dispare triunghiul dreptunghic şi de unde apare cercul trigonometric? Şi încă o dată: ce-i acela cerc trigonometric? (că nimeni nu-l mai face)

Revenind la trigonometria gimnazială, care ar trebui să se întâmple în triunghiul dreptunghic (neapărat!), există un loc în care tot mai hotărât dispare din mintea multora necesitatea triunghiului dreptunghic. Este vorba de tot mai folosita formulă de arie a triunghiului oarecare în funcţie de două laturi şi de sinusul unghiului dintre ele. Cei mai mulţi o folosesc pentru eficienţa sa, dar am întâlnit şi colegi care spun că “ei nu se pricep să ducă linii ajutătoare” (adică să traseze o înălţime în triunghi), aşa că-i mai bună formula aia. Asta în contextul în care elevii tot mai mulţi sunt învăţaţi să aplice orbeşte reţete de rezolvare, în loc să fie învăţaţi să gândească, inclusiv cu elemente specifice geometriei (înălţimi etc.).

Legat de obsesia unor colegi profesori pentru această formulă, merită să amintesc aici că am întâlnit-o dată elevilor deja la lecţia despre aria triunghiului în cadrul capitolului de arii din toamna clasei a 7-a, deci cu câteva luni bune înainte de a fi învăţat sinusul (da, vorbesc de formula de arie a triunghiului cu două laturi şi sinusul dintre ele, care apare desigur adaptată şi la paralelogram sau romb). Închipuiţi-vă cât de schizofrenică poate fi situaţia dintr-o astfel de oră de matematică, cu profesorul/ profesoara turuind la tablă formule după formule, iar elevii copiind cum se pricep mai repede în caiete, fără a înţeleage mare lucru.

Apropos de situaţia obsesiei generale pentru respectiva formulă, iată un exemplu din aceste zile (săptămâna 15-21 Mai). Soţia mea a dat ca simulare la clasa a 12-a o variantă puţin modificată a subiectelor de BAC “pentru fotbalişti”, ce au fost date la începutul săptămânii (din sesiunea specială pentru diferiţi sportivi ce au concursuri internaţionale în perioada oficială pentru BAC). La punctul 6. de la Subiectul I se consideră un triunghi ABC dreptunghic în A, cu cateta AC = 6 cm şi tg C = √3. Se cere aria triunghiului care trebuie să fie 18√3. În mai multe lucrări, după ce au determinat a doua catetă AB, elevii au calculat aria triunghiului dreptunghic cu formula AB · AC · sinA / 2 în care apoi au înlocuit sin 90o = 1 (în loc de c1 · c2 / 2). Când întâlneşti o astfel de minune, în prima clipă ai un mic blocaj să înţelegi ce-a vrut elevul respectiv. După ce te dumireşti începe desigur faza de zâmbete şi de crucit (autocrucit!). Titus Sinus alias ctg (Constantin Titus Grigorovici)

Prea devreme! – (3) Centrul cercului înscris / circumscris

Elevul de gimnaziu este confruntat constant cu elemente de matematică peste nivelul intelectului său, peste posibilităţile sale de asimilare sau peste capacităţile sale de înţelegere. Acest curent de predare a fost introdus în România prin reforma şcolară din 1980, nivelul fiind atunci reglat după elevii de vârf, lăsând “în offside” intelectual marea majoritate a populaţiei şcolare. Dacă până atunci “lungimea de undă” a nivelului matematicii şcolare era stabilită conform nivelului elevilor medii, a marii mase a elevilor, a celor reprezentând corpul central din “Clopotul lui Gauss”, după acel moment reformă nivelul materiei şi a aplicaţilor au fost trase agresiv înspre dreapta, înspre copiii cu un coeficient de inteligenţă mai ridicat, spre marginea zonei coeficientului de inteligenţă obişnuită, chiar trecând pragul deseori în zona cunoscută generic ca a persoanelor superinteligente. Chiar mai mult, uneori cunoştinţe diverse sunt aduse în faţa claselor fără ca măcar şi o persoană superinteligentă să poată înţelege, asta dacă nu apelează la informaţii suplimentare, sau la propria intuiţie ieşită din comun (fie aceasta de nivel algebric sau geometric).

Alteori elevii primesc informaţii practic accesibile, dar pentru înţelegerea cărora le lipsesc diverse alte informaţii pe care primele au nevoie să se sprijine. Efectiv li se predau anumite lucruri pe baza altora care însă nu au fost prezentate. Aceasta reprezintă o gafă inacceptabilă în predarea matematicii, care însă totuşi se întâmplă din când în când. În această miniserie mi-am propus să abordez trei astfel de exemple în care diferite elemente matematice sunt predate mult prea devreme pentru nivelul elevilor sau pentru nivelul cunoştinţelor deja însuşite, sau în forme mult prea elevate pentru o primă abordare, respectiv pentru abordarea din clasele gimnaziale.

Dar, de unde această preocupare? Sau, care a fost “scânteia” pentru acest demers? Prin toamnă “mi-au ajuns la ureche” câteva lecţii de geometrie în clasa a 6-a, în care vedeam clar că un coleg sau o colegă au dificultăţi mari în a selecta ce cunoştinţe despre cerc să fie aduse în faţa elevilor cu această primă ocazie. Situaţii similare am întâlnit legat de partea de cerc din toamna clasei a 7-a, ce implică aspecte ce se bazează pe materie încă neparcursă. Iniţial am pornit un articol ţintit în această direcţie – a predării cercului, dar destul de repede mi-am dat seama că putem studia problema la un nivel mai general, anume al impulsului dascălilor de a face mai mult decât pot duce elevii în acel moment, fie din punct de vedere al dezvoltării intelectului, fie datorită faptului că sunt implicate elemente încă nestudiate, fie alteori pur şi simplu datorită unei cantităţi mult prea mare de informaţii aduse într-o lecţie. Aşadar, să vedem ce astfel de exemple am adunat din predarea actuală a cercului în clasele gimnaziale.

*

De foarte mulţi ani cercul nu apărea în viaţa elevilor decât în clasa a 7-a, chiar spre finalul clasei, iar profesorii s-au obişnuit să aducă cunoştiinţele despre cerc într-o anumită formă şi mai ales “toate la pachet”. Acum, când informaţiile despre cerc au fost despărţite prin noua programă, colegii au uneori dificultăţi în a le separa coerent şi cu sens. Pentru că – desigur – nimeni nu stă toată ziua cu programa sau cu planificarea “sub nas”, amintirile şi obiceiurile de ani buni preluând uneori controlul “turuirii” lecţiei.

Astfel, conform programei din 2017, în clasa a 6-a apar un prim set de cunoştinţe elementare prin “semestrul I”. Un alt set de cunoştinţe, mai elevate, au fost mutate în toamna clasei a 7-a, iar ultimele elemente au rămas în finalul acestei clase. Desigur că programa oficială poate fi considerată destul de clară în acest sens, dar “mentalul” unor profesori le joacă feste, iar aceştia scapă în lecţiile de a 6-a sau în cele de a 7-a din toamnă puţin prea mult, adică elemente ce încă nu pot fi înţelese de către elevi (din diverse cauze).

Pe de altă parte, poate că nici programa nu precizează conţinuturile destul de clar pentru unii, lăsând astfel loc profesorilor pentru realizarea unor momente în care lecţia “îi năuceşte” pe elevi. Cu totul, am impresia unei forme insuficient lămurite, care duce direct sau doar lasă loc unor situaţii în care elevii sunt confruntaţi cu situaţii de tipul “prea devreme”.

Să analizăm câteva exemple. Primul moment de bulversare pare a fi tangenta la cerc, inclusă în programă sub titlul Poziţiile unei drepte faţă de un cerc. Trebuie făcută aici proprietatea că tangenta este perpendiculară pe raza în punctul de contact, sau nu trebuie făcută? Nu-i clar, programa lăsând lucrurile la cheremul interpretării fiecărui profesor.

Dar, dincolo de orice discuţie, sigur n-ar trebui să apară aici, în toamna clasei a 6-a, proprietatea de congruenţă a celor două tangente dintr-un punct exterior la un cerc. Aceasta se subînţelege destul de clar din titlul tangente dintr-un punct exterior la un cerc, din clasa a 7-a. Cel mai rapid moment de a parcurge această informaţie ar fi în primăvara clasei a 6-a, ca aplicaţie la congruenţa triunghiurilor dreptunghice. Totuşi, parcă în clasa a 7-a “îi şade mai bine”.

Dar, sigur-sigur nu are ce căuta în clasa a 6-a unghiul înscris în cerc! O spun atât de apăsat, pentru că, din păcate, mi-a fost dat să văd şi aşa ceva. Nici nu are rost să discutăm aici acest exemplu. Punct!

Dar şi în toamna sau iarna clasei a 7-a mi-a fost dat să văd ciudăţenii ce sfidează logica ordonării matematicii. De vreme ce a fost adus “în semestrul I” un pachet despre poligoane regulate, desigur că au fost şi colegi care au început să aducă lecţiile despre triunghiul echilateral şi pătrat, implicând formulele respective pline de radical din 2 sau din 3, formule ce necesită însă experienţa şi deducerea pe bază de trigonometrie. Cele trei lecţii – formulele din triunghiul echilateral, pătrat respectiv hehagonul regulat – acestea îşi au clar locul în finalul clasei a 7-a. Faptul că acest calup încă este ataşat de titlul mare de poligoane regulate nu este decât parţial justificat (am tratat subiectul pe larg în postarea precedentă). Asta arată cât de neclară este impresia generală despre ce vrea acest titlu, poligoane regulate, anume că există de fapt două lecţii separate la care a fost folosit.

Prima ar fi studiul fenomenului despre poligoane regulate în general, ce trebuie făcut pe baza a câteva exemple suficient de edificatoare (despre acestea în sine ca fenomen, construcţia lor, dar şi despre unghiurile acestora), cu o trecere spre final în cazul general (acest moment trebuie conectat cumva şi cu suma unghiurilor unui poligon neregulat). Partea cu construcţia este extrem de neglijată de colegi în general (desenaţi cu instrumentele un nonagon regulat; care se pot desena cu ajutorul raportorului; care se pot desena fără raportor, doar cu liniar şi compas?).

A doua lecţie este despre primele trei cazuri particulare – triunghiul echilateral, pătratul şi hexagonul regulat – şi care nu are mare lucru de-a face cu prima parte decât poate “tangenţial”, acestea fiind într-adevăr nişte poligoane regulate. Aici accentul se pune mai ales pe lungimile diferitelor segmente implicate, în formate raţionale sau iraţionale (prin apariţia radicalilor din 2 sau din 3). Această a doua lecţie este profund necesară în clasa a 8-a la calculele corpurilor cu astfel de baze. Ca urmare, este evident că s-ar potrivi mult mai bine la începutul clasei a 8-a, cu aplicaţii imediate pe diversele corpuri, dar “face sens” să o parcurgem şi în finalul clesei a 7-a, astfel încât elevii să o vadă, iar apoi în a 8-a elementele respective să fie aduse o a doua oară, ca recapitulare (drept cunoştinţe vechi). Probabil din comoditate, pentru a nu se tot scrie toate cele trei denumiri, s-a folosit şi la acestea titlul mare de poligoane regulate. Totuşi, cred că mult mai cinstit ar fi poligoane regulate particulare (deşi nici acesta nu-i perfect).

Cam aceasta este şi părerea programei oficiale, care spune în cadrul capitolului 5. despre cerc  din a 7-a: Poligoane regulate înscrise într-un cerc (construcţie, măsuri de unghiuri). Apoi, în capitolul 7 cumulând relaţiile metrice în triunghiul dreptunghic, cu teorema lui Pitagora şi cu trigonometrie, la rezolvarea triunghiului dreptunghic apar în paranteză: (latura, apotemă, arie, perimetru) în triunghiul echilateral, în pătrat şi în hexagonul regulat … Deci, prin programa nouă nici nu se mai face referire la poligoane regulate, dar unii colegi încă n-au realizat diferenţa.

*

Multe s-ar mai putea discuta pe astfel de exemple legate de predarea cercului, dar eu am deschis acest subiect având în gând un aspect mult mai discutabil. Este vorba despre conectarea cu subiectul cercului la lecţia despre liniile importante în triunghi. Aici cele cerute prin programă sunt clare: Linii importante în triunghi: bisectoarele unghiurilor unui triunghi: concurenţa (fără demonstraţie), cercul înscris în triunghi; mediatoarele laturilor unui triunghi: concurenţa (fără demonstraţie), cercul circumscris unui triunghi etc. Deci, apar clar prezente în programă existenţa celor două cercuri, cercul înscris în triunghi, respectiv cercul circumscris unui triunghi. Nu apare însă prezentat defel ce ar trebui să se întâmple cu acestea. De pildă, trebuie explicate şi folosite la ceva? Că demonstraţia pare că nu este necesară (deşi în cazul elevilor inteligenţi acest raţionament chiar ar merita făcut.

Legat de lecţia despre liniile importante în triunghi, am impresia că aici apare din nou un moment din acela în care noi ne pornim să le dăm un anumit set de informaţii elevilor şi ne trezim fără să ne dăm seama că le turnăm mult prea multe altele, încărcându-le mintea şi anulând percepţia informaţiilor de bază prin încărcarea cu altele mai grele.

Care ar fi aici informaţiile de bază? Păi, în primul rând cele patru tipuri de linii importante (două cunoscute deja, însă nu în contextul unui triunghi, dar şi două total noi). Apoi, apare ideea că din fiecare tip există chiar trei bucăţi (deci 12 cu totul). O provocare uriaşă, pentru cei mai mulţi elevi chiar o provocare insurmontabilă, o reprezintă faptul că desenele corespunzătoare celor patru tipuri de linii importante seamănă foarte mult între ele. Marea majoritate a elevilor nu au în acel moment capacitatea să vadă deosebirile dintre acestea.

La desenarea acestora trebuie făcută o construcţie exactă, iar asta este pentru cei mai mulţi elevi în clasa a 6-a o mare provocare. Ca profesor, a te aştepta că elevii vor înţelege doar pe baza unor desene făcute în grabă (de obicei incorecte în caiete) şi însoţite de nişte definiţii dictate, asta înseamnă că te îmbeţi cu apă chioară. Chiar şi dacă unii vor şti eventual să-ţi turuie definiţia, asta nu înseamnă că aceştia cunosc şi au înţeles fenomenul.

