Conferinţă Birte Vestergaard (3) – O încercare de punere în practică

Fişe de descoperire a matematicii: auto-învăţarea în grupuri mici; matematica – o călătorie de descoperire (Discovery sheets: Self-learning in small groups; Mathematics as a journey to discovery)

De multă vreme îmi doream să abordez anumite aspecte ale predării noastre, mai ales aspecte legate de urmările predării matematicii în format tradiţional obişnuit asupra multor elevi, care acumulează o frustrare masivă datorită înjosirilor repetate trăite la orele de matematică. Conferinţa d-nei Birte Vestergaard şi grupul de lucru la care am participat ulterior cu dânsa, acestea mi-au ghicit de fapt unele gânduri ascunse, intrând în acest subiect mult mai profund decât aş fi putut-o eu face.

Iată un exemplu din timpul acelor întâlniri în grupul respectiv de lucru. La un moment dat colegii discutau despre fişe de lucru pe tema “procente” (fişe pentru nivelul de liceu!). Ascult eu ce ascult şi mă trezesc să iau cuvântul, spunând că la noi procentele se fac în clasa a 6-a, la care unul dintre colegi îmi răspunde prompt: şi la noi, dar câţi le mai ştiu în liceu? N-am mai zis nimic pentru că avea dreptate. La noi liceul este plin de matematică superavansată, dar când apar rezultatele Studiului PISA se miră toată ţara de procentul uriaş de analfabeţi funcţionali. Dar, de ce le-ar trebui procentele în liceu? Păi, simplu: ei fac în liceu şi matematica financiară elementară pentru a înţelege viaţia de zi cu zi a unui cetăţean în raport cu sistemul bancar (aspecte cărora un elev de clasa a şasea sigur nu le poate da mare atenţie). În plus, procesul de dobândă are aspecte importante în zona limitelor de şiruri. Iar, pentru ce-i care nu s-au convins de necesitatea procentelor în liceu, aduc şi argumentul suprem: la ei se dau procente la BAC.

În altă ordine de idei, mă cam enervez de câte ori întâlnesc expresia “măsuri remediale” în diferite momente, legat de ideea că anumiţi elevi trebuie “recuperaţi” la matematică. Această necesitate apare de multe ori ca urmare a unor acţiuni eronate în educaţia matematică (cel puţin, la acestea mă refer eu aici, aceasta fiind de obicei subînţeleasă ca o acuză la adresa profesorului; sunt conştient că există şi nevoi remediale legate de cauze sau întâmplări ce nu ţin de predare, dar acestea reprezintă un alt subiect). De vreme ce se vorbeşte atât de mult despre nevoia unor “măsuri remediale” (acestea acţionând înspre trecut), înseamnă că politica educaţională aplicată are deseori erori (din politeţe am folosit cuvântul “deseori”; realist ar fi fost să folosesc cuvântul “masiv”). În acest sens mă gândesc: oare, de ce să nu căutăm “măsuri preventive”, care acţionează înspre viitor (chiar dacă sunt gândite pe baza experienţelor acumulate în trecut). Oare, cum ar fi să privim metoda d-nei Vestergaard din acest punct de vedere?

Dar să revenim la tema propusă şi să vă prezint pe scurt cum mi-au influenţat predarea mea cele auzite de la dânsa, cel puţin în scurta perioadă avută fizic în sala de clasă într-o lună de zile (la Cluj de la jumătatea lui mai până la jumătatea lui iunie).

La toate clasele avuseserăm un an greu, dar la clasele de început situaţia a fost şi mai grea pentru că am avut de fapt doar câteva săptămâni ca să ne obişnuim unii cu ceilalţi. Mai ales la clasa a 9-a, unde era un colectiv parţial nou, situaţia a fost extremă (anul acesta n-am avut clasa a 5-a unde bănuiesc că a fost şi mai ciudat).

Deci, ne strânseserăm în sfârşit fizic la şcoală pe la jumătatea lui mai, iar eu aveam doar un gând în minte. Îi vedeam pe cei mai mulţi că sunt cu totul speriaţi la ora de matematică. Nu apucaserăm să ne apropiem sufleteşte în online; la orice întrebare vedeam “un strat plin de poziţia ghiocel” în faţa mea; doar o mână de elevi păreau să mă privească drept şi să înţeleagă despre ce vorbesc. Nu puteam să las lucrurile aşa. Era vorba despre o clasă de “uman”, dar în nici un caz nu asta trebuia să fie atitudinea lor faţă de matematică şi relaţia între noi. Ce era să fac?

Atunci mi-am dat seama că această generaţie nu a învăţat deloc sisteme de ecuaţii, pentru că în anul şcolar 2019-2020 se mergea încă pe programa veche, în care sistemele de ecuaţii erau spre final, în semestrul II, iar d-na Ministru de atunci binevoise să scoată din programa de examen toată materia de la un punct încolo. Eu făcusem sistemele la începutul clasei a 8-a, dar puţini din elevii rămaşi în clasă le şi ştiau cu adevărat (pentru că fuseseră lăsate de-o parte de noua programă de examen, aşa că nu le mai repetaseră).

Vroiam să trezesc matematica în mintea lor şi sentimente mai pozitive faţă de aceasta. Nu conta cu ce, ei oricum nu dau examen din matematică. Dar nici proşti sau bătuţi în cap nu sunt, aşa precum încercau cei mai mulţi să-mi explice pe post de scuze. Puteam să-i cataloghez cel mult ca speriaţi şi frustraţi în urma matematicii gimnaziale, care pe unde fuseseră.

Nu aveam timp şi energie să generez o fişă de lucru pe cine-ştie-ce temă, nici nu puteam în acest caz să iau o fişă gata gândită de la colegii din Norvegia sau Germania. Dar aveam o fişă făcută în paşi mici despre sistemele de ecuaţii (prezentată în lockdown, la începutul lui aprilie 2020, la adresa http://pentagonia.ro/sisteme-de-ecuatii-introducerea-notiunii-in-clasa-a-7-a/ ). Aşa că am scos fişa la imprimantă, i-am organizat pe elevi pe grupe (care nu s-au mai modificat de la o oră la alta) şi am început să lucrăm.

Am stat patru ore duble la primele 8 exerciţii de pe fişă. Nu am dat nimic ca temă (oricum, nu aveam garanţie că ar fi lucrat toţi); la astfel de elevi este de aşteptat ca pe cei mai mulţi tema să-i sperie, ori eu doream să obţin exact opusul. Trebuiau doar să lucreze cât mai mult în clasă. Puteau să întrebe, puteau să ceară ajutor, iar care înţelegea putea apoi să-l ajute pe un coleg care încă nu pricepea ce-i de făcut. I-am informat însă destul de repede că în a cincea zi avem lucrare din sisteme de ecuaţii. La acea lucrare am avut masiv note de la 7-8 în sus. Elevi care în clasa a 7-a erau la limita corigenţei acum aveau nota 10. Elevi pe care i-am trecut de milă în gimnaziu (pentru că păreau irecuperabili) acum au luat chiar şi 8.

Desigur că, celor câţiva elevi buni din clasă trebuia să le dau şi ceva pe măsura lor; nu puteam să-i ţin doar în postura de a le explica celor slabi. Elevilor buni le-am dat multe probleme de pus în sistem de ecuaţii, de la medii până la foarte grele (şi să ştiţi că am unele foarte foarte grele).

Vreau să vă spun că după acea repriză de sisteme de ecuaţii, când ne întâlneam în curte sau pe coridor toţi elevii mă priveau şi mă salutau luminoşi şi plini de bucurie. Cei care nu putuseră veni la test se rugau să le reprogramez şi lor testul. Chiar şi cei mai slabi şi mai speriaţi de matematică erau mândrii: reuşiseră să parcurgă cu succes o lecţie de matematică şi luaseră o notă bună la test (nimeni nu a luat sub 5). Iar asta conta mai mult decât orice temă neparcursă din programă.

Oricum, d-na fostă Ministru promisese oficial că lecţiile pierdute în lockdown vor fi recuperate. Nu ştiu cine a recuperat în liceu ceva din a 8-a şi oricum nu se poate recupera totul (eventual poate la meditaţiile particulare). Dar, după mai mult de jumătate din acest an şcolar plin de frustrări, în care trebuiau să urmărească şi să răspundă în online la matematică, acel calup de ore a acţionat ca un balsam pe sufletul acestor elevi. La sfârşit nu mai spunea nimeni că “nu poate matematică” (doar o elevă care a lipsit toată perioada respectivă nu a putut beneficia de acest efect vindecător).

Mulţumesc Birte Vestergaard că mi-ai dat ideea şi curajul să fac acest pas. CTG (va urma!)

Conferinţă Birte Vestergaard (2) – Aspecte suplimentare

Fişe de descoperire a matematicii: auto-învăţarea în grupuri mici; matematica – o călătorie de descoperire (Discovery sheets: Self-learning in small groups; Mathematics as a journey to discovery)

În finalul conferinţei d-nei Vestergaard, dânsa şi-a lăsat cca. 5 min. pentrua răspunde la întrebări. Deoarece întrebările erau multe şi se depăşise cu încă 10 min. timpul alocat, dânsa şi-a trecut adresa de e-mail în chat, propunându-ne să-i scriem şi să continuăm discuţiile cu altă ocazie. Mi-am salvat şi eu adresa, i-am scris, şi uite-aşa am ajuns într-o grupă cu alţi şase colegi din Germania, toţi doritori de a afla mai multe despre minunatele ei fişe de lucru şi despre această metodă interesantă. O primă întâlnire, de cunoaştere, a avut loc în 14.04.2021. În grupa respectivă ne-am mai întâlnit până la începutul lui iunie de patru ori (cam la două săptămâni, dar o dată am aşteptat chiar 4 săptămâni, pentru că fusese solicitată pentru o întâlnire online şi de către două doamne profesoare, parcă din Thailanda erau …). Aş dori să vă prezint în cele ce urmează alte aspecte apărute în aceste întâlniri, în plus faţă de cele din timpul conferinţei de la Kassel, sau în accentuarea unora deja exprimate. În această grupă discuţiile au mers în limba germană, aşa încât voi avea mult mai puţine citate în engleză (citatele din explicaţiile d-nai Vestergaard sunt prezentate înclinat).

21.04.2021

Fişele trebuie redactate în paşi mici, pentru ca toţi elevii să se simtă în siguranţă (safe!). Părerea mea este că această politică a paşilor mici ar trebui aplicată în toate formele de predare, mai ales la începutul oricărei teme noi. Un contraexemplu în acest fel ar fi situaţiile despre care am mai vorbit, când unii profesori, în prima lecţie adevărată despre teorema lui Pitagora (în primăvara clasei a 7-a) ajung din prima problemă, cel mult din a doua, deja la situaţii de calcule iraţionale.

Propoziţiile scurte sunt mai accesibile elevilor slabi. În acest sens îmi aduc aminte de o emisiune cu Bear Grills, în care invitatul său, un actor afro-american îl imita pe Obama, spunând că fostul preşedinte al SUA are acest stil de a vorbi în propoziţii scurte (iar asta îi face mesajul accesibil marii mase a populaţiei – comentariul meu).

În mod obişnuit profesorul este poziţionat între elevii buni, pe de-o parte, şi elevii slabi, pe de cealaltă parte. În metoda grupelor mici de lucru, apare o zonă de discuţie directă între elevul bun şi cel slab dintr-o grupă, astfel încât elevii buni ajung să-i ajute direct, pe cei slabi, neintermediat, pentru că profesorul este poate ocupat în altă parte.

Elevii sunt atraşi mai mult de “întrebări”, decât de “ordine”: ce observi dacă compari asta cu cealaltă?, în loc de efectuaţi, calculaţi, găsiţi, demonstraţi!!! D-na Vestergaard recomandă întrebări în loc de cerinţe (Fragen stat Operatoren). Se pare că întrebările sunt percepute ca mult mai blânde, pe când cerinţele apar ca dure, agresive, ultimative. Asta mai ales de către elevii speriaţi de matematică.

Da, şi destul de repede d-na profesoară a ajuns iar la subiectul ei preferat, anume la nivelul de siguranţă al orei de matematică, din punct de vedere al elevului speriat (the level of safety!). Aici ne-a adus o nouă schiţă reprezentând istoricul de experienţe al elevului obişnuit:

Astfel, în viaţa lor şcolară, multor elevi le sunt blocate iniţiativele, pe baza diferitelor argumente: asta nu e voie, asta nu se face, e interzis!, e greşit, Ha-Ha! (adică s-a râs de el) etc. În schiţa de mai sus elevul este prezentat în centru, săgeţile reprezintă iniţiativele sale (inclusiv răspunsurile sale), iar liniuţele care blochează diferitele săgeţi reprezintă argumente de refuz de tipul celor enumerate aici. În urma multor astfel de experienţe, de la o vreme elevul se blochează, nu mai are iniţiative, apărând un fel de prăbuşire în sine. Pentru un elev care-şi expune părerea cu entuziasmul plin de inconştienţă al vârstei, aceste argumente de blocare acţionează înjositor, mai ales dacă se întâmplă în faţa clasei (socialul este de multe ori vital pentru copii, mai ales în pubertate). În filmuleţele prezentate în timpul conferinţei diferiţi elevi povestiseră despre înjosirile repetate prin care trecuseră în trecut (adică în perioada cunoscută la noi drept “gimnaziu”).

Este foarte important ca elevul să nu fie înjosit de nimeni, niciodată! (Niemals gedehmütigt werden von niemanden) Dacă s-a râs de un elev, de exemplu dacă acesta a întrebat pentru că n-a înţeles, atunci acesta nu va mai întreba niciodată. Mai mult, nici ceilalţi din clasă nu vor mai îndrăzni să întrebe, din frică de a nu fi şi ei înjosiţi (în general se subânţelegea înjosirea din partea unor colegi mai buni, nu din partea profesorului).

Profesorul trebuie să trezească din nou curajul – în matematică – şi la elevii mediocri sau chiar submediocri. Idealul cel mai înalt al unui profesor trebuie să fie de a explica aşa de bine, încât să înţeleagă toţi elevii.

Cât despre elevi, în cazul în care unul nu a înţeles, acesta are responsabilitatea de a întreba pe cineva pentru a se lămurii (fie pe profesor, fie pe un coleg). Dacă un elev n-a înţeles, acesta trebuie să se mai străduiască până înţelege (este dator să se străduiască).

Dar pentru asta, elevul trebuie să se simtă în siguranţă (safety): elevul poate să vină în această oră de matematică cu tot ce este el (desigur, în limitele bunilui simţ). Spunea d-na profesoară: dacă observ o înjosire între elevi, atunci acţionez imediat împotriva vinovatului. Pentru dânsa înjosirea elevilor slabi de către cei buni, chiar şi cea neintenţionată, inconştientă, reprezintă una din grijile majore, pentru că este cauza principală a blocajului celor inhibaţi. Elevul bun trebuie să-şi dezvolte un simţ social pentru “cel de alături”, de a nu-l înjosi nici din greşeală, darămite intenţionat. Chiar şi într-o şcoală care nu promovează pe faţă excelenţa (cum este a noastră: “să văd care ştie primul”), apare natural o concurenţă între elevi, bazată pe cursa după admiraţia dascălului sau pur şi simplu bazată pe bucuria de a fi găsit răspunsul corect. Dimpotrivă, este o artă felul cum îi spui unui elev care a dat un răspuns greşit că nu e bine. Este normal ca celalţi elevi să nu stăpânească această artă şi de aici apare fenomenul respectiv de înjosire a celor slabi (la noi nici profesorii nu-şi prea fac gânduri despre ideea de a nu-i înjosi pe cei care nu au nimerit răspunsul corect; iar “datoria” de a da note, inclusiv slabe, doar exacerbează de multe ori acest fenomen).

Spune dânsa că profesorul (mai ales cel de matematică) trebuie să fie un garant al siguranţei celor mai slabi (the spaceholder for safety). Trebuie să ne străduim să facem o atmosferă “safe”, o atmosferă în care orice elev să se simtă în siguranţă. Eu, ca profesor, trebuie să le pot arăta elevilor că păstrez acest spaţiu “safe”, că păstrez acest “spaţiu al orei de matematică” într-un nivel de siguranţă bună, de a nu fi înjosit, pentru orice elev.

