Reclamă la octaedrul regulat

Matematica şcolară românească este orientată şi preocupată obsesiv doar spre acele teme care oferă clar aplicaţii ulterioare. Lipsesc însă preocupările şi cunoştinţele despre subiectele frumoase, dar care nu oferă aplicaţii variate în zona problemelor de concursuri. În general lipsesc cu desăvârşire diverse subiecte matematice care din diferite motive au fost excluse din programa şcolară de-a lungul timpului. Astfel de subiecte lipsesc de obicei şi din cultura generală a profesorilor de matematică, deşi ele apar în diferite situaţii “din afara matematicii şcolare”; ca urmare deci, acestea lipsesc şi din cultura generală a întregii populaţii culte. Cel mai flagrant exemplu în acest sens a fost momentul apariţiei romanului Codul lui DaVinci în începutul căruia autorul Dan Brown a inclus Şirul lui Fibonacci. Toţi oamenii din jurul meu, care citeau cărţi mă căutau la vremea respectivă să le explic ce-i acela Şirul lui Fibonacci.

Unul din subiectele ce mă preocupă este felul în care eu să ofer elevilor de clasa a 8-a cunoştinţe minime, elementare despre octaedrul regulat. Folosesc prezenta postare pentru a trage un semnal de atenţionare la adresa colegilor profesori, pornind de la o apariţie surprinzătoare a acestui corp într-o reclamă difuzată la televiziune, reclamă în care octaedrul apare ca vedetă într-un rol extrem de dureros, încercând să simuleze vizual durerea cauzată de hemoroizi “ştiţi voi unde”. Pentru a înţelege despre ce vorbesc, vă rog să căutaţi reclama la medicamentul Procto Glyvenol la adresa https://www.youtube.com/watch?v=5LRAVsjKq0I .

Aşa, după ce m-am străduit puţin să vă stârnesc un minim zâmbet în colţul gurii, pe baza vizualizării corpului respectiv, aş dori să vă provoc în continuare la a-l cunoaşte cât de cât, astfel încât să înţelegeţi ce spun cănd mă plâng că astfel de cunoştinţe nu sunt defel incluse în materia predată în şcoli. În acest sens voi încerca o minimă prezentare a unor informaţii legate de octaedru. Nu doresc însă să mă lansez într-o prezentare exhaustivă, ci mai degrabă într-o prezentare minimalistă a aspectelor de bază, cu rol de stârnire a curiozităţii cititorului, pe baza căruia să înceapă un proces de căutare pe internet. Astfel, deşi este vorba de o temă de geometrie, a cerei prezentare ar necesita multe imagini, eu mă voi rezuma la a vă prezenta doar în text paşi acestei minimaliste cunoaşteri, urmând ca cei cărora le voi fi stârnit suficient curiozitatea să parcurgă fiecare pentru sine drumul respectiv.

Există cinci corpuri perfecte, aşa numitele poliedre regulate, denumite după numărul de feţe exprimat original de către învăţaţii greci: tetraedrul (4 feţe triunghiuri echilaterale), hexaedrul (adică cubul, având 6 feţe pătrate), octaedrul (8 feţe triunghiuri echilaterale, “prietenul nostru cauzator de hemoroizi”), dodecaedrul (12 feţe pentagoane regulate) şi icosaedrul (20 feţe triunghiuri echilaterale). Toate ar merita extinderea denumirii de “regulate”, dar din motive practice de utilizare sunt denumite simplu, după numărul feţelor. Primele două sunt prezente în programa şcolară românească; ultimele două sunt destul de complicate, desenarea lor fiind o provocare în sine (despre care nu mi-am propus să vorbesc acum). Octaedrul nu e inclus defel în programă, deşi este destul de accesibil, fiind cu totul la nivelul materiei şcolare de clasa a 8-a din România.

Astfel, octaedrul regulat ne apare ca un corp compus din două piramide cu baza comună. Este vorba aici despre renumitele şi foarte des întâlnitele piramide patrulatere cu feţele laterale triunghiuri echilaterale, ştiţi, cele care au câte două feţe laterale opuse perpendiculare. Ca urmare, pentru orice elev binevoitor, chiar şi determinarea formulelor de arie totală şi volum reprezintă nişte sarcini deosebit de accesibile (calcul în funcţie de lungimea muchiei).