Dacă nu se fac desenele, sigur nu se înţelege nimica din toată lecţia; nu vreau să susţin aici că un elev care are desenele cât de cât corecte a şi înţeles automat lecţia. În cazul unor desene corecte, destul de repede se observă cocnurenţa celor trei linii de un fel, iar asta poate reprezenta un gând deosebit, dar şi o informaţie suplimentară (depinde cum reuşeşti să le-o aduci). Apropos de asta, eu am pus la punct un sistem prin care elevii chiar ajung să îndrăgească această lecţie (“Ce frumos!!!”), dar asta ia ceva mai mult timp.

Revenind la ce văd elevii şi cum desenează în caietele lor, toţi observă clar concurenţa şi fac desenul ca atare, dar ei nu respectă de obicei corectitudinea construcţiei liniilor. De pildă, de obicei la înălţimi vom vedea în caiete înălţimea verticală pe bază (perpendiculară, dar nu datorită folosirii echerului, ci prin simpla trasare a unei verticale), dar celelalte două înălţimi, cele oblice, nu vor fi de obicei perpendiculare pe laturile opuse. Toate trei vor fi însă concurent desenate, ceea ce ne spune mullte despre “ce văd elevii”. La bisectoare se prea poate să întâlnim desene fără nici măcar o bisectoare adevărată. La fel şi la mediatoare. Doar la mediane cresc puţin şansele să găsim un desen corect, dar nu neapărat.

Pe lângă aceste deja multe informaţii din lecţia de bază, ar mai trebui discutată şi situaţia specială a triunghiului obtuzunghic, care are două înălţimei exterioare, şi la care înălţimile, dar şi mediatoarele se întâlnesc în exteriorul triunghiului.Cred că aceste situaţii se pot lăsa liniştit pe altă oră, sau date ca temă specială pentru elevii buni. Cu toată clasa pot fi lăsate poate chiar pe începutul clasei a 7-a, în zona de recapitulare şi completări.

Da, iar acum înţelegem absurdul situaţiei, faptul că o astfel de lecţie deja mult prea încărcată (pe care probabil cei mai mulţi profesori o parcurg într-o oră, sau chiar sub o oră), se cere să o supraîncărcăm cu noi informaţii, care desigur că se potrivesc cumva aici, dar sunt prea multe şi prea grele!

Astfel. ortocentrul este cel mai inofensiv, pentru că nu este nimic special în spatele acestui nume, dar deja la centrul de greutate trebuie să le explici pe scurt ce-i acela un centru de greutate (deşi acesta are clar de-a face cu proprietăţile ariei ce se studiază de-abia în a 7-a).

Cât despre cercul înscris sau cel circumscris, pe cei mai mulţi elevi “i-ai trminat” cu acestea! Chiar şi dacă ar avea experienţă suficientă de construcţii cu compasul, şi tot ar fi greu pentru cei mai mulţi. Dar ţinând cont că nu se lucrează aproape defel cu compasul la clasă (până în acel moment), aceste construcţii le apar elevilor ca nişte “monştrii”; ei efectiv le percep “terorizante”.

Fac aici o paranteză, încercând să explic ce se întâmplă de obicei în clase în momentul puţinelor construcţii cu instrumente, realizate pe tablă de către profesori. Părerea mea este că majoritatea colegilor nu le îndrăgesc, nu le stăpânesc şi le fac minimal, “că se cere în programă”. Din păcate însă, la construcţiile cu instrumente, trebuie petrecut foarte mult timp cu elevii, astfel încât aceştia să le şi stăpânească. Majoritatea elevilor nu le vor înţelege din prima, aşa încât fiecare desen trebuie făcut de cel puţin două ori (după 5-6 construcţii pe o schemă ne putem baza că majoritatea elevilor le-au înţeles şi le pot face). În plus, dacă atunci când face o anumită construcţie, profesorul stă în faţa tablei, cu spatele la elevi, cei mai mulţi nu vor vedea ce face acesta. Iar apoi acesta se miră de ce nu ştiu elevii.

Ca tehnică, eu personal procedez astfel: fac întâi un desen pe tablă încercând să explic cât de bine, dar fără pretenţii de a avea o largă pricepere din partea elevilor. Când mă dau de-o parte desigur că văd o mare de priviri perplexe de felul “da’ cum aţi făcut asta?”.  În acest context primul desen apare doar ca o prezentare a ce urmează să fie învăţat, nimic altceva. Le-o mai explic o dată din lateral arătând cu mâna cele explicate, după care mai fac o dată desenul încet, încercând să stau cât mai în lateralul figurii, sau să mă dau de-o parte după fiecare mic pas de construcţie, astfel încât elevii să vadă exact ce fac şi cum manevrez instrumentul (desenatul liniilor drepte cu liniarul este uşor, dar deja compasul, echerul şi raportorul ridică mari probleme şi folosirea lor trebuie foarte mult repetată şi exersată până când este stăpânită de către elevi; nu discut aici despre măsuratul lungimilor de la capătul liniarul sau de la 1).

Totuşi, experienţa îmi arată că în ora următoare mai trebuie să fac încă o dată “arătatul construcţiei” pentru câţiva, şi apoi doar încă peste o oră am dreptul să mă aştept că elevii se vor descurca la acel desen. Chiar şi aşa, dacă am nevoie de această construcţie peste 2 săptămâni, deja mă pot aştepta ca unii să se uite cu disperare că nu mai ştiu “cum se face”. Situaţia este una dificilă, foarte mare consumatoare de timp, astfel încât – revenind la subiectul nostru – cu greu ne putem aştepta ca într-o oră să avem în caiete cele patru desene cu liniile importante realizate corect, darămite să mai apară acolo cât de cât corect desenate şi cele două cercuri din titlul acestui articol.

Revenind la cercul înscris, respectiv la cercul circumscris, părerea mea este că cele două cercuri fac parte dintr-o altă lecţie, care se potriveşte mult mai bine în clasa a 7-a. La fel desigur şi centrul de greutate. Deci, concluzionând, noi în loc să-i lăsăm pe elevi să priceapă lecţia de bază – cele patru ori trei linii importante în triunghi – noi repede le mai turnăm şi începutul unor lectii ulterioare, potrivite mai degrabă peste jumătate de an, după ce a mai avut loc o perioadă de sedimentare şi de dezvoltare, prin acumulare de experienţă suplimentară. Uau, ce ne pricepem să chinuim copiii!

Revenind la ideea că cele patru desene (fiecare cu câte trei linii de un fel, concurente) sunt fiecare în sine foarte grele, practic inaccesibile în viteză majorităţii elevilor, este minunat că măcar nimeni nu se gândeşte să le facă pe toate într-un singur triunghi. Cred că nimeni nu le face pentru că el în sine ca profesor nu ar fi în stare să le facă.

Bun, şi ce ar trebui să facem? Pentru că – staţi liniştiţi – şi eu sunt de obicei tentat să le spun copiilor cum se numesc acele patru centre de concurenţă (aşa încât prezentul eseu reprezintă nu doar unul de critică la adresa colegilor, dar şi unul de autocritică, de autoanaliză). Mai ales în condiţiile actualilor elevi, post-pandemici, adică post-online, cu o capacitate de atenţie asupra detaliilor muuult scăzută faţă de ce cea cu care eram obişnuiţi până în 2019, eu chiar cred că ar trebui să lăsăm denumirile respective pe altă dată.

Pe când? Poate pe când urmează acestea să fie folosite împreună cu restul materiei cu care se potrivesc (de pildă centrul de greutate în capitolul despre arii din clasa a 7-a). Sau poate, cele două cercuri – înscris respectiv circumscris – ar putea fi lăsate pe începutul clasei a 7-a, cu refacerea desenelor şi împreună cu cercul corespunzător în cadrul primelor ore de recapitulare din septembrie.

Sau poate, o variantă interesantă ar fi să reluăm lecţia ora următoare, dar de data asta şi cu denumirile corespunzătoare, inclusiv cu desenarea celor două cercuri (la desenul bisectoarelor, respectiv la cel al mediatoarelor). Această variantă ne-ar asigura o formă “mai umană” a lecţiei, însă cu respectarea programei. Merită să pierdem pentru asta încă o oră? Pentru înţelegerea copiilor, eu cred că da (fiecare cu părerea lui).

Totuşi, eu personal înclin să aleg varianta cu aducerea celor două desene cu cercuri (înscris, respectiv circumscris triunghiului) în cadrul capitolului despre cerc din clasa a 7-a. Acolo ar avea cel mai mult sens să fie incluse. Însă şi aducerea acestora în clasa a 6-a, în zona aplicaţiilor la studiul metodei triunghiurilor congruente ar avea sens (destul de repede după lecţia despre linii importante).

Dar, cum ar arăta atunci prima lecţie, cea în care să nu amintim denumirile punctelor de concurenţă? Am găsit în manualul lui Hollinger din 1977 ce l-am avut noi în clasa a 6-a, cum se făceau acestea atunci. Astfel, în imaginea următoare vedeţi cum era prezentată această lecţie ca parte din lecţia despre triunghiul isoscel (nu mă întrebaţi de ce era pusă acolo, că nu-i găsesc o logică clară). Oricum, vedem că Hollinger nu amintea în acel moment nici măcar ideea de concurenţă (acest cuvânt apărea prima dată peste două pagini, în cadrul unei lecţii cu titlu Probleme rezolvate, la prima astfel de problemă, practic la analizarea medianelor într-un triunghi isoscel, acolo unde într-o paranteză se spune că medianele sînt concurente; nici vorbă însă să-l şi denumească pe acest punct de concurenţă!).

În textul de mai sus nu se aminteşte concurenţa, dar aceasta este clar prezentă în figurile corespunzătoare. Astfel, în plus faţă de forma din lecţia lui Hollinger, eu cred că totuşi putem să le atragem atenţia că cele trei linii de un fel sunt concurente (elevii oricum văd chestia asta, deci doar vor învăţa acest cuvânt ataşat cu sens unei situaţii). Dar oricum, eu de acum în colo nu voi mai denumi aceste puncte din prima lecţie, nici măcar nu le voi mai nota (cu renumitele H, G, O, I), darămite să vorbesc despre cele două cercuri. C. Titus Grigorovici

P.S. Am vorbit mai sus despre apucătura noastră ca profesori să le dăm prea multe detalii elevilor, cu informaţii colaterale, de obicei irelevante pentru blocul principal al lecţiei în sine. Legat de această apucătură, daţi-mi voie să vă dau aici un contraexemplu recent din propria activitate, mai exact de la adunarea fracţiilor ordinare. Încercând să le dau celor de-a 5-a nişte reguli clare, am fost tentat să scriu pe tablă că la adunarea sau scăderea fracţiilor ordinare acestea se aduc la numitor comun. Puteam să mă opresc aici, dar drăcuşorul matematicii m-a împins să continui: de obicei prin amplificare (dar merge şi prin simplificare). În ora respectivă, dar şi în ora următoare am putut apoi observa cum acel comentariu din paranteză doar îi bulversase pe cei mai instabili, care nu înţelegeau când trebuie să aplice amplificarea şi când simplificarea. Eu am inclus acea observaţie dintr-un puseu de ego profesoral, încercând să prezint lucrurile din start complet teoretic, deşi la nivelul exerciţiilor obişnuite cazurile de aducere la numitor comun prin simplificare sunt sub 1% din total. Încercând să repar situaţia în mintea celor mai slabi, mi-am jurat în suflet că mă voi abţine cât mai mult pe viitor de la aceste etalări de aspecte inutile aduse în faţa elevilor “mult prea devreme”.

Prea devreme! – (2) Formule generale până la n

Elevul de gimnaziu este confruntat constant cu elemente de matematică peste nivelul său de asimilare, peste capacităţile sale de înţelegere. Uneori am impresia că acestea se întâmplă din indeferenţă, alteori din dorinţa de a epata a unor profesori, pe baza unor gânduri de felul: De ce să le-o dăm în gimnaziu doar intuitiv, pe cazuri particulare, ca s-o şi înţeleagă cât mai mulţi? (cel puţin în cadrul lecţiei de introducere). De ce? Hai să le-o dăm direct în forma generală, de matematică matură. Nu-i bai că cei mai mulţi nu vor mai înţelege nimic. Important este că noi arătăm “lumii întregi” că stăpânim forma cea mai înaltă din punct de vedere a exprimării riguroase matematice... Alteori poate că se întâmplă dintr-un fel de frică; frica de a nu primi observaţii din partea unor colegi, ceva de genul: “Cum, nu şti forma generală, cea de vârf? Doar atâta poţi?” (am vorbit de curând despre această mentalitate).

În această miniserie mi-am propus să abordez trei astfel de exemple în care diferite elemente matematice sunt predate în forme mult prea elevate pentru o primă abordare, respectiv pentru abordarea din clasele gimnaziale (când – nota bene – lecţiile se adresează tuturor elevilor, aceştia nefiind încă selectaţi de EN). În articolul precedent am luat ca exemplu chiar o situaţie în care este folosit un cuvânt ce se introduce oficial de-abia peste doi ani. Am analizat astfel situaţia interzisă în predarea matematicii când elevilor li se introduce o noţiune nouă folosind o altă noţiune necunoscută, încă neintrodusă. Oare nu ar trebui să existe un DNA, o poliţie a matematicii. un fel de radar pentru profesorii care “circulă cu mult prea mare viteză”, trecând “de pe o bandă pe cealaltă” şi “depăşind pe linie continuă” prin lecţiile gimnaziale?

Care este rezultatul unor astfel de predări? Elevii nu înţeleg mai nimic (cel puţin marea masă a elevilor), se stresează (în toate formele ce se pot imagina, iar psihologii au defalcate şi studiate aici multe categorii), rezultatul evident fiind îndepărtarea de matematică. În funcţie de posibilităţi, părinţii reacţionează angajând un meditator. Cu cât aceste fapte se întâmplă mai devreme şi mai puternic, cu atât meditaţiile tind să pornească şi ele mai devreme (cel puţin în Cluj nu mai este nimic special ca elevii să aibă meditator din clasa a 5-a).

*

Să abordăm acum cel de-al doilea exemplu propus, anume folosirea scrierilor generale, acelea cu “…” (cu puncte-puncte) şi până la n, desigur cu numere generale, adică cu litere şi indici. Ca să nu existe neclarităţi, am scris pe o foaie de hârtie câteva exemple de astfel de scrieri, pasaje ce dau fiori unor clase întregi, blocând din start gândirea marii majorităţi a elevilor la primul contact cu acestea.

Sunt pline cărţile cu astfel de prezentări, dar am preferat să le scriu eu cu mânuţa mea. Nici pe calculator nu am vrut să le scriu, ca să nu ajungem la subiectul “datului mare” (dar e clar că acestea ar fi “numai bune” la un curs de reciclare a celor din vârsta a III-a în scrierea “ecuaţiilor”). Nu le-am pus neapărat în ordinea apariţiei lor conform programei. Este clar că “monstrul monştrilor” este formula ce doreşte să descrie transformarea fracţiilor zecimale periodice mixte în fracţie ordinară, care mie mi-a ocupat un rând întreg, aceasta înţinzându-se pe toată lăţimea paginii A4. Să ne gândim puţin, oare cum arată aceasta în caietul unui puşti de final de a 5-a, care scrie puţin mai mare, poate chiar mai lăbărţat.