Aici iau o pauză din traducere, pentru că mă năpădesc amintirile unei întâmplări cu aproape zece ani în urmă. Era vorba despre o cerere de transfer la şcoala noastră (începutul clasei a 8-a) din partea unei mame a cărei fiică era în mod agresiv înjosită de profesoara de matematică de la liceul de renume de unde vroiau cu disperare să plece. Când un elev nu ştia, profesoara îl ţinea în picioare şi îi punea pe toţi ceilalţi să rădă de respectivul ghinionist. Pentru că nu prea se ridica la pretenţiile elitiste ale acelei profesoare, eleva cu pricina ajunsese într-un blocaj total datorită acestor tratamente repetate. Cum se spune, era “pe marginea prăpastiei”. Atunci când mama m-a prezentat elevei respective, “dânsul este domnul director, cu dânsul vei face matematică”, fata a izbicnit instantaneu în plâns. Ulterior dânsa mi-a spus că a făcut gestul respectiv intenţionat ca să văd cât de gravă este situaţia.

Am primit-o în şcoala noastră şi i-am spus că îi las timp până la vacanţa de iarnă; nu o voi asculta, nu  o voi întreba, singura interacţiune matematică va fi doar când va considera ea să zică, sperând că astfel i se vor vindeca rănile de pe sufleţel. Înainte de Crăciun i-am adus aminte de înţelegere, mi-a zis că e OK, iar din ianuarie a fost elevă cu drepturi şi datorii egale cu ceilalţi. A avut noroc de un an cu subiecte la EN mai uşoare (foarte mulţi au luat 10 în acea vară, inclusiv o elevă din clasa respectivă), iar ea a reuşit undeva peste 6. Dacă am fi avut măcar un semestru în plus, sunt sigur că s-ar fi apropiat chiar de 8.

Citind notiţele după care vă scriu aceste rânduri, nu pot să nu fiu uimit de diferenţa de la cer la pământ între situaţia respectivă şi atitudinea descrisă de colega din Norvegia. Din acest motiv am scris la sfârşitul primei părţi a acestei prezentări, că bănuiesc că situaţia prezentată s-ar putea să pară multora de-a dreptul extraterestră. Dar să revenim la d-na Vestergaard.

Pentru dânsa este vorba despre arta de a reuşi să-i faci pe elevi să iasă din cochilia lor. Dânsa a folosit expresia să reuşeşti să îndepărtezi această “capsulare”, fiecare elev închizându-se în capsula sa (diese Abkapseln wegkriegen, jeder in seine Kapsel). Spune dânsa: aş dori să le “însuşeşc” în mod drag matematica acestei clase (ich möchte liebevoll die Mathematik dieser Klasse eineignen).

În altă ordine de idei, dânsa spunea că procesul de descoperire (a elementelor lecţiei, desigur) acţionează altfel decât explicaţiile, la care de multe ori elevul nu are nici un chef să fie atent. La desoperirea unui lucru ai o mare bucurie, pentru că primeşti o doză de dopamină (Dopamin-shott), dar asta nu se întâmplă dacă treaba respectivă îţi este explicată. Problema este că noi profesorii trebuie în aşa fel să pregătim materialul, încât elevii să descopere singuri, să le vină singuri ideea despre ce şi cum. Apoi, cu timpul, elevul va avea încredere că noi îi pregătim materiale la care, dacă se porneşte să lucreze, va ajunge să descopere anumite lucruri, iar aceasta îi va da o mare bucurie (doza de dopamină), asta poate chiar de mai multe ori într-o lecţie (lectia ca un spaţiu temporal pentru căutare de comori, de “nestemate matematice”, aducătoare de mare bucurie; ce frumos spusese în timpul conferinţei “vânătoare de comori”).

Dar pentru început trebuie să ne străduim ca elevii să fie absobiţi în acest vârtej. Dacă o grupă nu începe să lucreze, trebuie să-i atragi cumva în acest proces, în vârtejul curiozităţii, care duce apoi la descoperire. Această ultimă precizare a venit în urma unei întrebări: dar ce facem dacă elevii dintr-o grupă nu încep să lucreze? Răspunsul doamnei profesoare a fost mai amplu, dânsa explicând cum încearcă să-i convingă prieteneşte, în nici un caz agresiv (precizarea cu agresivitatea îmi aparţine).

Mai trebuie să fac aici o observaţie: dânsa foloseşte cuvântul descoperire în sensul folosit şi de George Pólya în cartea sa Descoperirea în Matematică, respectiv descoperirea unei rezolvări sau a altor elemente matematice, care desigur au fost pregătite dinainte şi ascunse pe acest traseu al “căutării de comori”, care reprezintă fişa de lucru, sau orice altă sarcină dată de către profesor. Deci, fiecare elev trebuie să descopere lucrurile respective din nou. Aşa este mai bine, aşa îi va aduce bucurie (doza de dopamină), aşa va ajunge să iubească matematica, nu explicândui toate cele şi cerându-i să le recepţioneze în mod pasiv. Eu personal am experienţă multă în a-i îndruma pe elevi frontal pe această cale a descoperirii elementelor unei lecţii (predarea prin descoperire, ca formă extremă a predării prin problematizare). Ar mai trebui să reuşesc pasul către redactarea unor fişe în acest sens.

Revenind la sfaturile d-nei profesoare, dânsa preciza că – cel puţin pentru început şi mai ales pentru elevii mai slabi – profesorul este responsabil atât pentru alegerea unor teme cât mai entuziasmante în sine (unele teme sunt mai potrivite, altele sunt “mai plate” din acest punct de vedere), cât şi mai ales pentru entuziasmarea elevilor, elevii mai slabi nefiind în stare la început să se entuziasmeze pentru o temă nouă din matematică. Iar dacă nu este entuziasm, atunci elevii nu au nici imboldul de a lucra singuri pe aceste fişe.

5.05.2021

În această nouă întâlnire d-na Birte Vestergaard a atenţionat cum frica de matematică este combătută prin experienţe de succes în matematică. Apoi dânsa preciza că orice metodă se numeşte cu adevărat “pedagogică”, durează mult mai mult, mult-mult mai mult decât doar predarea simplă a materiei respective (prelegerea este cea mai eficientă cale din punct de vedere temporal, dar este şi cea mai puţin pedagogică)

Mai ales la începutul unei teme noi este foarte important să ai răbdare, să le dai elevilor timp să intre în noua temă şi să se acomodeze în aceasta. După ce s-au stabilizat în subiectul cu pricina, la o adică, dacă spre sfârşitul orei îţi dai seama că nu-ţi mai ajunge timpul în ritmul acesta lent, atunci poţi să-ţi permiţi şi o porţie de predare, pentru că elevii te vor putea urmării (au înţeles despre ce este vorba; sunt obişnuiţi deja să gândească în acest subiect). Dar oricum, nu-i foarte sănătos (să predai prin prelegere).

Ideea este deosebit de bună: la început mergi cu răbdare, astfel încât toţi elevii să prindă subiectul respectiv, cu nuanţele sale, iar apoi, la nevoie, poţi şi să măreşti viteza spre final. Cu alte cuvinte, preciza Birte (ne cam tutuim): timpul “pierdut” la început ca să prindă toţi, se câştigă mai încolo.

Ca exemplu – pentru entuziasmarea elevilor şi atragerea lor în acel vârtej al curiozităţii şi al lucratului – ne-a dat introducerea progresiei geometrice pe baza vechii probleme cu boabele pe tabla de şah, cum construieşte generalizări, iar în final scoate (ca o bagatelă) observaţia plină de uimire: UAU, există şi progresii aritmetice!

Revenind la problema cu boabele de orez pe tabla de şah, dânsa ne-a recomandat filmuleţul existent pe Youtube sub numele Ricecornparable German/English, uşor de găsit direct si la adresa https://www.youtube.com/watch?v=KnQZ3Mg6upg. Poate fi folosit şi la clasă, dar mai ales în online (merge desigur dat şi ca temă, pur şi simplu să se uite la filmuleţ acasă cu scopul evident de continuare a stării de entuziasmare).

Despre prezentarea de final au fost câteva observaţii deosebit de valoroase. Astfel, prin această activitate zilnică elevii sunt educaţi să prezinte un material, să nu se lungească (adică să respecte timpul celorlalţi, “ai 5 minute”), să fie clari în prezentare. Elevii care ascultă trebuie să fie atenţi, dar să fie şi empatici: dacă au o nelămurire, trebuie să înveţe cum să o spună fără a-l jigni pe cel de la tablă, care este desigur într-o poziţie vulnerabilă. Empatia este exersată şi de cel care prezintă: el trebuie să o facă simţindu-şi toţi colegii, astfel încât şi cei mai slabi să înţeleagă. În pregătirea scurtă a prezentării, elevii se antrenează ca să ajungă la esenţa unui material (să nu “bată câmpii”).

Dacă au de ales, elevii vor la tablă doar dacă ştiu că vor avea succes. În acest format de lecţie elevii sunt chemaţi la tablă pe un material pentru care tocmai s-au preocupat (proaspăt) şi pe care tocmai au avut timp să îl pregătească (a fost avertizat din timp). Oricum, aceste prezentări ale elevilor sunt un element greu de introdus iar acest pas trebuie făcut cu multă răbdare.

La început, în primele ore lucrate pe acest format, grupa aleasă să facă prezentarea primeşte timp până a doua zi: “o faceţi azi într-o pauză sau când aveţi puţin timp liber”. Cu cât elevii capătă mai multă experienţă (poate după un an), procesul poate fi grăbit. Ei sunt anunţaţi că au fost aleşi să facă prezentarea, au pentru asta 2-3 minute la dispoziţie, iar apoi vin direct la tablă să facă prezentarea (D-na profesoară mima o încurajare de tipul: “puteţi s-o faceţi, aşa-i?, eu sunt sigură că puteţi!“). Probabil că o corelare între o temă mai accesibilă şi o grupă care a terminat mai repede poate fi numai bună pentru a trece la această fază mai matură. Cu timpul reuşesc apoi toţi să treacă la prezentări fără o mare pregătire.

O astfel de activitate desfăşurată cu succes îi dă foarte multă încredere matematică unui elev, pentru că de obicei în prezentarea sa acesta a fost nevoit să includă noţiuni descoperite de el în acea oră. În general îl antrenează şi îi dă încredere să cuprindă corect orice subiect nou.

2.06.2021

De la început s-a pus problema în această grupă de preluare a unor fişe de descoperire. D-na Vestergaard le-a oferit cu drag, doar că aceste erau în norvegiană. Dânsa fiind însă daneză, se pare că au funcţionat mai bine programele de traducere din daneză (nu ştiu care sunt diferenţele sau asemănările dintre cele două limbi). Oricum, de la o vreme au apărut în grup fişe în limba germană. Eu nu le pot folosi ca întreg pentru că forma noastră de matematică este mult diferită de cea practicată acolo. Pot doar să mă inspir şi eventual să iau pasaje din acestea pentru a le integra în viitoare fişe de lucru redactate aici.

La această întâlnire unii dintre colegi acumulaseră deja experienţă la clasă pe aceste fişe, aşa încât apăreau şi întrebări ţintite. Simt că una dintre aceste întrebări ar fi de mare interes pentru profesorul român: ce se întâmplă cu elevii buni, care termină repede iar apoi se plictisesc (de pildă dacă o grupă termină mult înainte)? Nu poţi să-i tot ţi în urmă, doar să le explice celor mai slabi. Mai ales în cazul temelor de lucru mai uşoare, pentru astfel de cazuri d-na profesoară vorbea de nişte fişe suplimentare, tratând ramuri ale temei zilei, aspecte ce nu au fost incluse în fişa dată tuturor. Aceşti elevi au apoi ca sarcină în final să le prezinte pe scurt şi colegilor.

Revenind la clasa întreagă, mi-am notat un citat care merită evocat: bine introduşi şi conduşi într-un spaţiu lipsit de frică (vorbea de activitatea profesorului de conducere a elevilor prin lecţia de matematică). Acest tip de lecţie face diferenţa între învăţarea pasivă şi învăţarea activă, dar asta funcţionează doar într-un spaţiu sigur (in a safe room). Legătura este foarte importantă: în siguranţă dacă întrebi, în siguranţă dacă greşeşti, în siguranţă să-ţi aduci ideile tale.

D-na Vestergaard spunea că acest format de lecţie transformă “vântul din faţă” în “vânt din spate”. Elevul slab ajunge să trăiască zilnic bucurii de felul: Uau! EU am înţeles asta! Elevul bun are zilnic bucurii de felul: Uau! EU am descoperit asta! Dar pentru asta profesorul trebuie să reuşească să transforme cultura de predare, să-şi întoarcă paradigma de gândire dinspre sine, ca sursă de matematică, înspre elev, ca obiectiv principal al lecţiei. Şi, după cum am văzut în aceste întâlniri, cultura educaţională a profesorului trebuie să se îndrepte către elevi în general (nu doar către cei buni la matematică) şi totodată trebuie să se îndrepte către elevul întreg, nu doar către gândirea şi stocarea matematicii de către elevi.

O ultimă observaţie personală aş avea aici. În timp ce lucrez la acest articol, în mass media lumea este năucită de atâtea ştiri despre accidentele de pe şoselele din România. Vara aceasta, finalul lunii iulie şi începutul lui august au adus foarte multe accidente pe şosele, soldate din păcate cu multe victime. De peste tot se cere “să ne respectăm unii pe alţii în trafic!”. Dar de ce avem această situaţia destul de generalizată? Păi simplu, după 40 de ani în care în şcoli s-a promovat doar concurenţa şi egocentrismul, acesta este rezultatul. Cum să ne respectăm unii pe ceilalţi când numai asta nu am învăţat în timpul şcolii?

Dacă ne putem aştepta ca foştii elevi buni să nu ajungă nişte adulţi frustraţi (pentru că au primit de obicei factorul formator al matematicii) dimpotrivă, în cazul foştilor elevi slabi, înjosiţi şi frustraţi masiv în anii de şcoală, efectul este debordant: odată ajunşi adulţi, la volanul unor maşini puternice, “păzea! că vine el!”. Primul pas pe acest “drum al revanşării” sunt desigur câinii de luptă” din diferitele rase care impun frică (toată lumea se dă de-o parte când îi iese în cale un Rottweiler sau un Pitbull). Acest pas apare de obicei mai repede, înaintea vârstei de 18 ani. Apoi apare dorinţa fierbinte pentru carnetul de conducere şi pentru o maşină cât mai “tare”.

Tabloul este desigur mult mai complicat de atât, dar oricum eu văd multe conexiuni cu cele prezentate mai sus. Dau aici câteva exemple la întâmplare: educarea empatiei faţă de ceilalţi, capacitatea de planificare (aplicată de pildă pe planificare drumului către mare), educarea pentru a nu epata, o perioadă şcolară (de formare) care să nu producă o viitoare personalitate frustrată etc. Iar acestea ar fi doar câteva aspecte la care noi profesorii, formatorii de viitori adulţi, ar trebui să ne gândim.

Iar acum voi fi deosebit de dur: când un şofer este atât de inconştient în comportamentul său pe şosele, încât ajunge să omoare oameni (poate inclusiv pe el însuşi sau din familia sa), atunci câtă vină ar trebui să resimtă foştii săi profesori care s-au ocupat ani în şir la orele de matematică doar înspre doparea celor buni ai clasei (pe baza cărora să-şi poată apoi etala rezultate la concursuri şi examene), neglijându-i pe cei slabi, înjosindu-i cât de des, astfel încât mulţi dintre aceştia să ajungă adulţi frustraţi, care n-au beneficiat în nici un fel de factorul educativ general al matematicii, având dimpotrivă o personalitate distrusă şi agresivă???  CTG (va urma!)

Conferinţă Birte Vestergaard (1) – Fişe de descoperire a matematicii în grupuri mici Kassel – 28 martie 2021

Fişe de descoperire a matematicii: auto-învăţarea în grupuri mici; matematica – o călătorie spre descoperire (Discovery sheets: Self-learning in small groups; Mathematics as a journey to discovery)

La sfârşitul lunii martie 2021 a avut loc tradiţionalul curs de la Kassel (Germania) pentru profesorii de liceu din şcolile Waldorf.  Eu am participat la acest curs în 2016 şi în 2019; în 2020 cursul s-a anulat (dar oricum nu eram înscris); anul acesta cursul a avut loc în format online (eu am participat “din camera mică”, unde m-am izolat pe parcursul celor 6 zile de curs).

D-na Birte Vestergaard vine din Danemarca, dar predă la Norvegia. Dânsa ne-a prezentat în conferinţa din 28 martie o metodă extremă de lucru pe grupe, prin care reuşeşte să recupereze “elevii slabi”,  cu multă răbdare şi totuşi hotărâtă determinare. Practica dânsei se referă la clasele de liceu, iar prezentarea conferinţei a fost întreruptă în câteva rânduri de scurte filmuleţe în care diverşi elevi de clasa a 11-a îşi prezentau sentimentele şi experienţele personale în cadrul acestei forme de lecţie de matematică.