Dar, cum se desenează un astfel de corp? Cea mai practică reprezentare grafică este următoarea: desenaţi un cub şi trasaţi diagonalele fiecărei feţe. Apoi uniţi în mod corespunzător centrele astfel obţinute ale feţelor cubului. Desenul implică foarte foarte multe linii, riscând să devină total de neînţeles, aşa că recomand cu căldură ca diagonalele feţelor cubului să fie trasate cât mai fin cu putinţă, doar cât să se poată vedea punctele de intersecţie de pe fiecare faţă. Apoi uniţi cu linie continuă muchiile “din faţă” ale octaedrului, respectiv cu linie întreruptă muchiile “din spate”. Dacă luaţi un creion colorat (sau un alt instrument cu linie fină) şi trasaţi încă o dată octaedrul (de exemplu un roşu ca să semene cu cel din reclamă), atunci se va înţelege foarte bine cum arată acest corp.

Desigur că puteţi să porniţi şi de la un desen clasic al unei piramide patrulatere, construind încă una simetrică “în jos”, dar această metodă nu vă garantează o figură foarte clară, existând pericolul ca octaedrul dvs. să fie prea ţuguiat (şi de pildă să nu îndeplinească perpendicularitatea de care am vorbit, pentru că cei mai mulţi nu dau atenţie unor astfel de detalii când desenează o piramidă – din păcate).

Revenind la cele cinci corpuri perfecte, inclusiv demonstrarea faptului că există doar acestea cinci este o sarcină de nivel gimnazial: faceţi un tabel având pe capul orizontal unghiurile corespunzătoare poligoanelor regulate până la hexagon – 60o, 90o, 108o, eventual şi 120o – iar apoi analizaţi pe verticală posibilităţile numărului de feţe dintr-un colţ, plecând de la faptul că suma unghiurilor plane din jurul unui vârf de corp nu poate atinge valoarea de 360o.

Găsiţi elemente la care m-am referit în această postare intrând pe site-ul pentagonia.ro la Revista Pentagonia 1998-2002 şi deschizând pdf-ul cu caietul nr.2 pentru prezentarea octaedrului şi a unor desene legate de acesta, respectiv pdf-ul cu caietul nr.3 pentru tabelul de demonstrare a existenţei doar a celor cinci corpuri perfecte. În caietul nr.4 găsiţi şi ultima parte a seriei despre aceste corpuri.

Dar ce puteţi face cu aceste informaţii? Cel mai simplu ar fi includerea acestora în ore din săptămâna “Şcoala altfel”, sau în diverse alte momente când din diferite motive nu prea se lucrează la ore (de pildă în ultima oră înainte de vacanţă). Desigur că problematizarea reprezintă cea mai raţională cale de a-i implica pe elevi în cunoaşterea acestui corp, astfel încât lecţia respectivă să reprezinte de fapt o ocazie eficient folosită înspre activarea gândirii elevilor (gândire care este folositoare şi la examen!). Ca urmare este evident că nu sunt de părere, dar  defel, ca profesorul să-i dea elevului direct formulele respective.

Lecţia respectivă poate fi studiată şi ca temă, de pildă dând elevului un proiect pentru o notă suplimentară. Cel mai bine ar fi ca în acest caz elevul să primească o minimă listă cu ce ar trebui să includă în “lecţia” respectivă, aşa încât acesta să nu “dea direct pe net” şi să caute ca disperatul, sau dimpotrivă să descarce de-a gata un referat făcut de altcineva (deşi nu cred că există, pentru că nu e în programă).