Înainte de a intra în discuţia acestor scrieri, merită să fac o observaţie filozofică. În lucrarea sa Marele roman al matematicii, Mickaël Launay, Ed. Trei, 2021, autorul vorbeşte la pag. 276 despre iniţiativa lui David Hilbert, la începutul sec. XX, înspre o teorie generală care să unească toate marile zone matematice, teorie care prezentată axiomatic să ferească această ştiinţă de cutremure de felul celei legate de axioma paralelelor la începutul sec. XIX. Este apoi dat în această carte şi exemplul primilor matematicieni care au reuşit aşa o “mândră minune”, britanicii Alfred North Whitehead şi Bertrand Russell, care între 1910 şi 1913 publică o lucrare în trei volume, denumită Principia Mathematica. Nu mă pot abţine în acest sens, să nu văd scrierile reproduse mai sus ca “sforţări de generalizare” a unor mărunţi matematicieni care doresc şi ei să se împăuneze drept nişte demni urmaşi ai lui David Hilbert, ca nişte mici continuatori ai acestuia. Da’ bine v-aţi trezit s-o faceţi stimabililor, la elevi de-a 5-a şi a 6-a din şcolile de masă? Dar să revenim pe plaiurile mioritice şi să studiem exemplele noastre de scriere generalizată.

Prima întrebare ce îmi trece prin minte este dacă autorii care pun astfel de scrieri în cărţile lor chiar se gândesc că elevii care le vor citi le vor şi înţelege. Vorbesc aici de o adevărată înţelegere la vârstele gimnaziale, nu o simplă învăţare pe de rost şi o posibilă redare fără greşeală, la o verificare. Totodată mă gândesc desigur la o înţelegere directă, nu la una când un adult (părinte sau meditator) îi explică ulterior copilului că “ce şi cum” în scrierea respectivă. Părerea mea este că cei mai mulţi astfel de autori nu au omeneşte cum să gândeasc aşa ceva. Atunci, de ce o fac? Logica ar fi ceva de genul: pentru că aşa se obişnuieşte – un fel de modă – şi oricum “de frică” să nu fie atacaţi că nu pun forma cea mai elevată, sau poate dintr-un fel de mândrie, de orgoliu profesional, pentru a arăta că o stăpânesc. Cât despre elevi în sine: las’ că le explică cineva …

Faptul că nici autorii respectivi nu cred realist în accesibilitatea acestor scrieri se vede de pildă într-una din renumitele culegeri cu teste pentru EN din clasa a 8-a, la partea de recapitulare a materiei de clasele 5-8, acolo unde autorii au pus transformarea fracţiilor zecimale în fracţii ordinare, atât în forma acestor scrieri generaliste, cât şi imediat alăturat în forma unor exemple numerice concrete (un fel de tabel). Gestul respectiv este foarte bun, însă va avea efect doar dacă elevii mai apucă să se şi uite alături la exemplele concrete, adică nu rămân cumva doar cu spaima şi cu blocajul corespunzător vizualizării formulelor generale. Toate acestea ar reprezenta gânduri legate de accesibilitatea respectivelor scrieri la nivelul elevilor de gimnaziu (a marii mase a elevilor, adică înainte de marea selectare în urma admiterii la liceu).

În mod similar, într-o altă lucrare, redactată ca auxiliar şi destinată direct elevilor de a 5-a, fără nici cea mai mică explicaţie, în finalul pasajului de teorie a transformărilor respective, autorii au mai reluat o dată teoria pe exemple de lungimi particulare, dar scrise totuşi generalist cu diferite litere (a, b, c, d) şi nu cu o literă cu indici. Dacă le-ar fi dat pe acestea primele şi însoţite de nişte explicaţii, că ce vor acele scrieri, atunci poate că unii elevi le-ar fi înţeles; aşa însă, mă îndoiesc că înţelege careva acasă fără “traducere” din partea unui adult sau măcar a unui frate mai mare.

Eu aş pune însă şi următoarea întrebare: oare, unde este predarea intuitivă recomandată prin programa din 2017, cel puţin pentru primele clase gimnaziale, în predarea acestor noţiuni? Dar, mai ales, unde este mentalitatea de predare intuitivă din mintea autorilor, în general a profesorilor? “Ce-i aia?“, veţi întreba. Pentru că – da –nimeni nu s-a ocupat să prezinte aşa ceva profesorilor. Doar s-a cerut prin noua programă, recomandându-se foarte civilizat să se folosească o predare mai intuitivă. Aici îmi permit o observaţie la adresa autorilor sugestiilor metodologice din deschiderea programei de gimnaziu 2017. În lumea profesorilor de matematică din şcolile româneşti din această epocă post-comunistă, oamenii nu reacţionează eficient decât tot doar în urma unor presiuni destul de dure din partea autorităţilor. Profesorii au fost obligaţi în mod deosebit de dur să abandoneze predarea intuitivă începând orientativ din 1980, deci ca politică de stat pe parcursul a zece ani (până în 1989). În anii ’90 predarea riguros teoretică era deja înpământenită în mentalul general, în acei ani continuându-se politica de predare riguroasă, deoarece nimeni nu a pus-o în discuţie. Cât despre noii absolvenţi de facultăţi, toţi profesorii proaspeţi de matematică ieşeau oricum de pe băncile facultăţilor fără nici cea mai mică urmă de metodă intuitivă în predare (cei mai mulţi, ca să nu exagerez: eu am găsit câţiva care stăpânesc destul de bine predarea intuitivă). Acum, din marea majoritate, nimeni nu prea mai este dispus să facă pasul înapoi, mai ales că este vorba despre un pas “în necunoscut”: nimeni nu mai ştie ce-i aia predare intuitivă. Dovada? Formulele de tipul scrierilor de mai sus.

Ce-i de făcut? Sunt absolut sigur că dacă s-ar dori cu adevărat, s-ar putea face trecerea şi înapoi. Trebuie doar declarată un fel de “politică de stat” trecerea înapoi la folosirea intuiţiei adevărate. Din păcate, nici voinţă nu se prea vede în acest sens, nici o lămurire clară a breslei nu este “target-ată” cu adevărat, dar nici măcar pentru cei ce ar dori să o facă pe cont propriu nu există clar o bază bibliografică în direcţia respectivă. Doar “s-a sugerat” în Sugestiile metodologice prin repetarea aproape obsesivă a cuvântului intuitiv (de 20 ori, în diferite forme). Şi, cine nu vrea, sau cine nu înţelege ce-i aia, sau cine a uitat pur şi simplu, luându-se cu altele, sau cine a înţeles-o total greşit ideea asta cu folosirea intuiţiei, adică pentru marea masă a profesorilor, ce se întâmplă dacă nu se conformează acestor sugestii? Nimic nu se întâmplă, pentru că nu mai suntem în comunism, veţi răspunde. Stalin spunea despre sugestiile şi recomandările primelor plane cincinale că sunt obligatorii; pe când a ajuns sistemul respectiv la noi, cel puţin prin anii ’80, ştim noi cât mai era de “obligatoriu” planul cincinal (aveam desigur experienţă de secole cu fentarea diferitelor imperii care încercau să “tragă pielea de pe noi”; povestea cu apariţia cuvântului şmecher din germanul Schmecker este absolut sugestivă în acest sens). Cam aşa au fost preluate de către profesorii de matematică şi sugestiile metodologice din programa de gimnaziu din 2017. Pentru cine încă nu crede ce tot zic eu aici, luaţi ca exemplu scrierile de mai sus.

Dar cum ar trebui predate acestea? Simplu: câteva exemple de diferite lungimi (cu 3, apoi cu 4 sau cu 5 termeni, adică nu cu n termeni) sunt suficiente pentru orice elev care vrea să înveţe. Iar pentru cei care tot nu le înţeleg sau nu vor să le înveţe, pentru aceştia fiţi siguri că formulele generale oricum nu vor schimba situaţia (eventual doar le vor confirma poziţia). Ce este important e ca atât pe tablă, cât şi în caietul elevilor aceste exemple cu rol de model să fie înrămate ca orice formule (eu chiar scriu lângă sau sub ele, sau deasupra lor cuvântul MODEL, cu majuscule). Asta îi atrage atenţia că acolo este ceva foarte important, este uşor de găsit şi ajută la ideea că trebuie învăţat ca principiu, dar nu pe de rost!

Astfel de modele activează instant un tip de înţelegere intuitivă a fenomenului. Elevul nu are nici cea mai mică problemă să-şi imagineze o nouă situaţie similară, dar cu alte cifre şi cu alte lungimi ale fenomenului (câţi termeni în media aritmetică ponderată sau câte cifre în perioada unei fracţii zecimale de transformat în fracţie ordinară). Privind gândirea copilului în acest moment, putem spune că intuiţia este de fapt o gândire logică într-o formă primitivă, nedezvoltată, neevoluată la un nivel “maturizat” al gândului. Gândirea elevului “se forţează” în acele momente, dar este o forţare mult mai accesibilă majorităţii, se forţează să cuprindă noua realitate, să înţeleagă pe mintea lui “cum se face, care este regula aici”. Această forţare, cu doar puţine explicaţii, îi activează intuiţia, generând încet dar sigur gândire.

Folosirea cât mai des a acestui tip de paşi activatori de gânduri logice pentru înţelegerea unui fenomen, duce cu timpul la formarea unei gândiri observaţionale raţionale solide, practic formează gândirea. Dimpotrivă, formulele generale sigur nu formează gândire la vârstele gimnaziale. Redarea unor astfel de formule învăţate pe de rost este doar dovada unei capacităţi deosebite de a învăţa pe de rost orice (respectiv altceva decât un text care rimează, pentru că aia este din nou un alt tip de memorare). În nici un caz însă redarea unor astfel de formule generale nu este o dovadă a înţelegerii fenomenului în gimnaziu, darămite o dovadă de gândire (în liceu, la clasele cu matematică mai serioasă, acolo se prea poate să fie aşa; mai exact, în liceu poate apărea înţelegera formulelor generale, dacă înainte, în gimnaziu, a fost exersată înţelegerea intuitivă pe baza exemplelor particulare). Teoretic, nu le-aş exclude astfel de situaţii şi în gimnaziu, dar cred că sunt extrem de rare cazurile când un elev de la acest nivel poate să redea aceste formule generale şi le şi înţelege cu adevărat.

Ca o paranteză, nu vreau să iau aici în considerare situaţii artificiale când cineva ar petrece suficient timp cu un copil sau cu o grupă, cu o clasă, pentru înţelegerea sistemului redacţional al acestor formule generale, analizând totodată suficiente exemple astfel încât elevul/ elevii respectivi să ajungă a înţelege şi a stăpâni sistemul respectiv, totul pentru a-mi demonstra mie că nu am dreptate în cele afirmate mai sus. Desigur că se poate face aşa ceva, dar cine petrece atâta timp doar pentru ca elevii să priceapă un sistem general de redactare a formulelor, sistem care le este total străin şi nu le trebuie nicunde. Şi, cam cât timp ar lua să-i aduci pe unii de-a 5-a, pe toată clasa, şă ştie toţi cu adevărat astfel de scrieri, fie aceasta şiîntr-o clasă bună, selectată? Probabil că doar olimpicii percutează eficient la aceste scrieri.

Revenind în realitatea plauzibilă a lecţiilor de zicu zi, copilul se uită la modelul respectiv şi face “la fel” şi la exerciţiile primite. Făcând suficiente din acestea apare automatismul, se produce fixarea şi elevul “le ştie”. El nu va putea să-ţi redea o formulă generală dar va şti să rezolve exerciţii de acest fel (iar în gimnaziu asta i se şi cere).

Foarte important când dai astfel de modele este să nu dai situaţii dubioase, practic dublări de cifre (de pildă cifra 3 la întregi, dar şi cifra 3 între virgulă şi perioadă, la o fracţie zecimală mixtă), sau dubări de cantităţi (de pildă transformarea fracţiei 0,273(185), deci cu acelaşi număr de cifre în perioadă cât şi între virgulă şi perioadă).

Unele situaţii pot fi prezentate fără dubii printr-un singur exemplu dat ca model; la altele dimpotrivă înţelegerea are nevoie de două, uneori chiar trei exemple diferite. Se prea poate să ne pară că astfel scriem ceva mai mult decât o singură formulă generală, dar din exemple concrete mult mai mulţi elevi înţeleg situaţia, decât dintr-o formulă generală.

O modalitate interesantă la care putem apela pentru a veni în întâmpinarea înţelegerii unui exemplu–model este folosirea culorilor (eventual a sublinierilor cu diferite forme sau linii). De pildă, la modelul de prezentare a unei fracţii zecimale periodice mixte în fracţie ordinară, eu subliniez de exemplu fiecare cifră dintre virgulă şi perioadă cu o mică “paranteză” pătrată verde (să zicem) şi la fel sub zero-urile corespunzătoare de la numitor, iar fiecare cifră din perioadă cu o “paranteză” rotundă roşie (dacă am) şi la fel la 9-urile corespunzătoare de la numitor. Desigur că aceste convenţii le păstrez la întregul pacheţel de modele de transformare a fracţiilor zecimale în fracţii periodice, asta pentru a da siguranţă înţelegirii intuitive în procesul de transformare a acesteia în gândire, respectiv în sintetizarea în mintea copilului a unor reguli clare (pe care desigur că nu vreau să i le dau în text, pentru că atunci avem o altă belea: elevii încep să înveţe pe de rost texte, fără a înţelege o iotă din ce spun).

Astfel, de fiecare dată când prezint transformarea fracţiilor periodice în fracţii ordinare prin modele, eu încep cu un exemplu de transformare a fracţiilor zecimale finite în fracţie ordinară. Culoarea şi forma folosite aici le voi păstra apoi şi la fracţiile periodice mixte, la partea dintre virgulă şi perioadă. În tabloul final elevii le pot vedea dintr-o privire care cu care se leagă (de pildă două paranteze pătrate verzi sub cele două cifre dintre virgulă şi perioadă, dar şi sub cele două zero-uri de la numitor, apoi trei paranteze rotunde roşii sub cele trei cifre din perioadă, dar şi sub cele trei cifre de 9 de la numitor; la fracţia zecimală finită apăreau astfel în primul exemplu doar paranteze verzi pătrate).