Concret, la începutul orei elevii sunt aranjaţi pe grupe de lucru de câte 3 persoane. D-na Vestergaard a explicat hotărât cât de bine funcţionează socialul grupelor la acest număr, aşa încât permite cel mult o grupă de 2 sau de 4 persoane (după cum merge restul împărţirii la 3).  Grupele sunt alese în fiecare oră la întâmplare (groups are random, resets every day), de obicei pe bază de numărătoare (de ex. 32 de elevi împărţit la 3 dă 11; profesorul numără elevii de trei ori până la 11, în fiecare zi pe alt “traseu”). Ca o observaţie specială din partea mea, trebuie să precizez că nu s-a discutat defel interacţiunea foarte apropiată a elevilor, total nerecomandată în aceste vremuri de pandemie de Covid 19 (dar nici norvegienii nu-s atât de apropiaţi în socialul lor extraşcolar ca noi; acolo te poţi baza mai bine că nu-ţi aduce un coleg cine ştie ce coviţel la şcoală).

Materialul de studiu, lecţia este cuprinsă într-o o fişă de lucru, pe care fiecare grupuleţ de elevi trebuie să o muncească, descoperind astfel conţinuturile lecţiei pe parcursul exerciţiilor din fişă. Elevii lucrează, fiecare în grupul său, parţial individual, parţial împreună, parcurgând fişa şi descoperind itemii pregătiţi, în formatul “predare prin problematizare”. Precizez aici că în şcolile Waldorf se lucrează foarte mult în ore duble (chiar fără pauză), aşa încât este de aşteptat ca metoda să meargă ceva cam strâmtorat în ore singure, de 45-50 min. Am convingerea că se poate, dar fişele trebuie adaptate pentru a fi cu adevărat accesibile cantitativ oricărui elev).

Pentru finalul orei este ales de fiecare dată un alt grup de 3 pentru a prezenta pe scurt elementele de bază ale lecţiei respective, iar fiecare elev al clasei îşi completează notiţele după “predarea” acestora (elemente pe care de fapt cam toţi le descoperiseră deja în timpul lucrului). Daţi-mi voie să vă prezint în continuare scurtele idei din notiţele mele scrise în grabă în timpul prezentării libere a d-nei Vestergaard (vorbele dânsei sunt prezentate înclinat, uneori şi în original, în engleză; comentariile mele suplimentare apar scrise drept; schiţele însoţitoare sunt făcute cu mâna, pe acelaşi caiet pe care am scris şi în timpul conferinţei, ca să vă ofer mai bine atmosfera respectivă).

*

Tradiţional – predare frontală, centrată pe profesor. În această formă predarea merge unisens, doar de la profesor către elevi, după cum se vede în schiţa alăturată:

În acest format de lecţie obişnuit, cei care nu înţeleg se “ascund” în mulţimea clasei; aşa apare frica de matematică, anxietatea faţă de matematică (math anxiety), care este oribilă şi umilitoare! Dialogul în plenul clasei este deosebit de dificil pentru mulţi elevi, care de obicei se inhibă, această stare devenind pentru ei cu timpul starea lor obişnuită la ora de matematică.

Învăţarea pasivă este înlocuită cu o învăţare activă: în grupul cu încă doi colegi, nici elevii slabi nu se mai “ascund”; oricum, lecţia nu mai apare scrisă pe tablă, aşa încât şi aceştia trebuie – volens, nolens – să devină activi.

Această formă de lecţie este una centrată pe elev, iar asta se simte cu timpul: fiecare elev ajunge să se implice, ajunge să se simtă apreciat şi ajunge să se simtă demn din punct de vedere matematic.

Prin acest tip de lecţie se doreşte ca elevii să devină activi în rezolvarea problemelor (We want to get them active in problem solving, to get them engaged in problem solving!).

Aceasta se obţine prin trezirea întrebării “De ce?” Odată trezită această întrebare în sufletul elevului, acesta se apucă de lucru cu hotărâre, iar după ce ajunge la rezultat apare aşa-zisa experienţă de “Aha!“.  Aceasta, la rândul ei atrage curiozitatea pentru următoarea întrebare “de ce?” şi ciclul se poate relua.

Învăţarea activă generează dialogul clasei, care nu mai este doar unisens de la profesor către elevi, ci merge în ambele sensuri.

În grupurile de lucru, munca la întrebarea “de ce?” devine liberă la dezbatere şi ajutor (atât întrebatul cât şi explicaţia), într-un mod viu şi neinhibat.

Astfel, elevii descoperă legile matematicii prin învăţarea activă pe baza foilor de lucru pentru descoperire (Students discovering laws through active learning on discovery sheets). Prin acest tip de fişe de lucru, are loc învăţarea matematicii ca o “vânătoare de comori” (Learning math as a “treasure hunt”!).

Profesorul ajunge să susţină un dialog în ambele sensuri, dar nu cu elevi individuali, ci cu grupuleţele de câte trei, care oricum interacţionează între ei, lecţia de descoperire a matematicii devenind mult mai vie.

Grupurile mici oferă o siguranţă mai bună pentru elevii timizi sau slabi (small groups are safer for the shy and weaker students). În intimitatea grupurilor mici ei pot înţelege orice întrebând (they can understand everything by asking).

A-i învăţa pe ceilalţi (teaching others!): elevii mai buni au provocarea de a-i lămuri pe colegii lor mai slabi, de a le explica atunci când aceştia nu înţeleg (stronger students get a challenge to explain for weaker students).

Învăţarea diferenţiată are astfel loc şi aici: diferenţele de “nivel academic” devin o resursă a învăţării şi nu o sursă de ostracizare (differences of academic level become a resource, not an ostracle). Astfel, se ajunge la o învăţare simbiotică (symbiotic teaching!)

Cum am spus, către finalul lecţiei, un grup este ales de către profesor să facă o prezentare a lecţiei la tablă. După o scurtă pregătire aceştia ies în faţa clasei şi prezintă lecţia în rezumat, formă pe care toată clasa şi-o transcrie în caiet. Profesorul are în acest moment doar un rol de simplu supraveghetor. Iată cum arată schiţată această ultimă fază a lecţiei:

D-na Birte Vestergaard a vorbit apoi despre atmosfera din clasă la ora de matematică. Astfel, dânsa caută o atmosferă care să-i sprijine şi pe elevii slabi, care vin deseori cu inhibiţii anterior dobândite. În multe din înregistrările prezentate, diferiţi “foşti elevi slabi” povesteau despre frustrările lor de început, dar şi despre cum au putut reveni în matematică prin acest tip de lecţie. Dar şi elevii buni povesteau cum au conştientizat suferinţele colegilor lor, cum au învăţat să-i ajute şi, în ultimă instanţă, cum au devenit ei nişte oameni mai buni, mai respectuoşi faţă de cei de alături.

Sala de clasă trebuie să fie o încăpere sigură pentru orice elev, să-i ofere siguranţă matematică şi elevului mai slab, pentru ca acesta să poată face şi el matematică fără a se simţi înjosit (the classroom must be a “safe room” for the student). Elevul trebuie să se simtă în siguranţă dacă întreabă, în siguranţă dacă greşeşte şi în siguranţă să aducă idei care îi trec prin cap (Safe to ask; safe to fail; safe to bring in ideas).

O altă colegă ce a urmărit această conferinţă a notat următoarea idee: un mediu bun, pozitiv, bazat pe siguranţa bunătăţii întegului colectiv (a good enviroment based on the safety of kindness!).

Munca dintre profesor şi elev este bazată pe un contract de responsabilitate mutuală (Our work together is based on a contract of mutual responsibility!). Astfel:

Profesorul are datoria de a explica suficient de bine, de clar, astfel încât orice elev să poată înţelege, iar apoi să dea exerciţii pe care orice elev să le poată face (to explain well enough that every student understands; to give exercise that they are able to manage).

Elevul are datoria să întrebe atunci când nu înţelege, şi desigur să facă exerciţiile primite (to ask when they don’t understand and to exersize).

Comentând în final despre posibilitatea ca un elev/o elevă să nu înţeleagă nici când i se explică a doua oară, nici măcar când i se explică a treia oară, întrebând astfel la rândul său şi a treia oară, pentru că el/ea tot nu înţelege, d-na Vestergaard venea cu următoarea idee: poate cineva să explice mai bine decât mine? (can somebody explain it better than me?), lansând astfel provocarea elevilor mai buni din clasă, mai buni atât la matematică (faţă de colegul respectiv) cât şi mai potrivit mental, fiind ca elev poate mai apropiat în gândire faţă de colegul aflat în dificultate (cu toată bunăvoinţa sa, profesorul nu poate uneori coborî mental atât de jos încât să conecteze cu starea unui elevul nedumerit).

Ca o observaţia de la care nu mă pot abţine, trebuie să comentez în mod acid: mai ales partea de contractul mutual ce-i revine profesorului nu prea este îndeplinită în matematica şcolară românească. Mai exact, foarte rar când este îndeplinită această parte şi pe la noi, iar starea respectivă de lucruri este sursa principală a pandemiei de meditaţii ce ne înconjoară. Sper că aţi sesizat strădania mea de a prezenta această observaţie într-un mod cât mai rezervat acid! Dacă ne gândim bine putem vedea cum nici profesorii, dar nici editurile care se ocupă de manuale sau de auxiliare nu-şi prea îndeplinesc partea lor de “contract mutual” despre care se vorbea mai sus. De fapt am impresia că acest “contract mutual” poate fi privit aici, pe la noi, doar ca o simplă utopie, ceva care eventual funcţionează acolo, în ţările scandinave, dar sigur nu la noi (aici poate fi resimţit doar ca ceva absolut extraterestru!). CTG (va urma!)

Puterea numerelor negative –Marele roman al matematicii şi arta predării

De curând am prezentat cartea Marele roman al matematicii (Editura TREI, 2021), de Mickaël Launay. În următoarele rânduri doresc să vă prezint un citat din această carte, cât şi felul în care acesta mi-a influenţat o lecţie de clasa a 6-a, ajutându-mă să-mi îmbunătăţesc cu încă un pas arta predării matematicii (puteţi accesa prezentarea precedentă direct la adresa http://pentagonia.ro/prezentare-de-carte-marele-roman-al-matematicii-mickael-launay/). Iată pentru început pasajul respectiv (pag. 177-179), în descrierea autorului Mickaël Launay:

*

Unul dintre exemplele cele mai izbitoare mi s-a revelat într-o zi în care animam atelierul de cercetare împreună cu clasa a doua de la o şcoală (notă explicativă: în Franţa copiii merg la şcoală după împlinirea vârstei de 5 ani). Copiii, în jur de 7 ani, aveau ca sarcină să lucreze cu triunghiuri, pătrate, dreptunghiuri, pentagoane, hexagoane şi multe alte forme, pe care trebuiau să le trieze conform unor criterii liber alese. S-a observat că pentru fiecare dintre aceste figuri putem să numărăm câte laturi şi câte vârfuri există. Triunghiurile au 3 laturi şi 3 vârfuri, pătratele sau dreptunghiurile au 4 laturi şi 4 vârfuri şi aşa mai departe. Realizând această listă, copiii au formulat rapid o teoremă. Un poligon are întotdeauna tot atâtea laturi câte vârfuri.

Săptămâna următoare, pentru a-i provoca, am adus în discuţie figurile neregulate, dintre care una avea forma următoare: (aici este reprezentat în carte un patrulater concav)

Se pune, aşadar, întrebarea: câte laturi şi câte vârfuri există aici? Şi iată că majoritatea clasei răspunde: 4 laturi şi 3 vârfuri. Acest unghi inversat din josul figurii nu are o formă de vârf, adică nu este ascuţit (unghiul supraobtuz, adică cel având măsura mai mare de 180o). Nu se poate rostogoli figura peste el. Este mai degrabă o scobitură decât o umflătură a figurii. Pe scurt, acest unghi care intră în figură nu făcea parte din ideea prealabilă pe care copiii şi-o făcuseră despre ce este acela un vârf. Dacă le-aş fi cerut să numească acest punct “vârf”ar fi însemnat că le cer să dea acelaşi nume unor lucruri diferite. Ce idee stranie! Discuţiile s-au încins. Niciun copil nu este de acord cu statutul acestui nou punct. Ar trebui să-i dăm, oare, un alt nume, ar trebui să-l ignorăm complet? Există argumente pro şi contra, dar, în general, niciunul nu părea să convingă pe majoritatea dintre ei.

Apoi, dintr-odată, un copil şi-a adus aminte de teoremă. Dacă acesta nu este vârf, nu mai putem spune că orice poligon are tot atâtea laturi câte vârfuri. Spre marea mea uimire, acest argument a fost cel care într-o clipă a făcut ca întreaga clasă să-şi schimbe părerea. În câteva secunde toată lumea era de acord: trebuia ca acest punct să capete numele de vârf. Trebuia să fie salvată teorema, chiar cu preţul prejudecăţilor noastre. Ar fi fost păcat ca acest enunţ atât de simplu şi limpede să fi avut excepţii. Iată cea mai precoce manifestare a eleganţei matematicii la care am putut fi martor.

“Excepţiile” nu sunt frumoase. Ele ne rănesc sentimentele. Cu cât un enunţ este mai simplu şi aplicabilitatea sa mai mare, cu atât ne dă impresia că putem să atingem cu degetul ceva cu adevărat profund. Frumuseţea în matematică poate căpăta diverse forme, care se manifestă prin acest raport tulburător al complexităţii obiectelor studiate cu ajutorul formulărilor cât mai simple. O teorie frumoasă este o teorie economă, fără resturi, fără excepţii arbitrare şi deosebiri inutile. Este o teorie care spune multe cu puţine vorbe, care fixează esenţialul în câteva cuvinte, care merge direct la ţintă.

Dacă exemplul poligoanelor rămâne elementar, această impresie de eleganţă nu face nimic altceva decât să crească, pe măsură ce teoriile se dezvoltă, păstrând în acelaşi timp o ordine care se reduce la câteva reguli simple. (…) Este atât de frumoasă situaţia prezentată, atât de calde cuvintele la adresa matematicii, încât aici se simte pur şi simplu nevoia unei pauze scurte pentru savurarea acestui pasaj.

*

Despre această carte susţineam că ne poate influenţa pozitiv predarea, în sensul că ne-ar stimula înspre a le trezi elevilor bucuria de a face matematică. Spuneam că mi-o păstrez ca lectură de vacanţă, dar s-a apucat soţia să o citescă, iar când găsea ceva interesant îmi citea repede şi mie. Având în minte povestirea prezentată mai sus, peste două zile aceste idei m-au influenţat semnificativ în cadru unei lecţii, transformându-i finalul într-unul deosebit de captivant pentru elevi.

Clasa a 6-a s-a întors fizic în şcoală la Cluj spre finalul lunii Mai 2021. Aveam cam toate lecţiile importante parcurse, mai puţin cele despre introducerea noţiunii de numere pozitive respectiv negative. Lecţiile oficiale ne vorbesc despre Numere întregi, dar esenţa lucrurilor este despre apariţia în viaţa elevilor a numerelor negative, cât şi despre felul cum acestea se relaţionează cu cele vechi, care se numesc de acum încolo numere pozitive. M-am străduit să parcurg lecţiile la un nivel cât mai “basic” posibil, conştient fiind de faptul că elevii erau foarte bucuroşi de revenirea fizică în clasă, dar totodată aveau acumulată şi o cantitate uriaşă de frustrare generală împotriva matematicii, în urma celor cca. şase luni de izolare în online, de obicei singuri acasă, în care nu reuşiseră să se concentreze suficient pentru a primi mesajul matematic. Nu vroiam să le stric bucuria revenirii la şcoală cu o lecţie prea grea sau prea abstractă; de obicei mă străduiesc în acest sens, dar acum eram şi mai atent.

După lămurirea operaţiilor de ordinul I (adunarea şi scăderea) şi II (înmulţirea şi împărţirea), acum eram la ultima lecţie, cea despre puterea numerelor întregi (pentru pedanţi, mă refer desigur la puterea numerelor întregi negative cu exponent natural). Vroiam să o parcurg cu răbdare ca să o înţeleagă din prima cât mai mulţi elevi ai clasei, dar totodată doream să o termin repede (în cel mult 30 min.), pentru ca în ultimul sfert de oră să discutăm măcar puţin şi despre ordinea operaţiilor (mai aveam apoi încă o oră de geometrie şi o ultimă oră rezervată algebrei în care vroiam să dăm în sfârşit şi un mic test fizic în clasă; era în săptămâna dinainte de EN8, când urma să fim exilaţi din nou în online şi oricum trebuiau să fie încheiate mediile).

Trebuie desigur să precizez aici şi faptul că nici vorbă să mă gândesc să le turui lecţia; pentru mine nu intră în discuţie decât varianta de predare prin problematizare În pasajul următor vă prezint orientativ dialogul de “cucerire” a acestei lecţii cu elevii, pe care o putem denumi şi predare prin întrebări. Precizez că numerotarea întrebărilor este doar tehnică, folosită pentru claritatea acestui eseu; cu elevii, pe tablă nu le-am notat.

Întrebarea 1): Cât este (–5)3? Dezbatere, discuţii, păreri … . Până la urmă am ajuns la scrierea (–5)·(–5)·(–5). Primii doi de “minus” înmulţiţi dau “plus”, iar apoi, cu al treilea “minus” dă în total “minus”. Buuun! (trec peste “perlele” despre cât ar fi 53)

Întrebarea 2): Cât este (–3)4? Iarăşi puţină dezbatere, dar mult mai repede am ajuns din nou la scrierea (–3)·(–3)·(–3)·(–3). Aici elevii nici nu au imediat impulsul să grupeze primii doi de (–) într-un (+) şi, separat, ceilalţi doi de (–) într-un alt (+), ca apoi să concluzioneze că (+) ori (+) dă (+). NU, ei au impulsul să găsească semnul rezultatului altfel: primii doi de (–) cuplaţi dau un (+), apoi acesta împreună cu următorul (–) dau un (–), iar în final acesta cu ultimul (–) dă un (+); (apropos, şi la înmulţirea 3·3·3·3 gândesc la fel, adică 3·3 = 9, apoi 9·3 = 27, iar în final se blochează la 27·3; de fiecare dată trebuie să le tot repet că 3·3·3·3 = 9·9 care trimite mult mai uşor către 81). Oricum, până la urmă ajungem la acelaşi rezultat: (+). Interesaaant!

Întrebarea 3): Cât este (–2)5? Treaba merge deja mult mai rapid. Eu chiar îi temporizez pe cei care “s-au prins de mişcare” (încercând să am grijă astfel încât să-i duc pe cât mai mulţi elevi împreună cu noi în acest raţionament), aşa încât introduc din nou scrierea (–2)·(–2)·(–2)·(–2)·(–2), pe care putem însemna cu nişte acolade sub acest rând, îmbrăţişând tot câte două “minusuri” care dau un “plus”, în final rămânându-ne ultimul “minus”, care devine semnul rezultatului (aceleaşi acolade fuseseră folosite şi la primele două întrebări).

Întrebarea 4): Cât este (–2)6? Este evident că aici mulţi aveau răspunsul, dar pentru lămurirea definitivă a tuturor elevilor încă mai scriem (–2)·(–2)·(–2)·(–2)·(–2)·(–2). După reluarea acoladelor pentru a stabili semnul rezultatului, vine desigur şi întrebarea despre o regulă.

Întrebarea 5): Aşadar, care ar fi regula semnului la puterile cu baza negativă? Destul de repede elevii cei mai sprinţari spun că “minus la putere pară dă plus” şi “minus la putere impară dă minus” (aşa o spun ei, apoi eu le-o repet într-un limbaj mai tehnic, spunând-o încă o dată folosind cuvântul “exponent”).

Aceste puteri, corespunzând primelor cinci întrebări, le-am scris pe rânduri succesive, pornind “din mijloc”, adică lăsând câteva rânduri goale deasupra (elevii fuseseră  avertizaţi să fie atenţi la dialogul de la tablă şi să nu scrie, pentru că eu voi scrie şi în jos şi în sus). După obţinerea acestei reguli, (pentru început exprimată doar oral) am continuat să scriu deasupra puterii a treia un nou rând cu puterea a doua: aşadar (–7)2 = (–7)·(–7). Acest rând apare doar ca o confirmare a teoriei proaspăt generate, în corelare cu mai vechea (–)·(–) = (+) Apoi am trecut la rândul gol de deasupra, cu următoarea situaţie.

Întrebarea 6): Cât este (–2)1? Din nou avem puţină dezbatere, dar repede ajungem la concluzia că (–2)1 = (–2) = –2. Aha, deci “minus doi” la puterea 1 dă semnul “minus” pentru că este o singură dată. Dar putem să zicem şi că avem “minus la o putere impară” care dă desigur “minus”. Această ultimă observaţie a fost făcută şi la puterea a doua, cele două împreună reconfirmând faptul că regula mai sus exprimată este corectă şi la puteri cu exponent mai mic (nu doar la puteri cu exponente tot mai mari). Acum vine ultima şi cea mai ciudată întrebare (scrisă din nou pe rândul liber de deasupra).

Întrebarea 7): Cât este (–2)0? Vă puteţi imagina desigur răspunsurile de tipul “minus zero!” sau “minus unu” (bazat pe amintirea că “ceva la puterea zero dă unu”). Aşadar cât dă? Desigur, cunoaştem din clasa a 5-a că “un număr la puterea zero dă unu”, dar asta era valabil la numerele naturale, adică pozitive, la “numerele fără minus”. Oare la numerele negative se păstrează regula că va da 1, sau aici va da –1? Că de zero ne-am lămurit repede că nu-i cazu’.

Aici s-a întâmplat ciudăţenia cu care nu ţin minte să mă mai fi confruntat în anii precedenţi: câţiva elevi nu erau în stare “să renunţe în sufletul lor” la acel “minus” de la bază. Baza acestei puteri are “minus”. Ei au înţeles că mai mulţi de “minus” dau “plus” (dacă se pot grupa câte două şi alte două etc.). Dar aici nu poate deveni “plus” pentru că nu avem “mai multe de minus”. Eu nu voiam să-mi argumentez răspunsul pe baza formulei din clasa a 5-a (şi eventual pe baza autorităţii mele), respectând faptul că într-adevăr, aici aveam nişte “numere noi” (este de bun simţ matematic că nu avem certitudinea păstrării regulii vechi la o situaţie nouă). Doi băieţi erau mai înverşunaţi în acest sens şi nu le venea a crede că acel “minus” dispare şi datorită faptului că în explicitarea lui (–2)0 de fapt nu mai avem nici un zero. Mulţi alţii erau derutaţi pentru că nu puteau citi pe faţa mea un verdict clar înspre varianta cu +1 (eu folosesc deseori în lecţie un fel de “poker-face” pentru a le forţa gândirea).

În acest moment eu am început să simt similitudinea deosebită cu povestea egalităţii numărului de laturi şi de colţuri din cartea lui Mickaël Launay, respectiv cu forţa “teoremei” găsite de către elevi. Aşa că le-am pus următoarea întrebare ajutătoare: păi. exponentul lui (–2)0 cum este, par sau impar? Brusc s-a făcut linişte în clasă, ochişorii de deasupra măştilor s-au mărit a uimire şi au apărut explicaţii de genul: zero este par, deci e clar că rezultatul este + 1, adică tot 1.

Bucuria s-a simţit prin toată clasa, mai ales la elevi pentru că, după suspansul creat, se găsise răspunsul fără echivoc. Dar bucuria era şi în sufletul meu, pentru că vedeam pe concret cum funcţionează mecanismul logic prezentat de Mickaël Launay, mecanism de trezire a bucuriei matematice în sufletul copiilor. Aşadar şi “teorema” din clasa a 5-a se păstrează, fiind salvată: orice număr la puterea zero ne dă tot unu, indiferent dacă numărul de la bază este pozitiv sau negativ. Imediat toţi au fost de acord cu acest răspuns şi nimeni nu mai vedea la (–2)0 un semn de minus la rezultat.

Legat de paritatea lui 0 (zero), trebuie precizat că acest aspect nu este evident pentru elevi. Doar întrebat direct, elevul, ajungând să se gândească, va decide că zero este par, iar asta mai mult pe baza faptului că stă vecin cu 1 (care este mai uşor de priceput că este impar) sau că este la două unităţi depărtare de numărul 2. Gândindu-se la această întrebare, de fapt nici cei mai mulţi adulţii nu realizează din start că zero este par (vorbesc aici de nematematicieni).

Iată, pentru claritatea eseului, poza de final a tablei, dar precizez încă o dată că eu le-am scris de la rândul din mijloc în jos, apoi de la rândul al treilea în sus, puterea cu exponentul 0 fiind ultima scrisă. În final am adăugat alături şi regula (“teorema”).

Evident că, după lămurirea lucrurilor şi ţinând cont că elevii au trebuit să fie atenţi şi să nu copieze de pe tablă (din cauză că eu scriam ba în jos ba în sus), elevii au primit câteva minute să-şi completeze în caiet întreaga schemă cu cele 7 rânduri de puteri (scrisă desigur de la puterea zero la puterea a 6-a), plus regulile aferente. Eu nu văd aceste minute ca o pierdere de timp, ci mai degrabă ca o scurtă şi rapidă recapitulare pentru fixarea noii situaţii, aşa încât momentul este profund benefic. Ca o ultimă idee, precizez că eu nu fac în clasă şi exemple cu puterea unui număr pozitiv. Consider că în urma unei înţelegeri bune a acestei lecţii, elevii trebuie să-şi dea singuri seama despre cum funcţionează puterea în cazul unei baze pozitive (apare la temă şi la test).

*

Putem în acest moment să ne aventurăm într-o scurtă analiză a fenomenului, astfel încât să înţelegem ce s-a întâmplat, să interiorizăm mecanismul psihologic ce are loc, ca apoi să fim în stare să folosim şi cu alte ocazii apariţia acestui fenomen în cadrul altor lecţii.

Eu puteam să le “turui” lecţia şi probabil o terminam mult mai repede. Puteam chiar să le dau eu noile reguli, eventual chiar sub forma clasicelor formule: (–1)2k = +1, respectiv (–1)2k+1 = –1, caz în care i-aş fi speriat pe cei mai mulţi dintre elevi (caz în care totodată şi pasam clar sarcina înţelegerii fenomenului acasă, la părinţi, eventual profesoriulor din particular). Mergând însă pe calea problematizării şi folosind o scriere cât mai accesibilă (şi un limbaj la fel de accesibil), în procesul de înţelegere a fenomenului şi de descoperire a “teoremei”, elevii s-au legat emoţional de aceasta, astfel încât în momentul când şi-au dat seama că “teorema lor” acţionează şi în noua, dar ciudata situaţie cu exponentul zero, în acest moment toată clasa a fost de acord că rezultatul este tot 1 (unu), această conştientizare fiind totodată însoţită şi de o mare satisfacţie.

O astfel de lecţie le aduce elevilor o stare de bucurie “liniştită”, o senzaţie că ei înţeleg lumea din jurul lor şi că “totul este în bună ordine”. Nu în ultimul rând, mintea lor a făcut un pas hotărâtor spre a-şi spori încrederea în gândirea matematică, controlând abstractizarea ei, pentru că acest pas a fost făcut pe baza înţelegerii şi a gândirii personale.

Eu nu le-am pus în faţă nişte rezultate neînţelese, ci i-am îndrumat pe o cale prin care ei să le descopere şi să înţeleagă fenomenul studiat. Faptul că ei au generat rezultatul le-a întărit şi mai mult încrederea şi convingerea în acest rezultat, în această “teoremă” descoperită chiar de către ei (la clasă nu i-am spus “teoremă”, dar folosesc aici acest cuvânt prin analogie cu “teorema” lui Mickaël Launay.

În cadrul lecţiei respective, ca o schelă de susţinere a gândirii, “teorema” lor le-a dat încrederea şi siguranţa în a face următorul pas, un pas ciudat, într-o zonă oarecum obscură şi greu de înţeles pentru mulţi elevi. Faptul că ei au descoperit-o le-a dat mult mai multă încredere în acest rezultat decât dacă le-aş fi dat eu “teorema”. Dacă le dădeam eu “teorema”, aceasta le-ar fi fost străină, dar aşa, descoperind-o ei, gândirea lor “o avea în suflet”, înţelegând deci imediat şi acceptând de la sine noul pas. Chiar dacă descoperirea a fost făcută sub îndrumarea întrebărilor mele (folosind predare prin întrebări), aceasta acţionează asupra elevilor care s-au implicat în mod emoţional: ei au găsit-o, au înţeles-o şi le este dragă, o respectă şi nu ar accepta un rezultat care să o contrazică.

Probabil că acest fenomen este unul dintre principalele cauze pentru care elevii din clasele mele povestesc acasă că le place la matematică, şi în general îi refuză pe părinţi atunci când aceştia se implică şi vor să le predea un anumit subiect înainte acasă. E clar că vorbesc aici de elevii care sunt dispuşi şi reuşesc să se implice regulat în procesul de generare a lecţiilor, atunci când fac predare prin problematizare. Aceştia nu mai au ulterior nevoie de a învăţa acasă lecţia cu pricina, pentru că au prins noile idei în mod sănătos din clasă.

Metoda funcţionează chiar şi la elevii mai timizi, cei care nu au curajul să se exprime oral, dar care în sinea lor urmăresc fiecare pas al lecţiei, au de obicei răspunsul “pe limbă” dar, timizi fiind, aşteaptă să-l dea altcineva. Eu îi văd clar şi pe aceştia, le văd “lumina din ochi” şi am astfel certitudinea că “sunt cu noi”, cu cei care purtăm dialogul de generare a lecţiei (ei cumva “stau în spatele” celor care participă cu curaj la datul benevol al răspunsurilor).

Chiar mai mult, şi ei la rândul lor se simt clar percepuţi, văzând cum îi urmăresc în scurtele momente de contact vizual. În timiditatea lor introvertită, acestora le este suficient şi le dă o siguranţă blândă. Asta se întâmplă atunci când suntem fizic în clasă. Din păcate în online mi-a fost mult mai greu să-i percep. În online, contactul vizual nu mai există. Mulţi dintre aceşti elevi simţindu-se în sufletul lor neglijaţi, de la o vreme au început să decadă.

Revenind la predarea fizic în clasă, desigur că cei care se mulţumesc doar la a copia de pe tablă, a căror implicare în ora de matematică se rezumă doar la copierea lecţiei, rămânând de multe ori şi în urmă, aceştia nu ajung să se lege emoţional de noile cunoştinţe. Pentru ei predarea prin problematizare nu are efectele scontate. Uneori îmi este ciudă pe aceştia şi pe indolenţa lor. Atunci îmi închipui cum părintele îi spune unui astfel de copil la plecarea de acasă să fie cuminte şi să scrie totul de pe tablă. Îmi închipui cum nu-i cere să fie atent sau să fie activ la ora de mate. Probabil că îi spune doar să scrie totul de pe tablă, aşa încât el/ea se rezumă la a scrie totul de pe tablă. Pentru aceşti elevi şi eleve este nevoie de alte abordări, dar despre ei voi discuta cu o altă ocazie (promit că în curând).

Încercând să finalizez, eu consider că în acest spectru ar trebui citit Marele roman al matematicii al lui Mickaël Launay, dar şi multe altele dintre cărţile despre bucuria palpitantă a matematicii. Găsiţi o listă orientativă a acestora în postarea http://pentagonia.ro/prezentare-de-carte-anii-de-aur-ai-cartilor-despre-matematica/ . Titus Grigorovici

Geometria sintetica în clasa a 9-a – (3) Utilitatea practică a geometriei

Săptămânile trecute am început să atrag atenţia asupra situaţiei geometriei sintetice după examenul din finalul clasei a 8-a, mai exact asupra dramei procesului de formare a gândirii prin necontinuarea studiului geometriei tradiţionale. Sunt conştient că tema este oarecum fără de sfârşit şi în nici un caz nu-mi propun o tratare exhaustivă a acestui subiect. Doresc totuşi să abordez pe scurt şi o urmare practică a necontinuării studiului geometriei sintetice în licee.

Mai exact, vreau să vă prezint două întâmplări care vorbesc despre utilitatea geometriei, respectiv despre urmările neglijării geometriei în liceu.. Prima mi-a fost evocată chiar azi (21.06, când am început să scriu prezentele rânduri) de către noua administratoare a şcolii noastre. Anul trecut, la fostul loc de muncă, la o firmă care se ocupa de instalaţii de apă, doi colegi aveau o discuţie pe care dânsa a auzit-o: un inginer tânăr, ce lucra de câţiva ani în firmă, îi explica altui inginer şi mai tânăr, pare-se proaspăt absolvent, că ţevile alea două sunt paralele. Cel mai tânăr a întrebat că “ce-i aia?”, la care doamna (actuala mea colegă) s-a întors şi a izbucnit, luându-l la rost cum de nu ştie ce-s alea drepte paralele.