Revenind la alegerea exemplelor din care elevii să “deducă intuitiv” regula şi peste zile sau săptămâni, atunci când se uită în urmă şi găseşte modelul înrămat, există desigur pericolul apariţiei unor exemple care produc o sugerare intuitivă către o regulă greşită. De pildă, la exemplul 1 : 3 = 0,(3) trebuie neapărat să dăm imediat şi un exemplu de felul 5 : 3 = 1,(6), pentru a nu permite confuzii. După primul exemplu elevul ar putea fi tentat să considere că împărţitorul se pune în perioadă (mai nou, la această lecţie). Exemplul al doilea (cu împărţirea alăturată) ne exclude o astfel de posibilitate de “înţelegere”, astfel încât, chiar dacă este mai dificil, elevul va înţelege sursa corectă a modelului. De fapt, primul exemplu de aici este un foarte bun contraexemplu despre cum nu ar trebui să fie alese astfel de modele de rezolvare (am mai discutat pe larg despre alegerea acestor exemple).

În acest context, revenind la predarea intuitivă, noi trebuie să avem în vedere că intuiţia în formele ei iniţiale de manifestare nu este neapărat o gândire logică foarte stabil corectă. Impresiile intuitive ne pot înşela, iar elevii din vremurile noastre sunt deosebit de vulnerabili la acest fenomen. Asta se întâmplă şi pentru că nu mai au atâta de multă răbdare (ca în urmă cu 20-30 de ani), folosirea în masă a ecranelor de toate tipurile ducând la un deficit de atenţie generalizat la marea masă a populaţiei şcolare (iar cei doi ani de predare online numai nu au ajutat la preîntâmpinarea acestui fenomen).

Aşadar, ca să închei într-un mod fără echivoc, rezum acest eseu printr-un NU! foarte hotărât împotriva folosirii formulelor generale cu n termeni în clasele gimnaziale, la introducerea în lecţii; cel mult la recapitularea din a 8-a pentru EN, dar atunci neapărat însoţite de exemple (în acest caz însă cu exemplele date mai întâi, şi doar apoi în forma generală). C. Titus Grigorovici

P.S. Un astfel de exemplu “la jumătatea drumului”, adică într-o formă semigeneralizată, am găsit într-o carte veche de pregătire a admiterii în licee. Este vorba de lucrarea MATEMATICĂ pentru candidaţii la examenele de admitere în licee, Ed. didactică şi pedagogică, din 1970, autori Maria Dinescu, Ivanca Olivotto, Rosa Gruia. Exemplul respectiv vroia să demonstreze de ce fracţiile periodice simple se transformă în fracţii ordinare cu partea din perioadă la numărător, iar la numitor atâţia de 9 câte cifre erau în perioadă. Este evident că la vremea respectivă autorii au considerat că în clasa a 8-a elevii pot duce atâta generalizare şi nu mai mult. Iată materialul respectiv de la pag. 38-39:

Pe exemplul de mai sus putem filozofa puţin, observând cui i se adresează această lucrare, deci şi materialul reprodus aici, anume candidaţilor la examenele de admitere în licee, adică sigur nu marii mase a populaţiei şcolare, fie ea şi doar de la oraşe. Pe vremea respectivă examenul din finalul clasei a 8-a era benevol, nu general, deci şî pregătirea “aşişderea”! Trebuie precizat totodată că pe vremea aia elevii mergeau la şcoală după împlinirea vârstei de 6 ani şi împlineau 14 ani în clasa a 8-a. Am putea astfel asimila vârsta respectivă cu cea a elevilor actualli de a 7-a.

Revenind la scrierea de mai sus, vedem că pasajul generalizat apare în sensul demonstrativ (10n – 1), nu în sensul rezultatului (999…9), şi desigur doar după câteva exemple concrete (nu cum se face acum în sens prea elevat teoreticist, anume că se dă mai întâi teoria generalizată, iar apoi câteva exemple de înţelegere). După pasajul reprodus aici, în cartea respectivă urmează ca a doua regulă şi deducerea pe exemple a variantelor cu fracţii zecimale periodice mixte, doar că la acestea autorii nu au mai prezentat şi o scriere generală (!!!). Probabil că au considerat că acestea sunt clar prea grele, chiar şi pentru elevii de final de ciclu gimnazial. Las’ că “noi” le dăm la ora actuală chiar şi în clasa a 5-a! Oare a fost făcut un studiu despre care eu încă n-am aflat, un studiu, conform căruia din 1970 şi până acum să fi evoluat puternic inteligenţa elevilor români??? În sus, desigur!

Adaptând cele de mai sus, la recapitularea din clasa a 8-a (sau poate în a 7-a, atunci când ne întâlnim cu o astfel de situaţie), eu folosesc o scriere parţial generală, respectiv parţial particulară, care am văzut că prinde bine la elevi (în finalul gimnaziului la cei mai mulţi). Astfel, considerăm numărul N = 0,(abc), care este apoi “prelucrat” puţin, fiind înmulţit cu 1000, obţinându-se astfel 1000 N = abc,(abc). Vă rog să puneţi dvs. bara de scriere zecimală deasupra, deşi aţi văzut că în lucrarea din 1970 nu apare. Scăzând cele două egalităţi obţinem că 999 N = abc, de unde deducem că N =  abc/999 (tot cu bară deasupra). Vedeţi cu demonstrţia respectivă are o parte clară de “caz particular”, faptul că sunt exact trei cifre în perioadă, dar şi o parte de situaţie generală, faptul că nu sunt date trei cifre concrete în perioadă, ci sunt date litere. Evit însă să dau o literă repetată cu diferiţi indici.

Apropos de bara deasupra folosită în România pentru scrierea zecimală generalizată, adică atunci când cifrele nu sunt date concret, numeric: este evident că la mulţi elevi aceasta poate produce mare bulversare, mai ales atunci când este folosită în scrieri cu fracţii ordinare. Imaginaţi-vă copiii aceia care încearcă să copieze frumos de pe tablă (de obicei elevi care au şi rămas puţin în urmă, poate pentru că profesoara tocmai scria, şi deci nu se vedea la tablă), iar când se uită nici nu înţeleg de ce în scrierea respectivă apare linie şi deasupra, sau apar uneori chiar două linii de fracţii. Folosită o astfel de scriere în clasa a 5-a, alături de folosirea literelor, cu indicii respectivi, în care mai apare şi pasajul cu “puncte puncte”, aceasta duce la blocarea generală şi sperierea definitivă a elevilor. Fără discuţie!

P.P.S. Dacă aveţi impresia că le-am spus “pe toate” atunci vă înşelaţi. Am găsit într-o culegere (nu spui care!) o astfel de generalizare la geometrie, concret la lecţia despre poligoane regulate din clasa a7-a, unde desigur am putea să discutăm despre poligoane regulate cu 3; 4; …; n laturi. Este o culegere care la începutul fiecărei lecţie prezintă pe scurt partea teoretică, fără demonstraţii, dar mai ales, la multe lecţii fără figura corenspunzătoare. Ei, dar la această lecţie autorii s-au gândit să dea totuşi o figură, însă numai una (ca să nu ocupe prea mult loc). Aşa că au dat o figură generală pentru un poligon regulat “cu n laturi”. Uau! Am trăit să o văd şi pe asta!

Gândiţi-vă ce poate înţelege un elev de clasa a 7-a din această figură, un elev care n-a văzut în viaţa lui un poligon regulat cu mai multe laturi. Apropos scriere corecte, veţi spune, lipsesc renumitele “…” (puncte puncte), care să transmită mesajul “şi tot aşa mai departe, până la”.

Ca să nu închei pe acest ton dur, ci să dau şi o soluţie, din experienţa mea în acest sens, eu consider că elevii vor înţelege uşor, intuitiv, ce-i acela un poligon regulat dacă le vom da următoarele elemente. În primul rând, eu le scriu o listă cu denumirile poligoanelor regulate, începând cu triunghiul echilateral şi cu pătratul, şi mergând măcar până la decagon şi dodecagon (explicându-le desigur originea denumirilor în numerele pe limba greacă). În condiţiile actuale această listă ar putea acţiona ca suficientă şi de una singură, cu precizarea de temă să caute pe net imagini cu acestea.

În al doilea rând, eu petrec cu ei timpul pentru a construi un octogon regulat. Acesta îmbină cel mai bine accesibilitatea cu înţelegerea fenomenului general. Înaintea studiului ariei discului, mai fac de obicei şi construcţia unui dodecagon regulat (12 laturi) prin împărţirea cercului cu raportorul, pentru a-i calcula aria (3r2; se face cu cateta opusă unghiului de 30o; ulterior, la după lecţia de trigonometrie, se poate determina ca exerciţiu şi formula ariei octogonului regulat în funcţie de rază).

De fapt, nu pot spune dacă este mai bine să le dăm întâi lista cu toate acele denumiri ciudate (pentagon, hexagon, heptagon, octogon etc.) şi doar apoi să desenăm un octogon regulat, sau dimpotrivă să desenăm mai întâi unul din acesta ca exemplu pentru înţelegerea titlului şi, doar apoi lista cu denumirile respective. Din punct de vedere metodolocic, fiecare variantă are aventajele ei. Oricum, sigur este că de-abia apoi, cel mai bine în ora următoare, putem să predăm cazurile particulare studiate tradiţional în România (cele cu formulele respective de arie, înălţime, apotemă etc. pentru triunghi echilateral, pătrat şi hexagon regulat). Să filozofăm puţin pe seama acestora trei.

Atât triunghiul echilateral, cât şi pătratul, au “o viaţă” separată de ideea de poligon regulat. Ca să le înţelegi apartenenţa lor la “familia” poligoanelor regulate trebuie să înţelegi mai întâi această familie pe nişte cazuri mai apropiate de ideea generală de “poligon regulat”. Hexagonul regulat se mai apropie puţin de această idee generală, dar acesta are proprietatea absolut specială că este format din şase triunghiuri echilaterale. Pentru a înţelege faptul că aceasta este o proprietate absolut remarcabilă, trebuie să avem viziunea de ansamblu, anume că poligonul regulat este compus din  mai multe triunghiuri în general isoscele dispuse “roată în jurul vârfului” (şi de obicei triunghiul isoscel este perceput ceva mai strâns decât cel echilateral). De-abia după înţelegerea măcar a unui caz cu mai multe laturi şi cu unghiurile la centru mai ascuţite, se poate merge la triunghiul echilateral (care se descompune în trei triunghiuri isoscele obtuzunghice), apoi la pătrat (care se descompune în patru triunghiuri isoscele dreptunghice), respectiv la hexagonul regulat (exagonul, cum îl denumesc unii colegi) care se descompune în şase triunghiuri şi care de data asta sunt chiar echilaterale, fiind isoscele cu unghiul la centru de 60o. Aici poate fi observată o mare bucurie la mulţi elevi obişnuiţi (“elevul mijlociu” al lui Hollinger).

În acest context, nu pot să nu observ la figura de mai sus că aceasta prezintă de fapt o jumătate dintr-un hexagon regulat, în care de fapt singurul triunghi isoscel desenat complet este un triunghi echilateral. Pe lângă faptul că şi din acest motiv abordarea generalistă respectivă nu poate conduce mintea copiilor spre realitatea că “un pologon regulat cu n laturi este compus din n triunghiuri isoscele“, eu mă întreb dacă autorii respectivi ştiu ce-i acela un poligon regulat, altul decât cele trei cazuri obligatorii prin programă. Cred totuşi că ştiu, dar nu-i dau defel atenţie fenomenului. Dar atunci mă întreb, de ce mai denumim lecţia respectivă “Poligoane regulate”? Aşa, ca să ne dăm mari cu încă o noţiune ciudată, pe care elevii n-au cum să o înţeleagă? Doar aşa, ca să priceapă cât sunt ei de proşti şi cât suntem noi de deştepţi?

Plecând de la respectivele triunghiuri isoscele cărora le putem stabili unghiul din vârf, cel de la centrul cercului, se pot desigur determina şi unghiurile poligonului regulat în diferite cazuri particulare (sarcină accesibilă şi totuşi nebanală pentru “elevul mijlociu”), dar din păcate această parte a fost scoasă din materie, deci profesorul este atacabil dacă o parcurge şi o cere ca sarcină de lucru şi de evaluare (că pentru olimpici oricum nu se fac “banalităţi” de felul ăsta). Astfel, pentru cei doritori, pentagonul (ca să apară şi acesta) sau decagonul oferă calcule banale, la fel şi nonagonul; octogonul face o şmecherie în care aparent elevii dau de fracţie zecimală în procesul de calcul, dar în final rezultatul este tot o măsură întreagă. Aici ajunge să se activeze gândirea într-un mod magistral, pe baza unui exemplu de dilemă cognitivă foarte drăguţ. Dar, cine mai face chestiuni din acestea?

Toate acestea însă, nu sunt valabile pentru autorii auxiliarului din care am găsit figura de mai sus (nici excluderea din materie, nici studiul situaţiei pe cazuri concrete, altele decât cele trei obligatorii din programă). Aceştia prezintă alături de figura respectivă şi formula generală în funcţie de n pentru măsura unghiului unui poligon regulat cu n laturi. De ce? De aia! Că pot!

Prea devreme! – (1) Drepte coplanare la definirea paralelelor

Elevul de gimnaziu este confruntat constant cu elemente de matematică peste nivelul său de asimilare, peste capacităţile sale de înţelegere. Procesul a început în urmă cu decenii, la început fiind luat ca reper şi ca justificare nivelul celor mai buni elevi. O altă cauză este faptul că au fost coborâte în clasele gimnaziale lecţiile în forma în care acestea se parcurgeau la o a doua trecere, una mai elevată, doar în liceu. La ora actuală, în multe cărţi şi la mulţi profesori avem o atitudine de felul: De ce să le-o dăm în gimnaziu doar intuitiv, pe cazuri particulare, ca s-o şi înţeleagă cât mai mulţi? Hai să le-o dăm direct în forma generală, de matematică matură. Nu-i bai că cei mai mulţi nu vor mai înţelege nimic. Important este că noi arătăm “lumii întregi” că stăpânim forma cea mai înaltă din punct de vedere a exprimării riguroase matematice. Pentru că există desigur întordeauna riscul ca să ne apostrofeze careva de felul “cum, nu şti forma generală, cea de vârf?” (de curând am vorbit despre aceste aspecte urâte ale interacţiunii din lumea profesorilor de matematică).

Desigur că fenomenul se petrece şi în cadrul claselor gimnaziale, adică între acestea, ca anumite elemente să fie predate în clase mai mici, deşi elevii nu au capacitatea sau cunoştinţele necesare a le pricepe decât mai târziu, după ce au învăţat elemente suplimentare. Profesorii, care însă cunosc toată materia, au în astfel de momente dificultăţi reale de a nu “turna toată tema respectivă” peste elevi în lecţia predată într-o clasă mică. În această miniserie mi-am propus să abordez trei astfel de exemple în care diferite elemente matematice sunt predate în forme prea elevate pentru o primă abordare.