În acest sens am atanţionat în primele părţi asupra faptului că geometria se uită puternic dacă nu este parcursă o a două oară. Bănuiesc că orice materie este supusă unui astfel de fenomen, dar mai ales cunoştinţele învăţate pe de rost, pentru a fi ştiute până la test, acestea se uită lejer în următorii ani. Între altele, se pare că foarte mulţi, atât elevi, cât şi profesorii sau părinţii, sunt tentaţi să folosească simpla învăţare pe de rost la învăţarea geometriei în gimnaziu. Aceasta este o urmare directă a cantităţii mari şi a nivelului ridicat al materiei, dar şi a bombardării copiilor în privat cu mult mai mulţi stimuli extraşcolari (filme, jocuri pe calculator, site-uri şi platforme de socializare, accesibilizate masiv de către posesia smartphone-urilor). Învăţarea pe de rost este aparent mult mai eficientă la însuşirea unui material, cel puţin pe scurtă durată, până la test, dar nu conferă o durabilitate a cunoştinţelor.

Dimpotrivă, învăţarea intuitivă, bazată pe scurte explicaţii, care apoi sunt direct aplicate în construcţii practice, urmată de folosirea practică repetată în diferite situaţii la un nivel accesibil (sigur nu de performanţă, cel puţin nu la început, când trebuie evitate derapajele spre nivelul de excelenţă), acestea oferă o soliditate mult mai bună a cunoştinţelor.

Învăţarea intuitiv-practică, cu multă repetare, este însă puternic limitată în ceea ce priveşte cantitatea cunoştinţelor şi viteza de însuşire a acestora. Repetarea în diferite situaţii mai are un avantaj: pentru cei care nu au înţeles din prima, aceştia o vor face de obicei la viitoarele repetări şi folosiri, ajungând până la urmă să-şi fixeze ideea. Probabil că viitorii adulţi nu vor putea reda peste ani definiţia dreptelor paralele, dar vor putea explică ce sunt acestea (aşa, arătând cu mâinile, sau “ca şinele de cale ferată”).

Rezumând aceste gânduri, este clar că cunoştinţele geometrice predate în sistemul actual în România sunt deosebit de vulnerabile la fenomenul uitării totale. La o a doua trecere prin geometrie însă, elevii vor învăţa geometria într-o formă mult mai profund pătrunsă (adică mai puţin pe de rost, ci mai gândită), astfel încât noţiunile de bază – cum este şi cea de paralelism – se vor stabiliza definitiv, fixându-se astfel în zona de limbaj uzual, ce nu se vor mai uita (spre deosebire de învăţarea pe de rost, care este una superficială).

Un al doilea exemplu vine din primul an de facultate al fiului meu (Design industrial la TCM în Universitatea Tehnică din Cluj; cu 10 ani în urmă). Prin toamnă ne-a spus că la un anumit curs nu se oboseşte să meargă şi chiar eram tare nemulţumiţi de acest fapt, dar el insista că nu este important (era încă în perioada de rebeliune a pubertăţii târzii). Înainte de vacanţa de iarnă a apărut acasă cu nişte xero-copii după notiţele unui coleg care frecventase cursul respectiv şi atunci am înţeles de ce nu-l considera demn de atenţie. Era un curs în care studenţii erau iniţiaţi în arta construcţiilor geometrice cu rigla şi compasul. Pe bune: acolo erau elemente pe care eu le-am învăţat în gimnaziu; actualmente le parcurg cu elevii în clasele 5-7. Fiul meu le cunoştea pentru că le făcuse şi el în gimnaziu petrecut la Liceul de arte plastice “Romulus Ladea” din Cluj.

Din păcate însă, majoritatea absovenţilor de liceu habar nu aveau despre acestea, aşa încât profesorii de la facultatea respectivă erau nevoiţi să pună în primul semestru un astfel de curs, pentru că multe din elementele de proiectare din alte cursuri se bazau pe noţiuni de construcţii geometrice. Deci pe scurt, În primul semestru din anul I la Politehnică se prezentau noţiuni de gimnaziu, pentru că la ora actuală în România, elevii învăţau doar teoretic toată geometria, şi o parcurgeau oricum doar în gimnaziu. Chiar aşa, cum ar fi aia să înveţi geometria practic, fără multă teorie şi fără interminabila listă de probleme de demonstrat? Dar, hai să lăsăm gluma de-o parte şi să analizăm câteva vorbe ale D-lui Prof. Radu Gologan, exprimate prin februarie, într-o emisiune la radio Europa fm.

Este vorba de emisiunea din seria Deşteptarea României cu Cătălin Striblea din 26 feb. 2021 (eu am reascultate-o la adresa https://www.europafm.ro/reasculta-emisiuni/ ; am mai citat din acea emisiune când am vorbit despre birocraţie), în care invitat a fost Dl. Gologan. În aer plutea întrebarea “ce aţi schimba de urgenţă în şcoala românească?”. Iată un pasaj interesant al discuţiei de atunci:

O ascultătoare: La matematică există o programă încărcată; profesorul îşi face “norma” pentru că trebuie să o facă: astăzi predă vectori, mâine n-avem timp de aplicaţii pentru că trebuie să predăm altceva … . Copilul vine acasă, şi tot aşa: azi un capitol, mâine un capitol, n-avem timp să facem aplicaţii pe exerciţii, pe ce s-a predat. Şi atunci noi (părinţii) suntem obligaţi să punem meditatori. Azi aşa, mâine aşa, … . Lucrurile trebuiesc schimbate; noi vorbim de mulţi ani. Cine-i “sistemul” ăsta, care nu ne lasă? De cel puţin şase ani de când vorbim de această programă.

Radu Gologan: Lucrurile ăstea le spun: există o mentalitate în sistemul de învăţământ, că aceste mari programe, curriculum se numesc ele la fiecare materie, trebuie să păstreze o anumită formă, datorită unei tradiţii şi datorită acestei idei prost înţelese, că un copil trebuie neapărat pentru viitorul lui să înveţe ASTA, ASTA şi ASTA; “Cum o să iasă din şcoală fără să ştie vectori?”, de exemplu. Eu vă spun, ca matematician: NU SE ÎNTÂMPLĂ NIMIC, cu un viitor intelectual, dacă în clasa a 9-a nu învaţă vectori, ci învaţă o geometrie sintetică, simplificată, care să-i placă, să înveţe să deseneze figurile bine pe calculator, să înveţe să sistematizeze, să înveţe să gândească singur cam ce teoreme ar fi nevoie. Acesta ar fi învăţământul matematic de care este nevoie în şcoală.

Sunt cu totul de acord cu acest punct de vedere şi, încurajat de aceste gânduri mi-am luat curajul să redactez prezentul eseu. O singură întrebare am aici: cum vor reuşi elevii de clasa a 9-a să deseneze figurile pe calculator, când ei nu au formată arta desenării figurilor pe hârtie, ei nu au în mintea lor principiile construcţiilor geometrice? (exactitate, trasarea liniilor drepte, măsurarea lungimii sau a unghiurilor, mişcarea compasului etc.) Întreb asta pentru că eu ştiu cât de puţin lucrează profesorii din gimnaziu în direcţia construcţiilor exacte a figurilor geometrice. Mă refer aici la practicarea acestui “meşteşug” zilnic la clasă, inclusiv profesorii cu instrumentele pe tablă, ca model în faţa elevilor, pentru a se creea anumite mişcări ale gândurilor în momentul efectuării construcţiei. Fără să mai discutăm că elevii nu au deloc experienţă în marile probleme ale construcţiilor geometrice (de pildă, găsirea centrului unui cerc anterior trasat, de exemplu cu un pahar).

Pentru cei care ar avea impulsul să mă contrazică despre afirmaţia că profesorii nu prea se obosesc să folosească instrumentele geometrice la tablă, astfel încât elevii să aibă un model despre cum se fac construcţiile, pentru aceşti cititori am un exemplu proaspăt. Întrebând recent un elev în final de clasa a 6-a de la un liceu de centru din Cluj despre cum a decurs predarea online la geometrie în acest an şcolar (cu aproape şase luni de online pentru ei), acesta mi-a spus că profesoara scria pe o tabletă. Nici vorbă de folosirea instrumentelor pentru figuri exacte. Bine, l-am întrebat, dar în cele cinci săptămâni din toamnă sau acum la revenirea fizică în clasă, de la jumătatea lunii Mai, a folosit instrumente geometrice la tablă? Răspunsul a fost fără echivoc: niciodată nu a văzut-o făcând o figură geometrică altfel decât cu mâna liberă. Eu intuiam răspunsul, pentru că întrebându-l despre cum ar desena un triunghi isoscel cu baza de 4 cm şi laturile congruente de 6 cm, acesta mi-a răspuns “cu liniarul”. Habar nu avea de folosirea compasului la acest desen.

M-am gândit în acel moment despre cât m-am agitat eu ca să le pot prezenta elevilor transmisiunea directă cu tabla (inclusiv cu mine fără mască), astfel încât elevii să vadă fiecare pas al construcţiilor cu instrumentele geometrice. Eu oricum nu eram mulţumit nici aşa, pentru că nu-i puteam verifica în timp real ce şi cum fac ei, fiecare pe caietul personal, şi nici nu-i puteam ajuta individual, pe caietul personal, dacă vedeam că nu înţeleg. Dar, oricum, eu le-am arătat mult-mult mai mult decât acest mare NIMIC despre care mi-a povestit respectivul elev.

Doresc să revin totuşi foarte scurt la vectori. Dacă nu vor fi făcuţi de către profesorii de matematică, atunci vectorii vor rămâne pe seama profesorilor de fizică, iar acest fapt va fi unul deosebit de benefic. Vectorii reprezintă un fenomen cu origini clare în fizică (în primul rând forţele), iar introducerea lor axiomatic abstractă, pe baza unei definiţii date de către profesorul de matematică este una dintre cele mai mari gafe ale matematicii şcolare. Aşa cum m-am exprimat în câteva rânduri că Teorema lui Pitagora este în primul rând un fenomen matematic, iar profesorilor de fizică ar trebui să li se interzică ferm folosirea acesteia înainte ca cei de matematică să o introducă, tot aşa profesorii de matematică nu ar trebui puşi în situaţia de a introduce definiţionist abstract vectorii (ca segmente orientate).

Mult mai cu sens ar fi ca profesorii să ia într-o clasă mai mare (a 10-a sau a 11-a) vectorii într-o abordare matematică. Atunci se va putea chiar porni de la o definiţie de segment orientat (deşi merge şi fără aceasta), spunând în paralel cu definiţia ceva de genul: ştim că vectorii sunt nişte reprezentări ale unor forţe, iar tot ce vom învăţa acum este de fapt de inspiraţie din fizică, dar haideţi să încercăm o abordare matematică şi să vedeţi voi câte lucruri interesante putem noi rezolva prin aceşti vectori. Dar haideţi să lăsăm vectorii în pace, pentru că altul este subiectul eseului de faţă.

Mă cândesc să mă opresc aici cu aceste rânduri, nu de alta dar, cum am mai spus, este un subiect pe care se poate continua la nesfârşit şi nu asta mi-am propus. Închei doar reluând încă o dată o idee dintre cele de mai sus exprimate de Dl. Profesor Gologan: să înveţe să gândească singur în clasa a 9-a. DAAA, iar asta s-ar putea face mult mai bine pe baza geometriei sintetice. C. Titus Grigorovici

P.S. Trebuie totuşi să evoc o întâmplare ce leagă ultimele rânduri scrise de un pasaj din partea a doua a acestui eseu, anume despre întâmplarea cu eleva care era tentată să înveţe reţetele de rezolvare pe de rost şi pe care eu mă străduiam să o fac să şi gândească. Este elevul tipic ce scotea înainte de teste un caiet impecabil cu toate formulele şi teoremele bine sistematizate şi le mai repeta încă o dată. Pe de altă parte, la simulările date în clasă se stresa intens; la fel a făcut şi la simularea oficială din martie, doar mult mai tare. Iată ce mi-a povestit la ieşirea de la examenul de EN, extraordinar de entuziasmată, de suna curtea de vocea ei: Domnule Diriginte, am uitat formula de volum a cubului! M-am stresat şi nu mi-o mai aduceam aminte! Şi ştiţi ce-am făcut? Am început să o iau pe numere – cum ne-aţi învăţat – şi să văd câte cubuleţe sunt de fiecare dată, şi mi-am refăcut formula gândind.

Am simţit că, în mintea ei, eu câştigasem “meciul”. Fata asta a înţeles că gândind va putea face mult mai mult decât doar învăţând pe de rost formule şi tocind rezolvări. Cum va fi însă de la toamnă? Pe ce linie va fi condusă această elevă? Profesorii din licee nu se vor putea schimba de azi pe mâine. Dar, poate, programa cea nouă va fi astfel concepută încât să-i împingă pe profesori spre o matematică mai “gândibilă”.

Situaţii numerice în cadrul teoremei lui Pitagora – o lecţie recapitulativă interesant structurată

În condiţiile din toamnă, după situaţia lockdown-ului din primăvara-vara lui 2020, în timpul unei probleme de calcul la geometrie mi-am dat seama de faptul că în mintea unor elevi de clasa a 8-a lucrurile erau anapoda fixate în legătură cu natura numerelor ce participă ca laturi la un triunghi dreptunghic. Eu nu consider că astfel de lucruri trebuie lăsate pe “profesorul de acasă”, ci că sunt oarecum de datoria mea, mai ales dacă observ că numărul celor ce n-au înţeles este “la plural”. Ca urmare, în mod spontan am organizat o lecţie recapitulativă pe această temă. Am scris foarte repede (cca. 10 min.), explicând de zor, dar completând numai trei dintre cele 6 spaţii şi lăsând celelalte trei ca temă pentru elevi.

Este evident că alegerea numerelor ar putea fi (poate) mai bună pe alocuri, dar pentru o lecţie spontană nici nu-i rău (mă cam râcâie acel radical din 21, care sare oarecum din modelul celorlalte numere iraţionale; pentru elevii slabi, acesta este derutant pentru că are altă formă decât celelalte numere iraţionale). În general, legat de numerele alese, dar şi de forma lecţiei (inventată spontan aşadar), am putea să facem următoarele observaţii de final: 1) Desigur că aceleaşi situaţii se pot întâlni şi în cazurile cu scădere în calculul din teorema lui Pitagora (asta am precizat-o oral); 2) Există şi situaţii cu fracţii, dar în structura de mai sus nu le-am inclus şi pe acestea pentru a menţine lecţia la un nivel de accesibilitate cât mai general (şi asta le-am spus-o, dar nu apare scris); 3) La radicalul final se poate întâmpla să nu iasă nimic de sub radical (dacă obţinem sub radical un număr prim sau un număr compus, dar cu toţi factorii diferiţi, cum este cazul acelui 21). Această ultimă observaţie poate fi însă inaccesibilă pentru mulţi elevi.

Eu am făcut-o cu elevii clasa a 8-a fizic în clasă (cândva în toamnă, prin sept.-oct.), dar este clar că lecţia este potrivită începând din clasa a 7-a (desigur pentru cine are empatia corespunzătoare faţă de copiii care n-au înţeles). Lecţia poate fi desigur organizată şi ca fişă de lucru independent şi dată spre studiu ca temă sau în contul unei ore online asincron. Ca o ultimă idee, mă bucur că am fotografiat-o, pentru că între timp am uitat-o şi am găsit-o din întâmplare prin foldere.  C. Titus Grigorovici

Planimetria şi Stereometria – (*) Un ecou cu mulţumiri

Am redactat mega-eseul despre planimetrie şi stereometrie din noiembrie-decembrie 2020 cu gândul direct la studiul ariilor şi al volumelor corpurilor geometrice din clasa a 8-a, indignat fiind de excluderea acestora din materia de EN în contextul opririi şcolilor în primăvara acestui an bulversant 2020 (de care cu dreg ne-am bucurat cu toţii să scăpăm), dar mai ales speriat fiind de posibilitatea repetării scenariului pentru generaţia 2020-2021a claselor a 8-a. Am lucrat cu înverşunare, chiar aproape cu disperare, sperând din tot sufletul ca gândurile mele să fie auzite “acolo sus” (adică la cei decidenţi în ale matematicii şcolare româneşti).

Şi da, nu mică mi-a fost bucuria când am văzut de curând ordinul de ministru nr.3237/05.02.2021 cu programa pentru EN, în care apar următoarele lecţii: Arii şi volume ale unor corpuri geometrice: piramida regulată (cu baza triunghi echilateral sau pătrat), prisma dreaptă (cu baza triunghi echilateral sau pătrat), paralelipiped dreptunghic, cub. Nu pot decât să strig din tot sufletul: MULŢUMESC!!! Mulţumesc în numele elevilor de rând, adică în numele majorităţii elevilor, alţii decât cei de vârf, cei din elitele fiecărei şcoli, elevi care vor putea astfel da un examen de Evaluare Naţională cu demnitate, confruntându-se şi cu subiecte pe nivelul lor, atât provocatoare la nivelul lor, cât şi accesibile nivelului lor. MULŢUMESC!

O mică îndoială, un mic ghimpe de suspiciune îmi strică puţin bucuria şi mă ţine “cu picioarele pe pământ”, anume frica de faptul că Dl Ministru Sorin Cîmpeanu  vorbea într-o vreme (pe la începutul lunii ianuarie?) despre revizuirea definitivă a programei pentru examen după ce se vor fi dat simulările oficiale (care sunt planificate în finalul lunii martie) şi se vor fi făcut analizele corespunzătoare. Dar, dacă atunci se trezeşte totuşi cineva să scoată ariile şi volumele respective? CTG

Construcţii geometrice în clasa a 6-a – (1) Elemente de bază

MottoCu rigla, raportorul şi compasul spre înţelegere, gândire şi învăţare (adaptare după o vorbă nemţească: “mit Kleber und Schere, durch Forschung und Lehre”, pe româneşte: “cu foarfecă şi lipici spre cercetare şi învăţătură”).

În mega-eseul despre planimetrie şi stereometrie, în partea a 3-a, scriam despre un ciudat embargou “pus” asupra planimetriei în clasa a 6-a pentru că de fapt nu am avea ce să calculăm până nu cunoaştem figurile geometrice, în principal triunghiurile, patrulaterele sau cercurile. Am explicat deja că această impresie este una falsă, superficială, şi că de fapt în clasa a 6-a elevii ar trebui să parcurgă o primă fază a planimetriei, constând în lucru efectiv cu instrumentele geometrice pentru măsurări sau construcţii ale unor diferite structuri plane, pentru a conecta înţelegerea fenomenelor de către mintea elevilor cu realitatea despre care se va vorbi ulterior.

Astfel, am explicat că planimetria ar trebui să înceapă prin exerciţii simple de măsurare a unor “obiecte geometrice” deja existente cât şi de construcţii ale unor “obiecte geometrice” cu anumite dimensiuni cerute. Fără această fază iniţială există clar posibilitatea de apariţie la unii elevi a unor elemente de analfabetism funcţional matematic (AFM), chiar şi în acest domeniu deosebit de “aritmetic” al geometriei. Din păcate însă, chiar aşa, cine se mai gândeşte în zilele noastre “să piardă timp” cu astfel de banalităţi?, cum ar fi măsurarea sau cunstrucţia unor elemente de anumite dimensiuni (asta a fost o întrebare retorică). În acest context trebuie să scot în evidenţă gafa metodică uriaşă a multor colegi care susţin la clasă că, dimpotrivă, chiar “figura nu contează” într-o problemă.

Revenind la subiectul de bază, cu alte cuvinte, embargo-ul din clasa a 6-a poate exista doar în mintea celor care privesc geometria numai la nivelul demonstraţiilor şi a calculelor mult prea evoluate, în general a gândirii mult prea înalte pentru o mare parte a elevilor (chiar pentru cea mai mare parte a elevilor!). Trebuie să recunosc că şi eu m-am numărat uneori printre aceştia; şi pentru mine drumul şi paşii de coborâre de la gândirea de profesor experimentat spre nivelul de gândire al copiilor a fost şi este în continuare unul anevoios, şi asta datorită paradigmelor de predare preexistente desigur şi în mintea mea, paradigme pe care deşi le respect, ca dascăl responsabil înţeleg că trebuie să le dau uneori de-o parte pentru a-mi deschide “ochii minţii” şi “a vedea” nevoile reale ale elevilor mei (nu doar nevoile matematicii mele înalte).

În această luptă, eu cu mine însumi, în urma articolului mai sus amintit (mega-eseul despre planimetrie şi stereometrie), dar şi în urma unor ciudate cercetări din timpul primului lockdown (aprilie 2020) în domeniul problemelor de aritmetică, s-a intărit ideea că în clasa a 6-a nu există un embargou asupra planimetriei, ci că la această etapă este vremea unei perioade clare de practică în domeniul măsurărilor şi ale construcţiilor geometrice, începând chiar de la primele elemente. Astfel, eu nu am voie să las însuşirea acestor elemente doar pe seama “învăţării definiţiilor”, ci trebuie să-i ofer elevului începător imediat şi ocazia învăţării acestora în mod practic, această cale susţinând evident şi însuşirea, dar şi fixarea teoretică a noţiunii respective.

După cum am spus deja, demult făceam asta la capitolul de triunghiuri (cu cele două fişe din postarea precedentă), dar acum, în acest început de 2021, mi-am dat seama că trebuie să-mi organizez un material de lucru corespunzător şi pentru primele cunoştinţe de bază ale geometriei: puncte şi drepte, segmente şi semidrepte, colinearitate şi concurenţă, unghiuri, ideea de congruenţă, paralelism şi perpendicularitate, mediatoare şi bisectoare etc. Spun că trebuie să-mi organizez un material de lucru corespunzător şi pentru primele cunoştinţe de bază ale geometriei, pentru că un astfel de material nu există de fapt; în nici o carte, fie ea manual sau auxiloiar, nu am găsit materiale de lucru pentru cunoaşterea elementelor de bază din geometrie prin măsurare şi construcţie, adică având ca obiectiv aceste două acţiuni. În cărţi vechi există probleme de construcţii geometrice, dar acestea sunt mult prea înalte din punct de vedere intelectual.

Noutatea este că acum am reuşit să cobor mult ştacheta gândirii mele, şi mai multca în trecut, spre nivelul minţii copiilor de rând, cât şi spre ideea de cunoaştere a materiei dinaintea triunghiurilor prin munca concretă cu instrumentele geometrice. Astfel, am reuşit să organizez un material cu sarcini absolut elementare, fără a fi plictisitor (sper!), cu sarcini la care trebuie folosite instrumentele geometrice de bază în orice trusă: ideea de riglă negradată pentru simpla trasare a dreptelor (la întâmplare sau cu exactitate prin anumite puncte), dar şi liniarul gradat pentru măsurarea diferitelor lungimi (în mod mai “neortodox” chiar şi liniarul ca instrument de trasare a două drepte paralele, de o parte şi de alta a acestuia); compasul ca instrument pentru trasarea de cercuri, dar şi ca instrument pentru “luarea unei distanţe” între două puncte (inclusiv ideea de congruenţă a unor segmente, mai presus de măsurarea lungimii acestora); raportorul ca instrument de măsurare, dar şi ca instrument de construcţie a unor unghiuri de o anumită măsură; echerul, atât ca instrument de verificare a perpendicularităţii, cât şi ca instrument de construcţie a acesteia, respectiv a unui unghi drept.

Elevii fac astfel cunoştinţă prin intermediul acestor patru instrumente geometrice cu “obiectele geometrice” studiate, măsurându-le sau construindu-le în diferite situaţii, adică lucrând practic cu acestea, nu doar învăţându-le definiţiile şi străduindu-se a le asimila ca noţiuni teoretice.

Problema este că noţiunile se învaţă mult mai bine prin folosirea lor practică (preferabil chiar în mod repetat) decât prin învăţarea unor definiţii teoretice în mod steril (chiar şi în mod repatat). De multe ori se poate observa că un elev care ştie să turuie definiţia, de fapt nu ştie deloc despre ce vorbeşte. Prin materialul din acest eseu încerc să readuc aplicarea acestui principiu natural de învăţare în viaţa elevilor noştri.

Astfel am organizat un set de exerciţii conţinând sarcini simple, cuprinse într-o fişă de lucru destul de generoasă, despre care însă nu am defel pretenţia de a fi perfectă (probabil că după primele folosiri la clasă voi avea tendinţa de a corecta sau completa diferite aspecte din aceasta). Cu alte cuvinte, nu am pretenţia de a vă prezenta un material deosebit de cizelat, dar în cazul de faţă ideea şi intenţia prevalează.

La fel ca în postarea precedentă, şi aici trebuie să fac observaţia asupra faptului că problemele de construcţie sunt poziţionate conform ordinii parcurgerii lecţiilor de către mine (conform principiilor pedagogiei Waldorf). Nu are rost să prezint toată această ordine, dar trebuie să precizez că eu parcurg destul de repede (mai exact în a doua lecţie) o prezentare a poziţiilor relative a două drepte, unde apar deja noţiunile de drepte paralele sau drepte perpendiculare, cu referire la poziţionările orizontale sau verticale şi analogii cu acestea. Cu alte cuvinte, noi învăţăm despre drepte perpendiculare înaintea studiului despre unghiuri; unghiurile apar în a doua jumătate a studiului elementelor de bază. Rog în acest context cititorii să treacă peste acest inconvenient şi să înţeleagă tema principală a prezentării de faţă; oricine poate apoi să-şi redacteze o fişă de lucru conform nevoilor personale.

Acest inconvenient dispare însă dacă fişa este folosită ulterior lecţiilor, ca material recapitulativ. Ca o observaţie personală, trebuie să precizez că această bruscă “iluminare” a mea pe subiectul de faţă are loc prea târziu chiar şi pentru actuala mea clasă a 6-a, astfel încât şi aceştia au primit-o în ultima săptămână a semestrului I ca temă recapitulativă, înaintea orelor despre triunghi. Cred că nu-i rău nici aşa, pe această cale putând merge şi alţi colegi, folosind fişa respectivă ca material suplimentar (după parcurgerea noţiunii de perpendicularitate, după unghiuri, conform ordinii oficiale din programă).

Un aspect colateral important al acestui prim set de exerciţii este şi formarea obişnuinţei elevilor cu textul (mai lung sau mai scurt) conţinând noţiuni geometrice, în general matematice, şi preîntâmpinarea astfel a apariţiei analfabetismului funcţional matematic, în acest domeniu, dar şi în general, deoarece majoritatea cerinţelor sunt la limita de jos a complexităţii. Anexez în final fişa de care am vorbit (patru coli A4). CTG

Fișă

Construcţii geometrice în clasa a 6-a – (2) Triunghiuri

Motto:  Cu rigla, raportorul şi compasul spre înţelegere, gândire şi învăţare (adaptare după o vorbă nemţească: “mit Kleber und Schere, durch Forschung und Lehre”, pe româneşte: “cu foarfecă şi lipici spre cercetare şi învăţătură”).

În mega-eseul despre planimetrie şi stereometrie, în partea a 3-a, scriam despre un ciudat embargou “pus” asupra planimetriei în clasa a 6-a pentru că de fapt nu am avea ce să calculăm până nu cunoaştem figurile geometrice, în principal triunghiurile, patrulaterele sau cercurile. Aşa-i: nu putem să ne ocupăm de perimetre şi de arii până nu cunoaştem serios figurile geometrice “închise”, cărora vrem să le calculăm perimetrele şi ariile (studiul ideii de perimetru sau arie pentru câteva figuri în clasa a 5-a implică o abordare extrem de intuitivă a acestora, abordare care însă este posibilă doar în cazul câtorva, în principal pătratul şi dreptunghiul). Există însă un mare DAR,… , anume că planimetria nu constă doar în calcule de perimetre şi arii.

Ariile reprezintă măsura suprafeţelor (pe germană Flächeninhalt, însemnând “conţinutul suprafeţei”) a unor figuri bidimensionale (2D) şi se calculează conform unor formule (reţete) complexe, ce au făcut obiectul unei “cercetări” preliminare (asta într-un caz normal, în care profesorul doreşte să-i înveţe pe elevi să şi gândească, nu doar să rezolve papagaliceşte nişte exerciţii; dacă însă profesorul sau un părinte îi dă elevului direct formula, atunci elevul va acumula şi cu această ocazie frustrare faţă de incapacitatea sa de gândire, făcând astfel încă un pas spre “analfabetismul funcţional” matematic).

Dimpotrivă, deşi se referă la figuri bidimensionale, perimetrele reprezintă o mărime unidimensională (1D). Procedeul de calcul al perimetrelor este însă unul mult mai simplu, anume de însumare a lungimilor tuturor laturilor. O persoană cu un minim nivel de gândire nu are nevoie de reţetă în cazul unui perimetru (dacă un elev nu reuşeşte să gândească singur un perimetru, dă clare dovezi de “analfabetism funcţional” matematic; un adult care împinge elevul spre învăţarea pe de rost a unor reţete de perimetru la diferitele figuri geometrice, acesta dă dovadă de o inconştienţă crasă, în multe cazuri împingând de fapt elevul şi mai mult înspre mocirla nongândirii, numită “analfabetism funcţional” matematic-AFM; dimpotrivă, dacă un elev îşi deduce singur anumite formule de calcul a perimetrului, aceasta este o clară dovadă de gândire, dar numai dacă o face el, nu şi dacă i-o dă adultul de lângă el; de pildă, un elev care tot adună laturi şi la romb, fără să-şi dea seama că poate înmulţi latura cu 4, acesta are clar un început de AFM, adică de “analfabetism funcţional” matematic).

Încercând să facem un pas şi mai jos faţă de arii şi faţă de perimetre, vedem că înaintea acestora se află simpla preocupare pentru lungimea unor laturi, adică lungimea unor segmente. De aici începe de fapt planimetria, iar clasa a 6-a are din belşug ocazii de a exersa elemente de bază în planimetria iniţială, adică ocazii de lucrat cu măsurile elementelor unor figuri, segmente şi unghiuri.

Cu alte cuvinte, planimetria începe prin exerciţii simple de măsurare a unor “obiecte geometrice” deja existente, cât şi de construcţii ale unor “obiecte geometrice” cu anumite dimensiuni cerute, în principal segmente, adică lungimi, dar apoi repede fiind incluse în acest joc şi unghiurile. Aceste exerciţii existau în toate manualele vechi (ele dispăruseră direct, dar erau subînţelese chiar şi în vremea ultimelor manuale comuniste, cele din anii ’80-’90), dar au fost cu totul abandonate în forma manualelor alternative din 1997, deoarece acestea cât şi preocuparea profesorilor au ajuns să fie setate total spre matematica de performanţă; or, măsuratul cu liniarul şi alte activităţi de acest gen chiar nu fac parte din preocupările concursurilor de excelenţă.

Fără această fază iniţială a geometriei există însă clar posibilitatea ca unii elevi (şi nu puţini) nici măcar să nu priceapă despre ce este vorba în problemele cu arii şi perimetre, acestea prezentându-li-se din start deja mult prea sofisticat şi “teoreticist”. Înainte de a lucra “calculatorist” cu nişte dimensiuni, elevul trebuie să le fi folosit “măsurătorist”, altfel pot apărea disfuncţionalităţi puternice la copiii instabili din acest punct de vedere (AFM).

De pildă, există copii care nu ştiu ce şi cum se măsoară cu liniarul, existând unii care au impulsul să înceapă cu măsurătoarea de la 1, nu de la 0. Nici nu mai are rost în acest context să vorbim despre măsurarea unghiurilor cu raportorul. Acesta este oricum un instrument mult mai complicat decât liniarul, profesorul trebuind să petreacă cu elevii mult mai mult timp la măsurarea unghiurilor, dacât la lungimi. Procentul elevilor care nu pricep din prima ce se întâmplă cu raportorul este muuult mai mare decât în cazul liniarului, iar aceştia au nevoie să lucreze câteva zile pe acest subiect până se fixează şi în mintea lor “ce şi cum”.

Cu alte cuvinte, embargo-ul din clasa a 6-a împotriva planimetriei poate apărea doar în mintea profesorilor care gândesc numai la nivelul demonstraţiilor şi a calculelor sofisticate, în general a gândirii mult prea înalte pentru o mare parte a elevilor.

Ca o paranteză, desigur că cititorul va căuta partea întâi (1) a acestei serii, dar nu o va găsi. Motivul este următorul: am decis să expun acest subiect, al construcţiilor geometrice, în ordinea în care mintea mea l-a cucerit, nu în ordinea în care părţile acestui eseu apar în viaţa elevului. Numerotarea însă se referă la ordinea naturală în predare, iar onor cititorii vor trebui să-şi lămurească această dualitate de abordare (staţi liniştiţi: urmează cât de repede şi partea întâi). Să vedem deci cum am “cucerit” eu acest subiect în ultimul deceniu.