Care este rezultatul unor astfel de predări? Elevii nu înţeleg mai nimic (cel puţin marea masă a elevilor), se stresează (în toate formele ce se pot imagina, iar psihologii pot descrie multe) şi se îndepărtează de matematică. În funcţie de posibilităţi părinţii reacţionează angajând un meditator. Mulţi dintre aceştia, la rândul lor, fentează parcurgând cu elevii lecţiile în avans, între patru ochi existând şanse mai mari ca elevul să priceapă totuşi ceva, mai ales dacă o faci înainte de a fi intervenit sperietura de la clasă.

O altă urmare este faptul că cei mai mulţi elevi reduc matematica la un set de reguli şi de texte ce trebuie pur şi simplu învăţate pe de rost, gândirea fiind eliminată cu totul din discuţie (din procesul matematic). Dramatic este faptul că elevii nici măcar nu înţeleg că ei nu gândesc. Astfel, ei ajung să confunde înţelegerea adevărată, gândită, cu impresia că pot să redea ceva (total sau într-o oarecare măsură): dacă pot reda o situaţie înseamnă că au înţeles. Asta nu este însă de obicei adevărat: imediat ce schimbi puţin (sau mai mult) modelul, vei vedea o bulversare generală, manifestările mergând de la blocaj total până la situaţii în care vei primi rezolvări total anapoda (de pildă, demonstraţie cu metoda triunghiurilor congruente la probleme unde nici măcar nu apar în figură triunghiuri congruente).

*

Să abordăm deci primul exemplu propus, anume includerea cuvântului “coplanare” în definirea dreptelor paralele din prima parte a clasei a 6-a (unii profesori se “pot trezi” să o dea chiar şi în a 5-a): Două drepte coplanare care nu au puncte comune se numesc paralele (sau orice altă variantă pe care o preferaţi, de pildă cu folosirea cuvântului “neintersectate” etc.).

Să ne punem în locul elevilor. În faţa lor se deschid două căi: fie înţeleg lucrurile şi atunci le pot reda, eventual cu cuvintele lor, dar oricum le pot desigur folosi la nevoie, fie nu le înţeleg, iar atunci apare impulsul de a le învăţa pe de rost (impuls personal sau la sugestia părinţilor). Incluzând în această definiţie un cuvânt pe care elevii nu-l înţeleg, asta duce la obturarea căii de înţelegere a noţiunii, apare sperietura şi blocajul şi rămâne ca soluţie disperată doar învăţarea pe de rost. În acest caz însă, la cei mai mulţi elevi memoria nu poate duce pe durată stăpânirea definiţiei, fără să mai discutăm că nici măcar nu putem spera la apariţia cu timpul a înţelegerii noţiunii, pentru că mentalul a fost blocat de sperietura iniţială.

Aşa se ajunge la starea de toceală împănată cu multe spaime în matematică. Rezultatul este că o noţiune elementară, destul de accesibilă în principiu, devine un “balaur” pe psihicul copilului. Apoi, cuvântul fiind relativ lung şi având deja ataşată sperietura, starea de frică se extinde şi la alte situaţii, de pildă la noţiunea de drepte perpendiculare (tot un cuvânt lung şi începând cu litera p).

Desigur că, din punct de vedere al rigurozităţii exprimării matematice, cuvântul “coplanare” nu poate fi omis, pentru că asta ar lăsa “portiţa deschisă” pentru posibilitatea ca “cineva” să înţeleagă şi posibilitatea acelei poziţionări denumită în clasa a 8-a drept “necoplanare”. Să analizăm puţin aspectele acestui moment.

Păi, în primul rând, putem susţine liniştit că marea majoritate a elevilor nu vor “vedea” situaţia dreptelor necoplanare, mai ales dacă profesorul desenează imediat măcar o reprezentare a două drepte paralele (renumitul efect de “în figura alăturată” care îi direcţionează elevului înţelegerea). Totuşi, există în continuare riscul ca un “mic Einstein” să “scoată porumbelul pe gură”, respectiv să ia profesorul la întrebări, că “şi dacă le pune aşa:…?” arătând sau sugerând cumva situaţia dreptelor necoplanare (de pildă cu două creioane în aer).

Acest lucru se poate intâmpla din două cauze: fie acelui elev chiar “i-a mers mintea” singur, adică a văzut în propria imaginaţie poziţia unor drepte necoplanare (neintersectate dar nici paralele), fie elevul are informaţia respectivă primită deja de undeva. În primul rând, eu consider ca extrem de rară prima situaţie, acea când elevul “vede singur” poziţia respectivă (nu imposibilă, dar foarte puţin probabilă).

Revenim aşadar la faptul că unii copii află lucrurile mai devreme decât din lecţia de la şcoală. Am povestit despre situaţia când un meditator particular parcurge lecţiile în avans (un fenomen foarte urât, ce se întâlneşte pe scară tot mai largă în oraşele româneşti). Desigur că sunt probabili şi părinţi care au ajuns la concluzia că trebuie ei însuşi să facă aşa ceva. Există şi elevi care ajung la concluzia că e bine dacă fac aşa ceva: au mult mai mult succes la ora următoare dacă citesc în avans lecţia din manual, iar cu timpul acest model le devine felul lor de a fi. Desigur că nimeni nu se gândeşte care este efectul unei astfel de acţiuni asupra celorlalţi elevi sau asupra mersului lecţiei în general.

Există şi o altă cale prin care diverse cunoştinţe pot ajunge ca informaţii la copii, anume prin diferite cărţi cumpărate de către părinţi sau diverse rude/ prieteni, date copiilor doar aşa, “să-i trezească curiozitatea”. Copiii le parcurg mai mult sau mai puţin superficial, dar oricum rămân cu cuvinte sau cu imagini şi pe baza cărora intervin în lecţii ulterioare (dacă îşi amintesc). Există diverse astfel de cărţi, inclusiv unele cu o parcurgere destul de superficială, gen “enciclopedie în imagini” traduse din alte limbi. Acestea alimentează şi ele respectivul fenomen de “care pe care”, fenomen de dat mare pe baza a care ştie mai multe şi mai repede. Desigur că nici internetul nu poate fi exclus din această discuţie, deşi nu i-aş acorda o pondere prea ridicată.

Să revenim totuşi la cuvântul nostru buclucaş. Cuvântul coplanar este un termen tehnic ce ţine de clasa a 8-a, respectiv de geometria în spaţiu; acelaşi lucru este valabil şi în legătură cu cuvântul necoplanar. Înţelegerea cuvântului coplanar are loc atunci când este privit din afară (din afara unui plan), adică atunci când persoana care-l foloseşte se poziţionează “mai sus”, adică “la un nivel superior”, în cazul acesta la nivel 3D, din care ne uităm la o parte a “lumii în care suntem” – asta putem să facem uşor – şi îi analizăm “un obiect”, o zonă etc.

Dimpotrivă, în clasa a 6-a copilul este mental “în plan”, adică în geometria 2D, specifică unei poze, aşa încât el nu este în stare să facă acest “flip-flop”, această tumbă imaginară, de a se ridica în 3D (într-o “altă dimensiune”), pentru a analiza situaţia, iar apoi de a coborî din nou în starea mentală de 2D. Acest lucru este valabil mai ales dacă nu se face nici cea mai mică pregătire în acest sens.

Mai există însă şi un alt aspect – deloc neglijabil, anume acela al autoperceperii profesorului de matematică. Noi, ca matematicieni, nu acceptăm să vorbim folosind aspecte false, neadevăruri. Aşa este fiinţa noastră de matematicieni. Aşa suntem noi. Ca urmare, simpla eliminare a acestui cuvânt nu ar rezolva problema. Ne-ar “zgâria pe creier” pe mulţi dintre noi. Poate că unul sau altul dintre profesori l-ar putea elimina din propria exprimare, din predare (doar aşa, pentru că a înţeles ce perturbare produce acest cuvânt la nivelul majorităţii elevilor), dar sigur nu le poţi cere tuturor acest gest. La nivel naţional soluţia respectivă sigur nu este una viabilă.

Aşadar, ce-i de făcut? De obicei, atunci când ridic o problemă încerc să vin şi cu o soluţie. În speţa de faţă mă tot băteau gânduri de genul: “pe vremea mea”, adică înainte de 1980, în manualele lui Hollinger adică, n-am avut aşa ceva. Mă mulţumeam cu atâta: bodogăneam şi gata. Pănă când mi-am făcut prin vacanţa de iarnă timp şi am scos cutia cu manualele vechi din copilărie. Surpriza a fost destul de puternică: şi Hollinger prezenta situaţia corect şi complet, excluzând neînţelegerea, dar o făcea într-un limbaj “pe mintea copilului”. Iată cum sună definiţia din manualele copilăriei mele:

Definiţie: Două drepte din acelaşi plan care nu au nici un punct comun se numesc drepte paralele (A. Hollinger, Geometrie, Manual pentru clasa a VI-a, Editura didactică şi pedagogică, 1977). Pentru înţelegera întregului “tablou” redau în continuare în citat şi următorul rând legat de acest subiect:

Pentru prescurtare, se foloseşte semnul ; de exemplu: AB  CD sau CD  AB (fig. IV.1). Întrerup citatul, precizând că aici, în manual, urmează o figură cu două drepte paralele (“orizontale”; eu aş fi pus şi unele “oblice”; în lecţia de la tablă eu pun întotdeauna trei situaţii: o pereche de drepte “orizontale”, o pereche “verticale” şi una cu drepte “oblice” paralele). Reiau citarea din manualul lui Hollinger:

În definiţia dreptelor paralele trebuie spus că dreptele sînt în acelaşi plan. Dreptele d şi d’ din figura IV.2 (două muchii ale unui cub) n-au nici un punct comun, totuşi ele nu sînt paralele, căci nu sînt în acelaşi plan. (…)

Întrerup din nou citarea textului, făcând o paranteză logică, anume cu precizarea că în continuare autorul se ocupă şi de situaţia ciudată când unor elevi li se prezintă două drepte neparalele sub forma a două segmente ce nu se ating iar unii elevi ar putea considera că aceste drepte nu se intersectează. Este foarte important şă punem elevilor această întrebare, pentru că din răspunsurile greşite (că acestea ar fi paralele de vreme ce nu au nici un punct comun) vom putea vedea care elev nu a ajuns să înţeleagă cu adevărat fenomenul de dreaptă, spre deosebire de cel de segment. Desenul nu i-a ieşit foarte bine lui Hollinger, în figură pârând că dreptele se intersectează evident. Cel mai bine se înţelege fenomenul în doi paşi: pentru început desenăm două segmente ce nu se ating, dar ale căror drepte suport nu sunt paralele (pe vremea respectivă nu se prea vorbea de dreptele suport). În acest prim pas punem întrebarea dacă cele două drepte sunt paralele. Apoi, după un moment de gândire, eventual după ce am auzit prin clasă şi răspunsuri de felul că da, ar fi paralele, atunci, într-un al doilea pas prelungim segmentele respective pentru a arăta că dreptele nu sunt însă paralele (ca în figura completă IV.3 din manual). O variantă interesantă ar fi ca punerea întrebării să aibă loc în legătură cu două “drepte” desenate la marginea tablei, punctul lur de intersecţie fiind situat în afara teblei. Hollinger mai dă apoi şi un exemplu din spectrul iluziilor optice. Textul continuă apoi cu Postulatul lui Euclid, cu analiza acestuia şi cu două desene sugestive pentru lămurirea situaţiei. Pentru cei care doresc să vadă în detaliu aceste aspect ataşez cele două pagini despre care am vorbit (pag. 62-63), decupate doar cu ce ne interesează aici):


Dar să revenim la cuvinţelul nostru. Deci, putem vorbi liniştit de două drepte “cuprinse în acelaşi plan” (“situate în acelaşi plan“, sau cum a zis Hollinger: “din acelaşi plan“), în loc să folosim termenul mult mai riguros de “drepte coplanare”.

Oricum, veţi spune, tot se face referire la ideea de “plan”, iar asta ar trebui lămurită înainte. Şi da, aveţi dreptate, iar Hollinger a şi făcut-o, chiar la începutul manualului (care reprezenta totodată şi începutul geometriei, pe vremea respectivă începutul geometriei riguroase nefăcându-se în clasa a 5-a). Astfel, la începutul manualului găsim următoarele precizări, în cadrul primei lecţii (1.1 Planul. Punctul. Linia) găsim:

Planul. 1) O suprafaţă dreaptă şi netedă, ca de exemplu tăblia unei mese, tabla ş.a. reprezintă un plan. Mai precis, fiecare din ele reprezintă numai o parte din plan. Planul este nelimitat (nesfîrşit). Vom asemui planul cu o foaie de hîrtie sau de tablă foarte subţire, nu se ţine seama de grosimea ei, dar rigidă. Ea nu se poate încovoia, rupe sau găuri. (…)

Pe următoarea pagină găsim: 2. Punctul şi linia. Cînd atingem uşor hîrtia cu vîrful creionului, pe hîrtie apare un punct. Cînd mişcăm creionul astfel încît vîrful lui să alunece pe hîrtie, apare o linie. Orice linie este formată din puncte, aşezate unul lîngă altul, fără goluri între ele. (…) Punctul şi linia sînt figuri geometrice. Cu ajutorul lor se pot reprezenta obiectele din realitate, ele sînt modeleale acestor obiecte.

  1. Geometria plană. Unul sau mai multe linii sau puncte formează o figură geometrică. Cînd toată figura se găseşte într-un plan, se spune că figura este plană. De exemplu, triunghiul, dreptunghiul, cercul ş.a., sînt figuri plane. În cadrul acestei cărţi se expun proprietăţile figurilor plane. Această parte a geometriei se numeşte geometrie plană.

4) Figuri geometrice, puncte şi linii se pot desena şi pe un cilindru (un burlan sau o cutie de conserve), sau pe o sferă sau pe o altă suprafaţă, (…). Studiul acestor figuri nu intră în cadrul acestei cărţi. De asemenea, geometria se ocupăcu studiul unor corpuri, cum ar fi paralelipipedul, cilindrul sfera ş.a. Această parte a geometriei se numeşte geometrie în spaţiu. Pentru cei doritori de un studiu complet, ataşez aici şi paginile respective în integralitatea acestei prime lecţii (din pag. 3-5, rearanjate aici electronic în două pagini):


După cele două pagini introductive, de la începutul manualului, profesorul Hollinger putea liniştit să folosească expresia “două drepte din acelaşi plan”, fără a avea grija că încalcă nevoia de rigurozitate naturală a profesorilor de matematică, atâta cât se manifestă aceasta la nivelul matematicii gimnaziale, respectând totodată şi posibilităţile de înţelegere a elevilor din clasa a 6-a. Eu personal, oricum nu ţin minte să fi avut momente de neînţelegere.