De mulţi ani în mintea mea a început să crească – încetu’ cu-ncetu’ – vechea temă din manuale de demult despre construcţii de triunghiuri cu instrumente geometrice (începând din secolul XIX şi până în anii ’90, când o făceau încă foarte mulţi profesori). În manualele vechi elementele erau desenate separat mai întâi; doar apoi erau desenate asamblat într-un triunghi.

Cu timpul mi-am dat seama că aceasta reprezintă o minunată oportunitate de cunoaştere practică a triunghiurilor, deosebit de bună de aplicat înaintea problemelor cu demonstraţii în triunghiuri; elevii sunt astfel îndrumaţi iniţial spre o cunoaştere practică a acestora, înaintea abordării problemelor “intelectuale”. Pe acest drum de refacere a căii vechi de cunoaştere, de la un an la altu’ fişa mea de lucru a crescut încet-încet; la început a fost scrisă de mână, apoi a ajuns redactată în calculator, evoluând în variante tot mai cizelate şi mai complete. La ora actuală acest material de lucru pentru elevii se prezintă sub forma a două fişe: Fişa 1) Construcţii de triunghiuri (generale sau speciale) şi Fişa 2) Construcţii de triunghiuri cu linii importante. Acestea pot fi imprimate faţă-verso pe o coală A4. Este evident că a doua fişă ajută şi la o primă cunoaştere practică a liniilor importante în triunghi.

Materialul este adaptat formei în care predau eu acest capitol, anume în ordinea următoare: Lecţia 1) Triunghiul (elemente), Suma unghiurilor, unghiul exterior; Lecţia 2) Construcţia triunghiurilor, cazurile de construcţie (renumitele LLL, LUL şi ULU abordate iniţial astfel); Lecţia 3) Clasificarea triunghiurilor (tipuri de triunghiuri); Lecţia 4) Liniile importante în triunghi; Lecţia 5) Triunghiul dreptunghic (tipuri, proprietăţi şi teoreme).

Consider că abia după o cunoaştere practică prin construcţie a triunghiurilor cu instrumentele geometrice, abia apoi se poate trece la nivelul superior, anume la demonstraţii cu acestea. Partea de cunoaştere practică şi intuitivă lipseşte din forma de predare a majorităţii profesorilor, iar acesta este unul din motivele de bază pentru care elevii din toată ţara merg atât de slab la geometrie.

Din păcate, geo-metria (măsurarea terenurilor, cum a fost aceasta denumită de către grecii antici, după vizitele “de studii” în Ţara Nilului) a ajuns în ciudata situaţie de a se dezice de denumirea sa: la ora actuală în geo-metria de mult nu mai măsoară! Prin iniţiativa mea, eu am încercat să repun geo-metria pe făgaşul normal, punându-i pe elevi la început “să măsoare”.

Nu vreau să susţin că geo-metria ar trebui să revină la practicile de măsurare a terenului (de pildă cum se făcea după retragerea apelor Nilului în Egiptul Antic), dar consider că orice elev ar trebui să fie introdus în acest domeniu începând printr-o cunoaştere practică a elementelor geometrice, o cunoaştere care să fie adaptată vârstei şi nivelului mediu de gândire, să fie accesibilă, chiar cu vagi accente ludice, dar în primul rând să fie făcută prin intermediul manualităţii. Această cunoaştere practică nu o exclude pe cea teoretică. Cunoaşterea teoretică trebuie doar domolită şi adaptată nevoilor şi posibilităţilor generale ale vârstei de clasa a 6-a, folosirea ei în probleme de demonstrat trebuind însă să vină întotdeauna după cunoaşterea practică.

În acest context trebuie să recizez că materialul din aceste fişe urcă până la nivelul de dificultate în care rezolvitorul trebuie de fapt, este chiar nevoit, împins să facă primii paşi de raţionamente specifice demonstraţiilor, raţionamente pe care trebuie desigur să le justifice (am făcut aşa pentru că …).

Este evident că după etapa de cunoaştere a triunghiurilor prin construcţie, pe baza “cazurilor de construcţie” (LLL, LUL, ULU, dar şi după o scurtă analiză LUU), se poate trece apoi la probleme teoretice, unde ar trebui parcursă lecţia despre “cazurile de congruenţă” a triunghiurilor (la început a triunghiurilor oarecare, iar apoi şi a triunghiurilor dreptunghice). Este evident că înţelegerea acestor lecţii va fi mult mai solidă, gândirea elevilor având acum formate rădăcini adânci într-o înţelegere practică a fenomenelor. Cu alte cuvinte, este evident că o lecţie ancorată în profunzimea experienţei practice personale are şansa să fie mult mai solidă decât o cunstrucţie superficială, fără o fundaţie solidă.

Anexez în final PDF-uri cu cele două fişe, cu observaţia că materialul conţine inclusiv aplicaţii ale teoremei triunghiului dreptunghic înscris în semicerc (“Cercul lui Thales”, cum este aceasta cunoscută de la graniţa cu Ungaria încolo, adică în toate ţările de cultură germană), teoremă folosibilă în cazul de construcţie IC, cu ipotenuza ca bază a triunghiului. CTG

2A5 Constructii linii imp in tri 35ex-converted.pdf şi
2A5 Constructii Triunghiuri 41ex-converted.pdf

Planimetria şi Stereometria – (8) O privire mai profundă asupra ariilor din clasa a 7-a

Cred că onor cititorii şi-au dat seama că am redactat acest mega-eseu cu gândul direct la studiul ariilor şi al volumelor corpurilor geometrice din clasa a 8-a, indignat fiind de excluderea acestora din materia de EN în contextul opririi şcolilor în primăvara acestui an bulversant 2020, dar şi speriat fiind de posibilitatea repetării scenariului pentru următoarea generaţie. Dacă în anul şcolar 2019-2020 decizia se mai justifică cumva, pentru anul şcolar 2020-2021 nu mai există nici cea mai mică justificare, datorită faptului că lucrurile puteau fi pregătite din timp (adică din vara anului 2020).

Unul din motivrele plauzibile pentru care nu a fost pregătită, respectiv prevenită repetarea unei astfel de situaţii, este faptul că probabil în Minister atenţia majorităţii este îndreptată cu predilecţie spre vârfuri, spre matematica “de performanţă”; ori, mişcarea de excludere a stereometriei de la EN nu i-a afectat prea mult pe elevii de vârf (cei mai buni dintre ei au primit însă o lovitură “sub centură” prin toamnă, când d-na Ministru filolog a decis să elimine toate olimpiadele din activitatea acestui an, deci inclusiv “sfintele” olimpiade de matematică).

Se pare însă că pe diriguitorii matematicii româneşti nu-i prea interesează ce se întâmplă cu marea masă a celor “slabi la matematică”. Lor le-au dat câteva întrebări tălâmb de banale, astfel încât să nu existe proteste din partea acestora, dar şi pentru ca promovabilitatea pe ţară să fie OK din punct de vedere politic, astfel încât guvernanţii să aibă linişte măcar din acest punct de vedere într-un an electoral agitat cum nu a mai fost altul.

Aşadar, aceasta a fost motivaţia mea principală, pentru redactarea ideilor exprimate, cea din punct de vedere a afectării stereometriei. În cadrul acestui mega-eseu am folosit însă ocazia pentru a atinge şi alte aspecte colaterale, care însă sunt înrudite ca fenomenologie, respectiv ca atitudine a organizatorilor din Minister, a autorilor de manuale sau a marii majorităţi a profesorilor, care însă toate afectează la diferite vârste învăţarea matematicii şi formarea gândirii la marea masă a elevilor.

Unul din “punctele” respective îl reprezintă planimetria, mai ales studiul ariilor în clasa a 7-a, despre care am vorbit în diferite rânduri. În contextul studiului ariilor există multe aspecte implicate. Haideţi să analizăm mai atent două dintre acestea şi felul în care ele interacţionează. Precizez că este vorba de aspecte ale predării noastre ca profesori în România acestor ani, aspecte care însă nu sunt defel şi niciunde discutate: nici în materialul însoţitor al programei noi din 2017, nici în cursurile de formare, nici în manuale, niciunde!

Un prim aspect la care mă gândesc este faptul că planimetria capătă un sens evoluat, un sens cu adevărat matematic, doar odată cu posibilitatea calculului unor lungimi prin teorema lui Pitagora. Fără teorema lui Pitagora calculul ariilor şi a perimetrelor se rezumă la aplicarea unor reţete, adică a unor formule anterior dobândite (deduse prin gândire sau primite “de-a moaca”), şi a finalizării corecte a calculului din acestea (care se rezumă de obicei la aritmetică de clasa a 5-a, eventual la calcule cu proaspăt învăţatele numere iraţionale). De-abia prin teorema lui Pitagora calculul de arii şi perimetre devine MATEMATICĂ, devenind adică o situaţia de gândire, de forţare a individului în a decide singur ce paşi trebuie să facă, de a alege şi a combina diferite procedee anterior învăţate într-un întreg, care să parcurgă în mod coerent drumul de la ce se dă la ce se cere. De abia prin posibilitatea folosirii teoremei lui Pitagora planimetria urcă de la nivelul unui calcul banal la nivelul superior al problemelor de matematică. Cu alte cuvinte, folosirea teoremei lui Pitagora îl obligă pe elev să urce de la aplicarea “contabilicească” a unei formule, a unei reţete, la un nivel elevat în care el, elevul, trebuie să gândească, adică să ia decizii despre ce procedeu să aplice în fiecare moment.

De abia prin integrarea teoremei lui Pitagora în probleme planimetria urcă la un nivel de complexitate comparabil cu cealaltă mare parte a geometriei, anume cu demonstraţia geometrică. Totuşi, chiar dacă urcă de la nivelul de “exerciţii” (aplicarea şi exersarea unei simple reţete individuale) la nivelul de “problemă” (combinarea mai multor reţete individuale într-un întreg mai complex, combinare ce are loc, cum spuneam, în urma unor decizii ale rezolvitorului, ce reprezintă deja un proces de gândire), planimetria rămâne oricum la un nivel mai accesibil majorităţii elevilor pentru că răspunde la mult mai obişnuita întrebare “CÂT?”, pe când necesitatea demonstraţiei apare în urma întrebării “DE CE?”. Or, întrebarea “CÂT?” este mult mai prezentă în cotidianul majorităţii oamenilor, inclusiv a celor mai mulţi elevi, fiind ca atare mult mai accesibilă majorităţii indivizilor, decât întrebarea “DE CE?”, care este evident o întrebare mai profundă (vedeţi, asta numesc eu o adevărată psiho-pedagogie; şi când mă gândesc câţi ani m-am uitat cu dispreţ la cartea prof. Eugen Rusu despre Psihologia activităţii matematice).

Cu întrebarea “CÂT?” elevul se confruntă din clasele primare, aceasta reprezentând deci parte a zonei sale de confort intelectual matematic, chiar şi măcar datorită faptului că s-a confruntat cu astfel de situaţii de multe ori. Această întrebare este specifică gândirii infantile, anume a stadiului operaţional concret, aşa cum îl denumea Piaget, deşi problemele de calcul a ariilor şi a perimetrelor încep să folosească elemente ale gândirii adulte, din stadiul operaţional formal. Dimpotrivă, problemele de demonstraţie, cele care răspund la întrebarea “DE CE?”, lucrează predominant la nivelul gândirii adulte, adică în stadiul operaţional formal al raţionamentelor.

Vreau să spun aici că problemele de planimetrie reprezintă o cale de formare şi de exersare a gândirii mult mai accesibilă marii majorităţi a elevilor decât problemele de demonstraţie. Mai mult, toate problemele de demonstrat (inclusiv cele de calcul, dar care folosesc artificii algebrice sau de demonstraţie geometrică) reprezintă perioade ale orei de adresare şi educare exclusivă a elitelor, a elevilor de vârf (de obicei 2-3 în clasă). Dimpotrivă, problemele de calcul reprezintă perioade de adresare generală a întregii clase, adică şi a marii majorităţi a elevilor, din care însă înţeleg şi cei buni (şi, să ştiţi că nu li se usucă creierul de puţină “artimetică”).

Mai mult, în aceste perioade, elevii de vârf au ocazia să exerseze EMPATIA, dar şi o stare de respect plină de îngăduinţă faţă cei care le sunt inferiori din punct de vedere al gândirii. Dimpotrivă, toate acele perioade ale orei când se lucrează doar pentru vârfurile clasei, îi educă pe aceştia înspre o stare îngâmfată egoist-egocentristă, ce nu are nimic în comun cu educarea respectului mutual ce ar trebui să existe între membrii unei societăţi civilizate.

Cu alte cuvinte, prin problemele de planimetrie şi stereometrie profesorul de matematică are o ocazie mult mai accesibilă de a deveni un formator de gândire, decât prin intermediul demonstraţiilor geometrice. Marea majoritate a elevilor, cei cca. 70-80% care formează corpul de bază al “clopotului lui Gauss”, vor putea face pasul spre gândire prin intermediul problemelor de calcul de perimetre, arii sau volume, pe când în cazul problemelor de demonstrat aceştia vor fi tentaţi să înveţe pe de rost, mimând că gândesc, gândirea adevărată rămânând “de căruţă” (vezi şi P.S. din final, cu alte aspecte legate de acest important gând).

Până la programa din 2017 acest pas (introducerea teorema lui Pitagora în calculul ariilor) nu era posibil în cadrul capitolului din toamna clasei a 7-a, evident pentru că elevii încă nu aveau parcursă teorema lui Pitagora, aceasta fiind poziţionată în programă de abia în semestrul al II-lea, fixată fiind acolo de acceptarea doar a demonstraţei prin teorema catetei, care la rândul ei trebuia în prealabil demonstrată prin asemănarea triunghiurilor. Ca o paranteză fie spus, atenţionez că există şi demonstraţii prin arii la teorema lui Pitagora (încă multe chiar), demonstraţii ce ar permite includerea acestei teoreme în capitolul de arii (eu am ales una dintre ele, incluzând-o astfel de 20 de ani în studiul ariilor din toamna clasei a 7-a), dar acesta este un alt subiect şi nu vreau să intru în el acum.

Dimpotrivă, după programa din 2017, programă ce implică predarea “în gol”, adică fără demonstraţie, a teoremei lui Pitagora în finalul clasei a 6-a, n-ar mai trebui să ne împiedice nimic în integrarea acestei teoreme în studiul ariilor din toamna clasei a 7-a. Orice demonstraţie la teorema lui Pitagora implică parcurgerea unor elemente dificile, din categoria demonstraţiilor, înainte de aplicarea banală a calculului în probleme de planimetrie (absolut ciudat, dar acest fenomen nu apare şi în stereometrie, unde se poate intra în mod intuitiv direct în calcule, fără a fi nevoie de demonstraţii prealabile). Dimpotrivă, situaţia ciudată creată de programa din 2017 ne scuteşte de acest aspect al rigurozităţii, dând “mână liberă” profesorului de a folosi din start teorema lui Pitagora la calculul de arii şi perimetre. Şi totuşi, în aceste condiţii “ideale” pentru profesor de a face un pas clar în favoarea majorităţii elevilor, cei mai mulţi profesori se fac că nu văd, ratând această oportunitate, unii chiar luptându-se împotriva acesteia.

În acest sens, poate fiecare să studieze cum arată situaţia în manualele sau în culegerile auxiliare însoţitoare alese; unii le-au integrat timid, alţii dimpotrivă nu s-au gândit la această posibilitate (eu personal nu am făcut un astfel de studiu cât de cât vast; vorbesc doar în urma întâlnirii unor câteva exemple din ambele categorii). Care este însă situaţia de la clasă în acest context? Păi, cam aceeaşi: profesorii nu se bagă, nu văd oportunitatea, le este “nu ştiu cum” să iasă din zona de confort a predării din ultimii zece ani.

În acest sens vreau să prezint un singur exemplu: chiar zilele acestea, după publicarea părţii (4) a acestui mega-eseu, m-am întâlnit din nou cu o situaţie absurdă şi am promis că o voi prezenta. Este vorba despre situaţia unei probleme din capitolul de arii din clasa a 7-a, în care, la propunerea unui elev de a rezolva cu teorema lui Pitagora, profesorul spune ad-literam: încercăm să evităm folosirea lui Pitagora (aproape că ai impresia că-l vezi pe acel profesor “scrâşnind printre dinţi” o înjurătură la adresa cui o fi decis introducerea acelei lecţii în finalul clasei a 6-a). Este NOAPTEA MINŢII să lucrezi întreg acest capitol fără teorema lui Pitagora, deşi de data asta elevii o cunosc, doar aşa, pentru că tu te-ai obişnuit să predai acele lecţii fără Pitagora şi îţi este greu să te schimbi. Analizând situaţia concret am putut vedea gândul mai profund al respectivului profesor, anume că el pregătise problema pentru o anumită rezolvare, care era mai scurtă, dar mai “algebrică” decât cea prin folosirea teoremei lui Pitagora (aceasta fiind însă din punct de vedere al elevilor mai accesibilă pentru că era mai “aritmetică”, chiar şi prin prisma celui mai bun elev din clasă, cel care venise cu propunerea). Da, “stimaţi” colegi, dar într-o astfel de situaţie suntem obligaţi să explicăm situaţia elevilor, nu doar să le refuzăm soluţia în mod schizofrenic, pentru că altfel lucrurile rămân în mentalul întregii clase la un nivel inerxplicabil mustind de subiectivitate: de ce să evităm folosirea lui Pitagora de vreme ce o cunoaştem? Vedeţi cum situaţia capătă aspecte conflictuale prin impulsul unei astfel de contra-întrebări retorice.

Cum s-ar fi putut evita astfel de situaţii? Păi simplu, dacă în textele însoţitoare ale programei din 2017 ar fi fost prevăzute şi incluse aceste aspecte, dacă ar fi fost clar precizate, atunci autorii de manuale le-ar fi integrat clar şi vizibil, iar profesorii s-ar fi adaptat evident. Aşa, după cum am mai spus, fiecare ocazie de reformă adevărată şi profundă este ratată în România cu mare stil şi eleganţă balcanică, astfel încât cei de la baza învăţământului, profesorii de rând şi orele lor în nici un caz nu au cum să evolueze în favoarea marii majorităţi a populaţiei şcolare.

Am precizat, mai ales la geometria în spaţiu din clasa a 8-a, că avem de fapt o formă de predare orientată după criteriile rigurozităţii matematicii, dar care sfidează criteriile pedagogice (înţelegeţi ce am vrut cu axele acelea ciudate din prima parte a eseului). Această formă este accesibilă vârfurilor populaţiei şcolare, dar se desfăşoară mult prea sus din punct de vedere intelectual pentru cea mai mare parte a elevilor. Probabil că mulţi dintre matematicieni nu înţeleg de ce “prostimea” nu face faţă geometriei, pentru că doar, măcar ariile şi volumele din clasa a 8-a “sunt simple”. Acelaşi fenomen se întâmplă însă şi cu un an înainte, în clasa a 7-a la studiul ariilor, din cauza a două aspecte, unul dintre ele fiind cel discutat mai sus.

Un al doilea aspect de analizat ar fi următorul: studiul ariilor are două părţi destul de bine delimitate, cu adresabilitate destul de diferită la nivelul elevilor. Pe de o parte avem calculul concret ar ariilor, ce se face cu diferite formule (majoritatea figurilor au mai multe formule, în funcţie de situaţia datelor, şî acestea cu adresabilitate diferită la nivelul elevilor, dar nu mai pornesc şi în acest sens o analiză specială). Pe de altă parte, avem studiul proprietăţilor ariilor, cu figuri echivalente (de obicei necongruente, dar cu aceeaşi arie), rapoarte de arii sau diferite relaţii între elementele unor figuri, relaţii demonstrabile cu ajutorul ariilor. De obicei, în această parte nu se cere calculul unei arii. Prin excelenţă, apogeul acestui domeniu matematic îl reprezintă chiar teorema lui Pitagora, anume că aria pătratului construit pe ipotenuză este egală cu suma ariilor pătratelor construite pe catete (deşi în mentalul multor profesori din România pare că este prohibită).

Din a doua parte, cea mai accesibilă şi cunoscută este proprietatea de arie a medianei, anume că mediana împarte triunghiul în două triunghiuleţe cu ariile egale, deşi de obicei acestea nu sunt congruente. Şi lungimea înălţimii pe ipotenuza unui triunghi dreptunghic poate fi demonstrată aici foarte uşor, prin egalarea a două formule de arie a acestuia. Anexez aici două din problemele mele preferate în această parte de geometrie.

Eu am scos în evidenţă existenţa celor două părţi destul de diferite încă din 2005, la redactarea culegerii de geometrie publicată în 2006 împreună cu soţia mea (De la Cercul lui Thales la Moneda lui Ţiţeica, Probleme elementare de geometrie plană, Ed. Humanitas Educaţional). În această lucrare am cuprins două capitole separate cu arii: Cap. V – Calcule de arii şi perimetre, respectiv Cap. VI – Proprietăţile ariei (problemele de mai sus sunt primele două din acest capitol). Cap. V este adresat, cel puţin în prima sa parte, elevilor de rând, cuprinzând multe probleme de calcul elementar de arii şi perimetre ale figurilor de bază, pe când Cap.VI se adresează prin excelenţă doar elevilor buni la matematică.

Problemele de felul celor două (mai sus prezentate) sunt destul de şocante pentru cei mai mulţi elevi, pur şi simplu pentru faptul că sunt probleme de arii, dar în care elevul nu primeşte nici un număr cu care să calculeze. Arii, dar fără numere, cum vine asta??? Chiar şi cel mai bun elev este bulversat de această situaţie. Diferenţa dintre elevii de vârf şi cei de rând este că cei buni reuşesc să-şi revină din această bulversare, pe când cei de rând nu. Există desigur şi probleme “parşive” în acest sens, probleme în care rezolvitorul primeşte numere (de obicei un număr), dar problema nu este una tradiţională “de calculat”, ci una de comparare de arii. Iată un exemplu la repezeală în acest sens: Considerăm un triunghi oarecare ABC de arie 234 cm2 şi notăm cu M, N şi P mijloacele laturilor sale. Demonstraţi că patrulaterul AMNP este un paralelogram şi determinaţi aria acestuia. Problema are un număr, dar nu ai ce să calculezi mare lucru cu acesta. Putem explica şi astfel: la acel paralelogram, nu-i poţi calcula nici o latură, nici o înălţime (aşa cum art cere formula de bază).

Rezumând, putem spune că neconştientizarea existenţei acestei delimitări destul de clare între cele două domenii, alături de neimplicarea teoremei lui Pitagora în capitolul de arii din semestri I al clasei a 7-a, contribuie împreună la ratarea momentului acestui capitol înspre atragerea elevilor de rând către fenomenul matematic. Mulţi profesori bombardează clasele cu probleme din partea de proprietăţi a ariilor, accesibile doar vârfurilor, astfel încât toţi elevii de rând din aceste clase ratează oportunitatea conectării cu gândirea, chinuindu-se în cel mai bun caz să înveţe pe de rost rezolvările respectivelor probleme. Aceasta, împreună cu faptul că elevii nu primesc dreptul de a folosi teorema lui Pitagora în calcule, îi menţine pe cei mai mulţi într-o stare de profundă prostie matematică, tăindu-le posibilitatea accesării gândirii prin fereastra de oportunitate numită “arii”.

Avem şi aici un bun exemplu prin care profesorimea împinge elevii spre analfabetism funcţional matematic, aspect ce iese apoi la iveală în mod dureros la examenul de EN sau la studiile PISA, dar şi cu alte ocazii. Degeaba avem câteva vârfuri cu care ne tot mândrim, când în paralel avem o politică aparent gândită doar spre îndobitocirea maselor.

Dar nici măcar această parte despre proprietăţile ariilor nu este predată corect. De multe ori elevii primesc probleme din această parte, fără să aibă predate înainte elementele necesare (profesorul de mai sus s-a trezit după o săptămână că nu le-a dat proprietatea de arie a medianei, necesară într-o problemă de la temă). Eu văd însă un aspect negativ mult mai profund. Această parte de proprietăţi a ariilor se împarte şi ea în două subpărţi. Există aici foarte multe aplicaţii care sunt exprimabile uşor în limbaj algebric, spre care tind cei mai mulţi profesori, dar există aici şi aplicaţii cu un profund caracter vizual grafic. Cele cu caracter algebric sunt mai statice (de pildă faptul că produsul dintre o latură a unui triunghi şi înălţimnea corespunzătoare este acelaşi, indiferent de latura aleasă ca bază), pe când cele cu caracter mai vizual grafic sunt oarecum “în mişcare” (de pildă faptul că aria unui triunghi nu se modifică dacă “plimbăm” un vârf al acestuia paralel cu latura opusă). Această a doua parte, care dezvoltă o mobilitate mai bună în gândire, este cu totul neglijată în România, fiind abandonată total după reforma din 1997.

*

Încerc să mă opresc aici, deşi este evident pentru orice cititor că aş putea continua cu alte şi alte aspecte “mult şi bine”. Sunt sigur că acest mega-eseu are clar un aer destul de haotic, trecând uneori neaşteptat “de la una la alta”. Este evident că la o a doua reluare lucrurile ar fi mult mai ordonate, dar acest eseu a fost publicat în “timp real”. Iniţial am gândit 4, ba nu 5 părţi (una introductivă şi câte una pentru fiecare clasă gimnazială), iar apoi am spus că mai adaug şi una de concluzii, deci 6, pentru ca în final să ajung la 8 părţi.

Nutresc însă speranţa, că cititorul de bună credinţă a putut căpăta o idee solidă despre cum ar trebui integrate elementele de planimetrie şi de stereometrie în materia de gimnaziu, într-un mod cât mai just relativ la cele trei axe de referinţă prezentate iniţial: 1) axa calcule – demonstraţii; 2) axa 2D – 3D; 3) axa pedagogie – ştiinţă. Nutresc speranţa că am reuşit să atrag atenţia cititorilor asupra acestei problematici importante şi că aceştia şi-au făcut o idee cât mai sănătoasă despre “traseul” pe care noi profesorii ar trebui să-i conducem pe elevi prin “meandrele octantelor” apărute între aceste trei axe de referinţă ale predării geometriei gimnaziale (octantele reprezintă “optimile” în care este împărţit spaţiul de către trei axe de coordonate; octantele sunt similarele cadranelor în sistemul de două axe; cadranele reprezintă “colţuri 2D”, pe când octantele “colţuri 3D”; m-am referit aici la imaginea cu cele trei axe din prima parte a eseului).

Mai sunt doar câteva aspecte pe care nu le-am putut integra fluent în începutul acestui episod, aşa încât le-am păstrat pentru final, în următorul Post Scriptum. Sper să mă pot limita la 8 părţi pentru acest mega-eseu (8 este un număr foarte favorabil din punct de vedere Feng Shui), dar nu pot “băga mâna-n foc” că nu mă va mai apuca din nou scrisul pe acest subiect. Constantin Titus Grigorovici

P.S. Spuneam mai sus că prin problemele de planimetrie şi stereometrie profesorul de matematică are o ocazie mult mai accesibilă de a deveni un formator de gândire pentru marea masă a elevilor, decât prin intermediul demonstraţiilor geometrice. Marea majoritate a elevilor, cei cca. 70-80% care formează corpul de bază al “clopotului lui Gauss”, vor putea face pasul spre gândire mult mai lesne prin intermediul problemelor de calcul de perimetre, arii sau volume, pe când în cazul problemelor de demonstrat aceştia vor fi tentaţi să înveţe pe de rost, gândirea adevărată rămânând “de căruţă”.

Acest aspect este susţinut şi de faptul că în calculul de arii şi perimetre elevul are de combinat calculele teoremei lui Pitagora cu formulele de arie specifice figurii respective, adică are de ales dintre decizia de aplicare între puţini “paşi logici” (la care se adaugă situaţiile banale din cazul perimetrelor), pe când în cazul demonstraţiilor elevul are de ales dintre mult mai mulţi paşi logici posibili (deja învăţaţi), pentru combinarea într-o demonstraţie corectă. Cu alte cuvinte, combinarea unei rezolvări de planimetrie este mult mai simplă decât majoritatea situaţiilor de combinare a unei probleme de demonstraţie.

Ca o scurtă paranteză, precizez că în nici un caz nu ar trebui să le dăm elevilor de învăţat “formule pentru perimetre”. Fenomenul perimetrelor este atât de simplu, încât profesorul ar trebui să le pună din start la baza ideii de gândire. Acolo unde profesorul observă că elevul are tendinţa să înveţe pe de rost “o formulă de perimetru”, acolo trebuie intervenit de urgenţă pentru a atrage mintea elevului înapoi pe linia de gândire. Una este ca elevul să fi dedus singur şi să ştie că perimetrul unui romb este 4a (de 4 ori latura) şi să o poată explica de unde vine,  iar alta este să vedem că elevul nu ştie de unde vine această “formulă”, dar a învăţat-o pe de rost, eventual şi-a şi notat-o într-o listă după care o repetă şi este ascultat acasă, de către un părinte binevoitor, dacă “o ştie”.

Merită făcută aici şi o altă scurtă observaţie metodică, în vederea oportunităţii de formare a gândirii, în sensul de antrenare a minţii elevului în a lua deciziile juste în fiecare caz în parte (vorbesc aici de situaţii din planimetrie, unde, cum am spus, procesul decizional este la un nivel mult mai accesibil). În general există două tipuri de rezolvări prin teorema lui Pitagora. Există pe de o parte cei care scriu relaţia întotdeauna în formă de sumă, urmând ca în cazul când necunoscuta este o catetă, aceasta să fie calculată în final prin procedee specifice ecuaţiilor (trecut în membrul celălalt cu semnul schimbat. Această rezolvare se bazează pe faptul că elevul ştie foarte bine să rezolve ecuaţii, dar în cazul unui elev care a cam ocolit învăţatul în ultimii ani, sau nu poate face lesne transferul de cunoştinţe dintr-un capitol în celălalt, învăţarea problemelor cu teorema lui Pitagora este subminată.

Dimpotrivă, există şi cei care aplică teorema lui Pitagora în două forme, de sumă, dacă ştim ambele catete şi avem de calculat ipotenuza, respectiv de diferenţă, dacă nu cunoaştem o catetă, pornind de fiecare dată cu latura necunoscută. Aparent, aici elevul are de învăţat două rezolvări în paralel (în loc de una) şi mai are de luat şi o decizie în plus, anume pe care dintre cele două să o folosească în fiecare caz. În această rezolvare, însă, elevul nu este dependent de abilităţile dintr-un capitol precedent de algebră, ci rezolvarea se resrânge doar la aplicaţii aritmetice. Apoi, această a doua rezolvare îl antrenează pe elev de a lua decizii încă într-un loc. Pe lângă faptul că-l învăţăm pe elev să aplice anumite reţete, anumiţi algoritmi, ca profesori, noi trebuie să-l învăţăm să şi gândească, măcar câtuşi de puţin şi pe elevul cel mai slab la matematică. Mie personal, această a doua variantă de rezolvare prin Pitagora îmi oferă o astfel de ocazie de formare a gândirii şi la cei mai “începători” la matematică.

Merită să adaug aici încă un aspect ciudat legat de învăţarea matematicii. În general, lumea trăieşte cu impresia că învăţatul matematicii este ca un tren al cărui traseu trebuie să îl parcurgi neapărat pornind de la prima staţie, pe rând prin toate celelalte. Eu sunt însă de altă părere, anume că pe lungul traseu al acestui tren există anumite staţii în care un elev se poate urca cu succes, fără însă să fi parcurs în prealabil toate celelalte dinainte. De ce nu le-ar fi parcurs? Păi, din lene, sau poate datorită unei predări mult prea elevate din partea profesorului, căreia elevul pur şi simplu nu i-a făcut faţă, sau din cine ştie ce alte motive.

Pentru astfel de elevi (care nu sunt deloc puţini), calculul de arii şi perimetre din clasa a 7-a, cu aplicarea teoremei lui Pitagora, reprezintă o astfel de oportunitate rară de a se urca în “trenul gândirii matematice” cu multă eficienţă şi succes, crescând puternic moralul şi dispoziţia unui astfel de elev în a învăţa matematica (creierul său crează cu această ocazie sinapse de gândire şi învaţă să le folosească, urmând ca aceste conexiuni să fie utilizate ulterior şi în alte situaţii). Apoi, odată pornită gândirea matematică, un astfel de elev reuşeşte cu timpul să recupereze şi multe alte elemente dintre cele pierdute înainte. Uneori o astfel de recuperare poate fi absolut spectaculoasă, ridicând elevul de la nivelul unui analfabetism funcţional matematic extrem (la începutul clasei a 7-a) până la nivelul de intrare la liceu într-o clasă de ştiinţe.