Revenind în timpurile noastre, spre finalul acestui prim sfert al secolului XXI, eu cred că oricine poate la începutul geometriei, adică atunci, în clasa a 5-a, să povestească în felul acesta elevilor – 5 minute, cel mult 10 – despre plan, despre puncte sau linii, despre geometria plană şi despre geometria în spaţiu, fără a intra în detalii prea tehnice şi fără a apela, de pildă la renumitele reprezentări grafice ale unui plan în formă de paralelogram etc. Doar o poveste care apelează la exemple banale din lumea cunoscută a copiilor (mie îmi place exemplul cu geamul) este suficientă ca să lămurească ideea, iar apoi se poate folosi termenul liniştit.

Ca o observaţie colaterală, merită menţionat că Hollinger vorbeşte întotdeauna despre “plan”, adică la singular, şi nu despre “plane”. El vorbeşte despre “plan” şi despre “linii sau puncte”. Asta trebuie înţeleasă legat de observaţia de la început, cum se poziţionează mental elevul în 3D pentru a înţelege ce-i acela un plan, fără însă a avea în vizor preocuparea de a lucra apoi cu mai multe plane (specific clasei a 8-a), ci doar de a înţelege şi a descrie cât mai simplu “lumea” în care se va petrece geometria plană.

Dacă aţi studiat textul integral, aţi observat desigur că am omis o mare parte din text, de pildă partea cu alunecarea planului pe el însuşi. Nu o consider relevantă, nici clar folositoare la ceva anume. Am pus în copie prima lecţie integral, dar cred că se poate şi fără această parte, la fel şi fără partea despre feţele planului etc.

În finalul acestui articol, probabil că mulţi dintre dvs. se vor plânge de “un pic cam multă zdroabă pentru un singur cuvinţel! (mai exact exagerat de multă!)”. Totuşi, aici atingem un alt subiect foarte important, extrem de neglijat la ora actuală pe scară largă, anume acela de introducere a unei noţiuni noi. La ora actuală mulţi profesori văd începutul unei lecţii, respectiv partea de introducere a noilor noţiuni, drept o parte de mică importanţă, aproape neglijabilă. Cea mai importantă parte o reprezintă pentru mulţi partea de aplicaţii, cât mai complicate dacă se poate. Pe drumul către aceasta mulţi profesori doresc să parcurgă cât mai repede faza de introducere, de definire a noilor noţiuni sau de predare a teoremelor. Apoi, se aruncă cu mare avânt în aplicaţii cât mai “o-la-la!”. Astfel, cine mai are timp să piardă minute valoroase din oră pe lămurirea ideii de drepte coplanare? Pe bune?! Faptul că cei mai mulţi elevi nu înţeleg mare lucru, acest fapt este din păcate pentru mulţi colegi profesori un aspect total neglijabil.

Nici feed-back-ul primit de către aceşti colegi nu le dă de gândit: dacă la următorul test mulţi copii nu ştiu definiţia dreptelor paralele, atunci urmează o “ceartă zdravănă”, iar la următorul test profesorul ştie că dacă le dă din nou definiţia dreptelor paralele, iar “îi va fi bubuit”. Rezultatul este întotdeauna unul şi acelaşi: toţi ajung să-şi ia meditator particular şi uite aşa ajungem să avem “rezultate bune” cu clasa respectivă.

O componentă aparte a acestei situaţii sesizate aici o reprezintă rolul şi forma definiţiilor, aşa cum acestea au ajuns să fie înţelese în mentalul profesorului de matematică din acest început de secol XXI în şcoala românească. Se apropie tot mai mult momentul când îmi voi face curajul, încercând să abordez şi tematica definiţiilor în matematica şcolară.

Apropos de introducerea noţiunilor, trebuie totuşi să ne mai întoarcem la manualul lui Hollinger din anii ’70. Dânsul a mai aplicat o tehnică interesantă, care din păcate a cam fost abandonată odată cu reforma din 1980, astfel încât la ora actuală profesorii n-o mai cunosc. Este vorba despre introducerea noţiunilor prin predarea în spirală.

Astfel, în manualul respectiv (cel din 1977) Profesorul Hollinger vorbeşte prima dată despre dreptele paralele la paginile 20-21 în cadrul lecţiei 2.2. Relaţia de incidenţă, acolo unde apar pe scurt următoarele idei: Dreapta conţine o infinitate de puncte. (…) Printr-un punct se pot duce o infinitate de drepte. (…) Prin două puncte se poate duce o singură dreaptă. (…) Două puncte determină o dreaptă. (…) În această succesiune se ajunge apoi la: Intersecţia a două drepte conţine cel mult un punct. (…) Teoria respectivă se termină sec cu următoarea concluzie: Două drepte sînt ori concurente, ori paralele. (…)


Am ataşat aici în imagine acest ultim pasaj al lecţiei respective, din care se vede că nu se dă nici cea mai mică atenţie ideii de coplanaritate, dar că Hollinger a pus deja de aici alăturat cele două poziţii posibile în care pot sta de fapt două drepte în geometria plană. După cum spuneam mai la începutul articolului, prezenţa acestor două imagini anulează din start posibilitatea ca vreun elev “să vadă” în acest moment şi varianta dreptelor necoplanare.

Dacă vrem să avem o abordare umană a introducerii noţiunilor, atunci nu ne vom arunca din prima într-o definiţie (elevii nu au de obicei capacitatea de a înţelege o noţiune din prima după o definiţie), ci undeva mai înainte vom intermedia contactul elevului cu acea noţiune într-o formă mai puţin teoreticistă, mai superficială. Hollinger a făcut-o aici în cadrul unui proces de analiză filozofică “în mişcare” intelectuală, folosind intens imaginile alăturate. Putem spune că oarecum elevii ajungeau să întâlnească pentru prima dată dreptele paralele în mod informal, în cadrul unui eveniment cu un cu totul alt subiect (poziţii relative a punctelor şi dreptelor). Cunoaşterea adevărată urma să aibă loc ulterior. Mai mult, în paginile următoare nu apăreau aplicaţii directe la dreptele paralele, doar că după o vreme elevii începeau totuşi să se întâlnească cu acestea în diferite ocazii, însă dar atât. De-abia după lecţia de la paginile 62-63 încep şi aplicaţiile (unghiurile formate de două paralele cu o secantă etc.).

Ca un aspect colateral, desigur că aţi observat aici, “v-a sărit în ochi”, modul de folosire “incorectă” a scrierii din teoria mulţimilor pentru exprimarea intersecţiei a două drepte într-un punct. Ceva de genul: “da’ pân-aici!”. Adică, folosim elemente din scrierea tipică mulţimilor acolo unde acestea ne uşurează scrierea (semnul de intersecţie în locul cuvântului respectiv), dar nu absolutizăm, deci nu îngreunăm scrierea în altă parte. Parcă îl aud spunând pe Hollinger că gândirea fenomenului geometric este oricum foarte grea, nu ne mai trebuie şi o îngreunare suplimentară pe baza aplicării radical-extremiste a scrierilor din teoria mulţimilor. Gen “pân-aici!”: Intersecţia a două drepte este un punct şi nu o mulţime. “Basta!”

Pentru cei ce mi-au urmărit scrierile din ultima vreme, desigur că puteţi sesiza apropierea acestui articol de ideea de “umanizare a matematicii şcolare” exprimată în interviul cu Dl. Profesor Radu Gologan, reluat de curând de la începutul anului 2022. În speranţa unor paşi în acest sens, pe curând!  C. Titus Grigorovici

P.S. Apropos, “pe vremea mea”, acelea nu se numeau drepte “necoplanare”. Eu ţin minte destul de vag denumirea de drepte “strâmbe în vânt” (probabil, tradusă de unii din germană, unde se spune “windschief”; cred că am auzit această denumire în liceu sub forma de “necoplanare sau strâmbe în vânt”). Aruncând o privire şi în manualul de geometrie de a 8-a din 1978, am găsit expresia de “drepte oarecare”, pe care însă nu o consider deosebit de corectă. Nici măcar clasicul desen pentru drepte necoplanare nu apare acolo, ci doar un paralelipiped însoţit de referiri la anumite exemple de muchii, cât şi o imagine reprezentând o cale ferată (cu trenul aferent) ce trece peste o şosea (cu maşinile aferente), desenate în tehnica imaginilor des întâlnite in cărţile de la jumătatea secolului XX.

Oricum, celelalte două poziţii (paralele sau secante) erau şi în manualul respectiv descrise ca “două drepte din acelaşi plan“, în nici un caz drept “coplanare”. Cuvintele tehnic riguroase de “coplanare” respectiv “necoplanare” generaţia mea le-am auzit doar în clasa a 10-a, mai exact la o a doua trecere prin geometria plană. Este foarte important acest aspect: la o primă cunoaştere, termenii noi erau introduşi intuitiv şi într-un limbaj ne-tehnicizat excesiv, urmând ca la o a doua trecere lucrurile să capete clare accente de rigurozitate matură teoretic.

P.P.S. Când să declar articolul finalizat, inclusiv P.S.-ul de mai sus, mi-am dat seama că aş putea arunca o privire şi în manualele anilor 80′ (autori Ion Cuculescu şi Constantin Ottescu). Citez în continuare dintr-un manual din 1988 (îl am şi pe cel iniţial din 1979, dar şi o variantă din 1995, dinainte de marea schimbare din 1997). La pagina 3 manualul începe astfel:

(…) Anul acesta vom începe un studiu sistematic al geometriei. Vom studia o parte din geometria în plan, deci vom studia proprietăţi ale figurilor dintr-un plan dat, fixat. Aici merită deja intervenit: observaţi exprimarea mult prea pretenţioasă pentru copiii de gimnaziu mic (clasa a 6-a), exprimare de origine academică, ce presupune o privire matură, “de sus”, total nepotrivită copilului mic ce ia pentru prima dată contactul cu aceste cuvinte. De-abia apoi autorii îşi aduc aminte să prezinte ce-i acela un plan (tot la pag.3):

Planul este o noţiune abstractă, despre care ne facem o idee apropiată de cea exactă privind, de exemplu, o foaie netedă de hârtie, o pagină de carte, şi închipuindu-ne că această foaie este prelungită la infinit în toate părţile. În plus, această “foaie” nu are grosime. (…) Doar folosind cuvântul “abstract” şi autorii “i-au pierdut” din start pe mulţi copii. Privesc aici doar atitudinea, pentru că oricum copiii nu se apucă neapărat să citească manualul foarte riguros; mult mai des aceştia răsfoiesc manualul şi se uită doar la “poze”. Aşadar mesajul ridicării “lungumii de undă” al limbajului se adresa profesorilor, iar aceştia desigur că le explicau elevilor ce înseamnă aceea o “noţiune abstractă”. Sau nu? Interesant este că autorii erau total preocupaţi de prelungirea planului la infinit în toate părţile, cât şi de faptul că nu are grosime, neglijând total faptul că trebuie să nu fie curb (cum deseori sunt paginile unei cărţi, sau ale unui caiet la început). În manualul din 1995 (care avea pe lângă domnii de mai sus încă doi autori: Stefan Kleitsch şi Laurenţiu N. Gaiu) găsim însă următorul aliniat (pag.3):

Planul este o noţiune “abstractă”, despre care ne facem o idee apropiată de cea exactă privind, de exemplu, suprafaţa unei mese, placa de sticlă de la fereastră, o foaie netedă de hârtie (caiet), o pagină de carte şi închipuindu-ne că toate acestea sunt prelungite la nesfârşit “în toate părţiele”. În plus, vom considera că el nu are grosime. Aha! Deci a revenit “masa” lui Hollinger, respectiv masa pe care lucrează orice copil. Totodată, expresia “prelungită la infinit ” a fost înlocuită cu mai vechea dar şi mai accesibila “ la nesfârşit “.

Dar să avansăm cu această anchetă suplimentară. În manualul din 1988, la pagina 33  apar şi dreptele paralele. Lecţia începe astfel: Să considerăm două drepte diferite a şi b. Ele nu pot avea două puncte diferite comune, deoarece am văzut că prin două puncte trece o dreaptă şi numai una. Uau! Deci pe-atunci nu existau drepte suprapuse! Interesant. Citim mai departe: Se poate întîmpla ca două drepte diferite date a şi b să aibă un punct comun A. (… + figură) E poate întîmpla ca două drepte distincte să n-aibă nici un punct comun.

Definiţie. Două drepte diferite a şi b, care n-au nici un punct comun, se spune că sînt paralele. (… + figură) Interesant este că figura alăturată definiţiei nu prezintă două drepte paralele, ci două drepte clar neparalele, care însă nu se intersectează în zona figurii; aici nu există un desen cu două drepte paralele, ci doar se vorbeşte despre acestea; ciudat! Mult mai interesant e să observăm cum a evoluat situaţia în manualul din 1995 (pag. 92):

(…) dacă două drepte au două puncte comune, atunci ele au toate punctele comune şi se numesc drepte identice sau confundate; (… Aha!) Definiţie. Două drepte distincte (diferite) a şi b conţinute în acelaşi plan, care nu au nici un punct comun se numesc drepte paralele.

Deci, pe lângă revenirea la “posibilitatea” ca două drepte să fie suprapuse, vedem că a revenit şi condiţia ca dreptele paralele să fie “ conţinute în acelaşi plan “. Oricum, în 1995 sigur încă nu erau descrise ca două drepte “coplanare” în clasa a 6-a.

Închei aici aceste şapte pagini de zdroabă pentru un singur cuvânt, dar unul folosit în mod extrem de stupid, care terorizează masiv elevii, cu următoarea întrebare: “De ce şi de unde a apărut acest cuvânt în a 6-a?”. O sursă a unui răspuns posibil ar putea consta într-o interpretare prea riguroasă, prea “avântată”, din partea autorilor de manuale sau auxiliare, a unor elemente din Programa oficială din 2017, unde găsim următoarele cuvinte. În clasa a 5-a: Punct, dreaptă, plan, semiplan, semidreaptă, segment (descriere, reprezentare, notaţii). Apoi, în clasa a 6-a: Drepte paralele (…, deci fără aluzie la plan), dar şi Drepte perpendiculare în plan (…). What?

Reclamă la octaedrul regulat

Matematica şcolară românească este orientată şi preocupată obsesiv doar spre acele teme care oferă clar aplicaţii ulterioare. Lipsesc însă preocupările şi cunoştinţele despre subiectele frumoase, dar care nu oferă aplicaţii variate în zona problemelor de concursuri. În general lipsesc cu desăvârşire diverse subiecte matematice care din diferite motive au fost excluse din programa şcolară de-a lungul timpului. Astfel de subiecte lipsesc de obicei şi din cultura generală a profesorilor de matematică, deşi ele apar în diferite situaţii “din afara matematicii şcolare”; ca urmare deci, acestea lipsesc şi din cultura generală a întregii populaţii culte. Cel mai flagrant exemplu în acest sens a fost momentul apariţiei romanului Codul lui DaVinci în începutul căruia autorul Dan Brown a inclus Şirul lui Fibonacci. Toţi oamenii din jurul meu, care citeau cărţi mă căutau la vremea respectivă să le explic ce-i acela Şirul lui Fibonacci.

Unul din subiectele ce mă preocupă este felul în care eu să ofer elevilor de clasa a 8-a cunoştinţe minime, elementare despre octaedrul regulat. Folosesc prezenta postare pentru a trage un semnal de atenţionare la adresa colegilor profesori, pornind de la o apariţie surprinzătoare a acestui corp într-o reclamă difuzată la televiziune, reclamă în care octaedrul apare ca vedetă într-un rol extrem de dureros, încercând să simuleze vizual durerea cauzată de hemoroizi “ştiţi voi unde”. Pentru a înţelege despre ce vorbesc, vă rog să căutaţi reclama la medicamentul Procto Glyvenol la adresa https://www.youtube.com/watch?v=5LRAVsjKq0I .

Aşa, după ce m-am străduit puţin să vă stârnesc un minim zâmbet în colţul gurii, pe baza vizualizării corpului respectiv, aş dori să vă provoc în continuare la a-l cunoaşte cât de cât, astfel încât să înţelegeţi ce spun cănd mă plâng că astfel de cunoştinţe nu sunt defel incluse în materia predată în şcoli. În acest sens voi încerca o minimă prezentare a unor informaţii legate de octaedru. Nu doresc însă să mă lansez într-o prezentare exhaustivă, ci mai degrabă într-o prezentare minimalistă a aspectelor de bază, cu rol de stârnire a curiozităţii cititorului, pe baza căruia să înceapă un proces de căutare pe internet. Astfel, deşi este vorba de o temă de geometrie, a cerei prezentare ar necesita multe imagini, eu mă voi rezuma la a vă prezenta doar în text paşi acestei minimaliste cunoaşteri, urmând ca cei cărora le voi fi stârnit suficient curiozitatea să parcurgă fiecare pentru sine drumul respectiv.

Există cinci corpuri perfecte, aşa numitele poliedre regulate, denumite după numărul de feţe exprimat original de către învăţaţii greci: tetraedrul (4 feţe triunghiuri echilaterale), hexaedrul (adică cubul, având 6 feţe pătrate), octaedrul (8 feţe triunghiuri echilaterale, “prietenul nostru cauzator de hemoroizi”), dodecaedrul (12 feţe pentagoane regulate) şi icosaedrul (20 feţe triunghiuri echilaterale). Toate ar merita extinderea denumirii de “regulate”, dar din motive practice de utilizare sunt denumite simplu, după numărul feţelor. Primele două sunt prezente în programa şcolară românească; ultimele două sunt destul de complicate, desenarea lor fiind o provocare în sine (despre care nu mi-am propus să vorbesc acum). Octaedrul nu e inclus defel în programă, deşi este destul de accesibil, fiind cu totul la nivelul materiei şcolare de clasa a 8-a din România.

Astfel, octaedrul regulat ne apare ca un corp compus din două piramide cu baza comună. Este vorba aici despre renumitele şi foarte des întâlnitele piramide patrulatere cu feţele laterale triunghiuri echilaterale, ştiţi, cele care au câte două feţe laterale opuse perpendiculare. Ca urmare, pentru orice elev binevoitor, chiar şi determinarea formulelor de arie totală şi volum reprezintă nişte sarcini deosebit de accesibile (calcul în funcţie de lungimea muchiei).

Dar, cum se desenează un astfel de corp? Cea mai practică reprezentare grafică este următoarea: desenaţi un cub şi trasaţi diagonalele fiecărei feţe. Apoi uniţi în mod corespunzător centrele astfel obţinute ale feţelor cubului. Desenul implică foarte foarte multe linii, riscând să devină total de neînţeles, aşa că recomand cu căldură ca diagonalele feţelor cubului să fie trasate cât mai fin cu putinţă, doar cât să se poată vedea punctele de intersecţie de pe fiecare faţă. Apoi uniţi cu linie continuă muchiile “din faţă” ale octaedrului, respectiv cu linie întreruptă muchiile “din spate”. Dacă luaţi un creion colorat (sau un alt instrument cu linie fină) şi trasaţi încă o dată octaedrul (de exemplu un roşu ca să semene cu cel din reclamă), atunci se va înţelege foarte bine cum arată acest corp.

Desigur că puteţi să porniţi şi de la un desen clasic al unei piramide patrulatere, construind încă una simetrică “în jos”, dar această metodă nu vă garantează o figură foarte clară, existând pericolul ca octaedrul dvs. să fie prea ţuguiat (şi de pildă să nu îndeplinească perpendicularitatea de care am vorbit, pentru că cei mai mulţi nu dau atenţie unor astfel de detalii când desenează o piramidă – din păcate).

Revenind la cele cinci corpuri perfecte, inclusiv demonstrarea faptului că există doar acestea cinci este o sarcină de nivel gimnazial: faceţi un tabel având pe capul orizontal unghiurile corespunzătoare poligoanelor regulate până la hexagon – 60o, 90o, 108o, eventual şi 120o – iar apoi analizaţi pe verticală posibilităţile numărului de feţe dintr-un colţ, plecând de la faptul că suma unghiurilor plane din jurul unui vârf de corp nu poate atinge valoarea de 360o.

Găsiţi elemente la care m-am referit în această postare intrând pe site-ul pentagonia.ro la Revista Pentagonia 1998-2002 şi deschizând pdf-ul cu caietul nr.2 pentru prezentarea octaedrului şi a unor desene legate de acesta, respectiv pdf-ul cu caietul nr.3 pentru tabelul de demonstrare a existenţei doar a celor cinci corpuri perfecte. În caietul nr.4 găsiţi şi ultima parte a seriei despre aceste corpuri.

Dar ce puteţi face cu aceste informaţii? Cel mai simplu ar fi includerea acestora în ore din săptămâna “Şcoala altfel”, sau în diverse alte momente când din diferite motive nu prea se lucrează la ore (de pildă în ultima oră înainte de vacanţă). Desigur că problematizarea reprezintă cea mai raţională cale de a-i implica pe elevi în cunoaşterea acestui corp, astfel încât lecţia respectivă să reprezinte de fapt o ocazie eficient folosită înspre activarea gândirii elevilor (gândire care este folositoare şi la examen!). Ca urmare este evident că nu sunt de părere, dar  defel, ca profesorul să-i dea elevului direct formulele respective.

Lecţia respectivă poate fi studiată şi ca temă, de pildă dând elevului un proiect pentru o notă suplimentară. Cel mai bine ar fi ca în acest caz elevul să primească o minimă listă cu ce ar trebui să includă în “lecţia” respectivă, aşa încât acesta să nu “dea direct pe net” şi să caute ca disperatul, sau dimpotrivă să descarce de-a gata un referat făcut de altcineva (deşi nu cred că există, pentru că nu e în programă).

Dacă aţi apucat să vă obişnuiţi cu acest corp, veţi recunoaşte desigur că acesta este unul foarte frumos, probabil unul dintre cele mai frumoase. Evident că puteţi să abordaţi şi construcţia sa din carton, sau din beţe (de pildă din paie de băut, sau din beţişoare de curăţat urechile, de la care s-a îndepărtat vata, legate cu aţă trecută prin ele). Confecţionat dintr-un carton roşu, octaedrul este deosebit de decorativ în bradul de Crăciun. Pentru o persoană cu dexterităţi migăloase, ar fi o idee de a confecţiona unul mic, cu muchia de 1 cm, pe post de mărţişor (poate unul dintr-un carton fin alb, măcar 120g/mp). Pentru început, însă, vă doresc spor la studiu! CTG

Algebra şi curajul de a ieşi la tablă (Analiza unui banc – 2)

Spuneam în postarea precedentă că bancul de la început, cel despre geometrie, a umblat de curând pe platforme de socializare. Cam în aceeaşi perioadă am găsit şi bancul de mai sus, unul legat aparent de algebră. De fapt, algebra arată în acest banc destul de pozitiv, într-o comparaţie ipotetică cu geometria. Deci, personajul respectiv a avut măcar acel curaj de a ridica mâna la algebră, că la geometrie nici vorbă (sunt conştient că această observaţie este parţial “trasă de păr”).

Bancul acesta trimite insă foarte clar la atmosfera de la ora de matematică, aşa cum aceasta este percepută de o mare parte dintre elevi. Este vorba despre o stare de frică, uneori de o adevărată teroare, în care trăiesc elevii şi de care este legată relaţia cu această materie. Şi, trebuie clar să precizez, această stare apare peste tot în lume, nu doar la noi. Poate doar că la noi această stare este mult mai dură. Din câte ştiu însă, procentajele sunt orientativ similare. Atât la noi, cât şi înafară, undeva la jumătate din populaţie au o stare de teamă faţă de matematică. Singura diferenţă clară este legată de faptul că această parte a populaţiei, ce nu beneficiază de factorul formativ al gândirii, educat de către matematică la orele din şcoală, această parte a populaţiei îşi formează o gândire după modelul societăţii în care trăieşte: familia, anturajul de prieteni sau de colegi îşi pune amprenta asupra felului în care aceşti oameni judecă. De pildă, la noi, cei care au frica de matematică sunt ceva mai vulnerabili de a fi manipulaţi de către alţii, din anturajul restrâns sau din mass media, de pildă de către politicieni (ca vorbitor de germană, eu urmăresc desigur şi societatea nemţească, şi văd astfel de exemple dar la o scară mai mică; situaţia cu cancelarul austriac şi cu refuzarea accesului nostru în Schengen a fost un contraexemplu ciudat de iraţionalitate în spaţiul ţărilor germane – deşi, cine sunt eu să judec? – te miri ce aspecte noi vor apărea cu timpul, care să justifice atitudinea respectivă).

Revenind la orele de matematică şi la atmosfera din timpul acestora, stau şi mă gândesc că aceasta este una din sursele de bază legate de frica faţă de matematică. Bancul de mai sus exact asta spune: am avut curaj, adică mi-am înfruntat frica faţă de matematică. Pentru a putea produce dorita stare de performanţă în matematică, majoritatea profesorilor ajung să-şi conducă ora cu o atitudine generatoare de frică. Aceasta este însă “doar o faţă a monedei”. Cealaltă sursă a stress-ului este legată de faptul că gândirea matematicii nu este uşoară, mulţi dintre elevi preferând pur şi simplu să o evite. Dimpotrivă, confruntaţi cu o atmosferă blândă la orele de matematică, astfel de elevi nu vor face matematică defel, nu-şi vor face temele, nu-şi vor învăţa lecţiile, iar apoi oricum vor căuta justificarea pentru eşecul lor în explicaţii de felul “toţi profesorii de matematică sunt la fel, chinuie copiii” sau “eu am discalculie” etc., toate sub genericul “cea mai bună matematică este matematica defel!”.

D-na profesoară Birte Vestergaard, despre care am scris în câteva rânduri, are ca unul dintre obiectivele principale exact recuperarea acestor elevi înspăimântaţi de ora de matematică. Ca argument pentru eficienţa metodei sale, dânsa ne-a arătat câteva pasaje din interviuri, în care foşti elevi slabi la matematică îşi prezentau evoluţia sentimentelor, de la frica totală de matematică – cu accent pe frica de a se face de râs în faţa colegilor – şi până la nivelul în care au ajuns să gândească şi să lucreze matematică fără nici cea mai mică problemă. Metoda respectivă este bună deaorece îi ajută şi pe cei buni să empatizeze cu cei slabi şi să conştientizeze zdroaba acestora în cadrul activităţii matematice.

Eu personal mă străduiesc constant să generez o atmosferă în care şi elevii speriaţi de matematică să ajungă la o stare dezinhibată cu matematica. Din păcate unii înţeleg aceasta ca o permisivitate către a face orice altceva în oră. La alţii totuşi funcţionează, adică îmi reuşeşte să-i aduc în starea de atenţie şi participare la oră, desigur în momentele care prezintă matematică accesibilă pentru nivelul lor. Mă gândesc de exemplu la un elev care de fiecare dată când suntem în pasaje mai uşoare, el automat devine activ, ridică mâna nesilit şi răspunde de fiecare dată corect. Acel elev, deşi nu este un mare matematician, îşi cunoaşte foarte bine nivelul, dar de fiecare dată când poate îmi arată de fapt că nu-i este frică de matematică.

Unul dintre exemplele cele mai sugestive despre starea de frică faţă de matematică şi faţă de inaccesibilitatea acesteia, l-am trăit în urmă cu câţiva ani. Aveam prima oră la o nouă clasa de liceu (a 9-a de uman), în care erau elevi de la foarte buni (dar care doreau să rămână în Waldorf) şi până la nivelul cel mai slab posibil. M-am gândit să nu-i speriu din prima cu cine ştie ce complicaţiune, aşa că m-am dus la ei cu o chestie ce nu implică defel cunoştinţe anterioare, desigur în afară de simpla adunare până la zece. Le-am dus un zar pe care îl puneam în faţa lor pe masă şi îi întrebam ce faţă este dedesupt (îl ţinem cu două degete lateral, aşa încât să nu funcţioneze prin excludere). Pentru cine nu ştie poanta, suma feţelor opuse la un zar este întotdeauna 7 (de pildă 2 şi 5 sunt pe feţe opuse). Întrebarea desigur se adresa celor noi în clasă (cei ce veneau din clasa a 8-a o ştiau deja). Imaginaţi-vă cum mergeam de la un elev nou la altul şi îi întrebam, iar aceştia încercau să gândească, pentru că era evident că nu se lega de nimic din ce învăţaseră până atunci. Unii se prindeau pe când alţii nu.

În această stare am ajuns la o elevă foarte speriată, care nu se prindea de poantă şi gata. Eu totuşi îi arătam răbdare, dar ea nu şi nu. Până la urmă unul dintre colegi i-a spus că trebuie să dea împreună 7. Eleva a făcut ochii mari, eu i-am mai pus o dată întrebarea (de fiecare dată întorceam zarul), iar ea s-a concentrat şi a răspuns corect. I-am arătat dosul zarului spre confirmare, iar ea s-a ridicat în picioare şi a început să fugă în cerc strigând “Da! Ştiu matematică!!!”. Am realizat atunci că am de-a face cu un caz deosebit de dificil şi, într-adevăr, tot liceul a cam trebuit să-i dau 5-ul “din burtă”.

Surpriza a venit la sfârşitul clasei a 12-a când elevii “îşi împărţeau profesorii”, care la care să dea clasicul buchet de flori, la festivitatea de încheiere. Această elevă a insistat ca ea să-mi dea mie flori. Doar pentru acel moment de la începutul clasei a 9-a (şi poate pentru faptul că am avut grijă tot liceul să nu se simtă înjosită pentru că nu putea mare lucru la matematică). Să nu credeţi însă că “nu am făcut matematică” cu acea clasă. Dimpotrivă, de multe ori depăşeam nivelul programei, pentru cei care puteau, dar întotdeauna cu respect faţă de cei slabi. Concluzionând, cum bine spunea Dl Profesor Radu Gologan, matematica şcolară trebuie să devină mai umană. Titus Grigorovici

Figurile geometriei (Analiza unui banc – 1)

“Scrierea” de mai sus, ce provine de pe o platformă de socializare, se doreşte a fi un banc (adică ceva de râs). Doar că aceasta punctează ceva ce este mai degrabă de plâns: dispariţia – lentă dar sigură – a figurilor din anturajul geometriei, ca materie, atât în cadrul lecţiilor, cât mai nou şi în cadrul problemelor, atât din ideea de necesitate în structura mentalului unor profesori, cât şi – ca urmare – din mentalul unor elevi.

Deja în urmă cu cca. 15 ani am ajuns să întâlnesc elevi care să-mi spună că “figurile nu contează”, citat reluat desigur de la adulţi din anturajul lor, de obicei chiar de la profesorul de la clasă. Ţin minte că mă chinuiam cu un copil la care toate triunghiurile desenate erau isoscele, ce-mi spunea cu un aer de siguranţă că “oricum, figurile nu contează!”.

Actualmente lucrurile au luat-o razna rău de tot: am început să întâlnesc lecţii sau probleme de geometrie fără figură! Şi mă refer aici nu la situaţii din acelea relativ simple, la care putem considera că figura geometrică poate fi uşor imaginată în cap, pentru rezolvarea problemei. Vă dau câteva exemple întâlnite în această toamnă.

1) Să vorbim pentru început despre o lecţie, una cunoscută, anume lecţia care trebuie să facă prezentarea conexiunilor între unghiurile ce se întâlnesc în cazul a două drepte paralele tăiate de o secantă. De foarte mult timp ştiu că există ideea de a desprinde din această lecţie, ca un soi de fază pregătitoare, o primă etapă în care să fie prezentate perechile respective de unghiuri (alterne interne, corespondente, etc.) pe o figură “generalizată”, adică pe o figură cu două drepte neparalele tăiate de o secantă. Nu ştiu unde, când sau la cine a apărut această idee, dar este una deosebit de dăunătoare, chiar nocivă pentru dezvoltarea gândirii, aş putea zice chiar nocivă pentru apariţia gândirii. Chiar şi privit doar superficial putem susţine această afirmaţie deoarece figura respectivă – cu cele două drepte neparalele – confruntă mintea elevului începător cu o situaţie ce nu se va întâlni niciunde.

Afirmaţia se susţine şi dacă privim mai profund: în această situaţie încercarea de înţelegere a copilului este forţată să se dezvolte “sprijinindu-se” pe mult mai puţine elemente logice, eliminate fiind cele mai uşoare, mai intuitive, şi lăsate doar de cele mai grele. Ce vreau să spun aici? Studiate pe o figură cu drepte paralele, elevii pot vedea respectivele “perechi de unghiuri” sprijiniţi de evidenţa congruenţei, care se vede clar. Mă refer aici desigur la unghiurile corespondente, dar şi la cele alterne interne. Datorită congruenţei, elevul înţelege mult mai clar alegerea unor anumite perechi de unghiuri şi logica aranjării acestora în figura respectivă (de exemplu, “alterne” pentru că alternează de-o parte şi de cealaltă a secantei, la fel ca şi casele numerotate alternativ de-o parte şi de alta a străzii, respectiv “interne” pentru că sunt în spaţiul acela interior delimitat de cele două paralele); la celelalte perechi de unghiuri studiate gândirea şi înţelegerea se poate sprijini deja pe structurile mai complicate de aranjare ce au fost reliefate la primele două categorii.

Pe figura cu două drepte paralele, acestea – cele două drepte paralele – se evidenţiază minţii în formare a elevului ca o pereche clară, dreapta secantă evidenţiindu-se separat, cu un alt rol logic în această structură. Dimpotrivă, la figura “generalizată”, cea cu perechea celor două drepte neparalele, tăiate de o a treia, pe post de secantă, aici mintea elevului nu va vedea la fel de uşor faptul că primele două acţionează împreună într-un fel, pe când a treia în alt mod. Personal, eu nu mai ţin minte foarte clar, dar cred totuşi că am predat o dată, în primul an la catedră pornind de la această figură (anul şcolar 1990-1991), după care am abandonat ideea (am în amintire o impresie vagă că elevii n-au înţeles nimic; ceva de genul că-mi lipsea privirea aia de “aha, am priceput!” de pe feţele lor; altfel spus, am simţit empatic că elevii n-au înţeles nimic din acea figură). Deci, practic, de 30 de ani nu am mai folosit această figură premergătoare, însă doar acum am ajuns să fac “teoria chibritului” pe seama acesteia (veţi vedea în curând de ce).

Mai zăbovesc un pic la prima idee, anuma la faptul clar că figura respectivă – cu cele două drepte neparalele – confruntă mintea elevului începător cu o situaţie ce nu se va întâlni niciunde. Eu am o teorie, anume faptul că la geometrie elevii trebuie să ţină minte nişte FIGURI TIP, pe care să le aibă imprimate bine în minte pentru a le putea recunoaşta ulterior în diferite structuri mai complicate, adică de obicei în figurile diferitelor probleme. Pentru a mă face înţeles, dau aici câteva exemple de figuri tip: două drepte secante (“Crucea Sf. Anton”) pentru unghiuri opuse la vârf, un triunghi oarecare secţionat de o paralelă mai jos sau mai sus de linia mijlocie, pentru situaţii de proporţionalitate (teorema lui Thales sau teorema findamentală a asemănării), şi exemplele pot continua mult şi bine (există figuri tip chiar şi la zona de algebră, de pildă “Crucea Sf. Anton” pe elementele unei proporţii, în timp ce spui în minte că “produsul mezilor este egal cu produsul extremilor”).

Desigur că figura cu două drepte paralele tăiate de o secantă este o figură tip! Imprimarea ei pe mentalul elevilor este deosebit de importantă şi datorită faptului că aceasta nu apare de obicei întreagă în figurile diferitelor probleme, aşa încât elevul trebuie să fie capabil să completeze în minte figura astfel încât să recunoască figura tip şi să poată vedea apariţia a două unghiuri congruente (să zicem unele alterne interne, de exemplu).

Astfel, se înţelege că este extrem de important ca această figură să “se imprime” cât mai repede şi cât mai bine pe mentalul elevilor, iar aceasta se poate face cel mai bine printr-o prezentare repetată. Eu, de pildă, refac figura tip cu două paralele tăiate de o secantă la fiecare fel de pereche de unghiuri studiate în această lecţie, adică măcar de 3-4 ori. Astfel, o fac prima dată la unghiurile corespondente (pe acestea le fac primele pentru că “stau la fel”, astfel încât congruenţa poate fi justificată, “demonstrată”, prin translatarea unuia de-a lungul secantei până în celălalt). Apoi refac figura a doua oară pentru unghiurile alterne interne (ce poate fi justificată pe baza primeia împreună cu deja cunoscuta situaţie a unghiurilor opuse la vârf). Cu această ocazie elevii încep să priceapă că această figură este una importantă. Uneori o fac şi pentru unghiurile alterne externe, dar asta doar de dragul teoriei, cât şi a elevilor care întreabă după a doua categorie “dar, există şi unghiuri alterne externe?”, precizându-le insă clar că acestea nu se folosesc defel. Apoi vine figura obligatorie în cazul unghiurilor interne de aceeaşi parte a secantei, care se dovedesc suplementare (şi aceasta poate fi justificată pentru înţelegerea elevilor, apropos de faptul că unii colegi au ajuns doar să prezinte elementele unei lecţii, fără a mai explica defel de unde vin acestea). Situaţia perechii de unghiuri externe de aceeaşi parte a secantei sigur n-o mai fac, eventual o amintesc dacă întreabă un copil (din logica denumirii acestora), dar atunci cu precizarea clară că nici acestea nu se folosesc nicăieri.

Am făcut această prezentare extinsă a importanţei figurilor din lecţia despre unghiurile ce apar la două paralele tăiate de o secantă pentru a scoate în evidenţă cât mai bine stupiditatea următoarei situaţii. Astfel, de curând mi-a fost dat să văd această lecţie predată doar cu prima figură, acea cu două drepte neparalele tăiate de o secantă, în care erau prezentate extins, în text, pe baza numerotării celor opt unghiuri vizate, a tuturor perechilor respective. Urma apoi un fel de teoremă în care erau precizate faptul că dacă dreptele acelea sunt paralele, atunci “următoarele unghiuri sunt …..”. În lecţia respectivă nu apărea defel figura cu două drepte paralele tăiate de o secantă. Cu alte cuvinte, profesorul respectiv prezentase doar figura nefolositoare, pe când cea deosebit de importantă nici nu era prezentă în lecţie (decât doar în text).

Fără figura cu două drepte paralele elevul este “împins” să înţeleagă această lecţie doar în mod “intelectual”, eliminându-se posibilitatea înţelegerii vizuale directe. Pentru a înţelege, elevul este obligat să facă doi paşi logici, anume să urmărească situaţia şi afirmaţiile textului şi să-şi închipuie figura conform noilor condiţii (două drepte paralele), ca apoi să le conecteze în minte pe cele două. Este evident că această cale este mult mai dificilă, chiar inaccesibilă pentru cei mai mulţi dintre elevii actuali.

Cum să înţeleagă acei elevi lecţia respectivă??? Mintea mea nu înţelege aşa ceva decât alegând din una dintre următoarele două situaţii: fie este vorba despre o “prostire” profesională a unor dascăli, fie o răutate cronică faţă de elevi. Oricum este evident faptul că elevii sunt împinşi, fie în braţele sistemului de meditaţii particulare, fie înspre pierderea contactului cu matematica, cu gândirea.

Foarte aproape de această stare se situează şi variantă întâlnită prin anumite lucrări, care prezintă ce-i drept figurile cu două drepte paralele, însă mici şî înghesuite, astfel încât elevii să le perceapă foarte greu.

2) Un al doilea exemplu de geometrie fără figuri este întâlnit mult mai des, anume în lecţiile rezumative din diferite “auxiliare”, ce prezintă teoria fără nici măcar o singură figura geometrică (vorbesc de partea teoretică poziţionată înaintea multitudinii de probleme pentru acea lecţie). Am de pildă în minte situaţia unei culegeri de la o editură renumită (de vârf pe piaţă): de exemplu, la fiecare din seturile de probleme despre patrulaterele speciale apar enumerate toate proprietăţile, fără ca autorii să fi considerat ca importantă prezentarea figurii tip a acelui patrulater (paralelogram, dreptunghi etc.). Vă daţi seama că elevii sunt astfel tentaţi să vadă lucrurile din geometrie de felul că “astea trebuie învăţate pe de rost, în nici un caz şi înţelese”.

3) În urma unor astfel de situaţii cu care se confruntă elevii, nici nu ne mai miră apariţia unor situaţii în care elevii vin cu rezolvări, chiar cu demonstraţii ale unor probleme, fără ca acestea să fie însoţite de o figură geometrică. Elevii ajung să nu-i mai vadă necesitatea prezenţei unei figuri geometrice la o problemă. Fie că o copiază din carte, fie că o preiau de la un coleg, care poate şi el o are făcută de altcineva, elevii nu mai au conexiunea mentală a legăturii indivizibile între figură şi rezolvarea sau demonstraţia corespunzătoare. Faptul că nici aplicaţiile de pe telefoanele prea deştepte cu care toţi sunt dotaţi, se pare că nu dau rezolvări însoţite de figuri, asta doar accentuează profunzimea şi dramatismul situaţiei despre care vorbesc aici.

Din păcate însă, toate acestea se integrează perfect cu noua politică a examenului de Evaluare Naţională, în forma cea nouă, aplicată din 2021 (odată cu generaţia care a început prima dată cu clasa pregătitoare). Subiectele sunt pline de figuri geometrice, însă doar cu scop de a fi “citite”, însă pentru eficientizarea testării, acest nou tip de subiecte nu mai are în conţinutul său sarcini la care elevii să fie puşi să facă o figură geometrică.

Deja din ultimii ani ai formatului vechi de examinare (cel folosit până în anul de graţie 2020), deseori unii elevi nu mai refăceau figurile de pe foaia cu subiecte, cele din subiectul III (atât la figura de geometrie plană, de la problema 1, cât şi la figura de geometrie în spaţiu, de la problema 2), ci trasau şi notau pe foaia lor de subiecte câte o linie suplimentară de care aveau nevoie. În aceste condiţii te puteai trezi cu câte o rezolvare în care trebuia să-ţi imaginezi ce a desenat elevul respectiv, fără a avea însă o certitudine în acest sens. Dar oricum, majoritatea făceau totuşi respectivele figuri, inclusiv unele figuri ajutătoare, iar toţi elevii desenau desigur şi figura de la începutul Subiectului II. Deci, până în 2020 elevii trebuiau să facă figuri geometrice şi la examen.

Acum, pe formatul nou de EN elevii nu mai trebuie să deseneze figuri geometrice complete, fiind nevoiţi să traseze cel mult câte o nouă linie pe figurile pre-gătite pe foaia de examinare (am pus intenţionat liniuţa de despărţire pentru a evidenţia asemănarea cu fenomene similare de pildă din zona de alimentaţie, acolo unde la ora actuală se poate cumpăra o varietate tot mai mare de mâncare pre-gătită, funcţia de bucătăreasă fiind deseori redusă la funcţia de încălzitoare a mâncării pre-gătit cumpărate). Cum va arăta viitorul, respectiv cum vor evolua sau – mai bine zis – cum vor involua abilităţile elevilor de a face o figură geometrică corectă, asta este uşor de imaginat. Aşadar – în concluzie, până nu e prea târziu – cum a fost spus de la început, daţi geometriei figurile înapoi! Titus Grigorovici