Dacă aţi apucat să vă obişnuiţi cu acest corp, veţi recunoaşte desigur că acesta este unul foarte frumos, probabil unul dintre cele mai frumoase. Evident că puteţi să abordaţi şi construcţia sa din carton, sau din beţe (de pildă din paie de băut, sau din beţişoare de curăţat urechile, de la care s-a îndepărtat vata, legate cu aţă trecută prin ele). Confecţionat dintr-un carton roşu, octaedrul este deosebit de decorativ în bradul de Crăciun. Pentru o persoană cu dexterităţi migăloase, ar fi o idee de a confecţiona unul mic, cu muchia de 1 cm, pe post de mărţişor (poate unul dintr-un carton fin alb, măcar 120g/mp). Pentru început, însă, vă doresc spor la studiu! CTG

Bucuria rezultatului frumos

De curând a avut loc pe facebook un schimb de replici între profesori de matematică, despre rezultatul discriminantului. Ca persoană atentă la trăirile elevilor, am rezonat desigur cu următoarea afirmaţie: În școală, cea mai mare satisfacție o aveam când îmi dădea Δ-pătrat perfect (din câte am reţinut, afirmaţia îi aparţine d-lui Cristinel Mortici).

M-a bucurat această afirmaţie pentru că reprezenta o amintire pură venită din sufletul unui elev, o amintire despre o stare pe care cu toţii am trăit-o: ca elevi ne bucuram atunci când ne dădea pătrat perfect la delta. Cine nu recunoaşrte această stare trăită în timpul liceului, acela de fapt şi-a pierdut definitiv copilul din el. Copilul se bucură din oficiu pentru un rezultat frumos, îl resimte ca pe o confirmare a faptului că a lucrat corect.

Mă încântă deosebit astfel de afirmaţii rămase în sufletul unora ca amintiri de nezdruncinat; adulţi matematicieni (sau nematematicieni) care ne pot aduce trăiri din viaţa lor de elev, trăiri ce aduc astfel de amintiri ca într-o bulă nedistorsionată de anii vieţii (facultate, maturizarea deplină, şuişurile şi coborâşurile inerente).

Un elev care merge înainte când discriminantul nu dă pătrat perfect, fără măcar să verifice încă o dată, acela dă dovadă de o atitudine nesănătoasă. Între comentariile din acel moment chiar a apărut ideea: În liceu am avut doar 10 la mate, cu excepţia unei singure note de 8, pe care am încasat-o la un extemporal  în clasa a IX-a pe trimestrul III, fiindcă nu mi-a dat DELTA pătrat perfect! Greşisem la calcule, evident (afirmaţie a d-lui Marcel Ţena, dacă nu am greşit la salvarea setului de comentarii).

Aceste observaţii, despre bucuria unui rezultat frumos, le cunoştea desigur şi profesorul Grigore Gheba: şi acum elevii se bucură atunci când obţin acele rezultate frumoase din exerciţiile sale, fie la cele cu fracţii etajate, fie la cele cu fracţii algebrice.

Nu vreau să reiau în această postare toate comentariile de atunci, ci prefer să închei cu o afirmaţie gen banc (din câte am reţinut, postat de către dl Costel Balcau): Ne păcălești, cum să fie triunghiul ăla pătrat? Titus Grigorovici, un veşnic copil

P.S. Această postare se doreşte o atenţionare la adresa celor care susţin de obicei că orice rezultat este unul bun, cu alte cuvinte susţinând “egalitatea de drepturi” a rezultatelor frumoase cu a rezultatelor urâte. Tehnic o fi aşa, dar în sufletul elevilor rezultatele frumoase îi atrag spre exersarea matematicii, pe când cele urâte nu. O persoană, profesor la clasă sau autor, care-şi bombardează elevii cu rezultate “indiferente”, de fapt îi îndepărtează de bucuria adusă de rezultatele frumoase. Într-o astfel de atmosferă, unii învăţăcei reuşesc să stea cu sufletul către matematică, alţii nu. În sine, această situaţie nu ar fi o mare problemă (“de fapt nu toată lumea trebuie să ştie matematică!”, s-ar putea spune) dar problema mare iese la iveală atunci când conştientizăm legătura indisolubilă între matematică şi formarea gândirii raţionale, respectiv lipsa acesteia din urmă la mult prea mulţi români.

Bucuria rezultatului frumos apare şi la teorema lui Pitagora, atunci când ai de extras radicalul în final: oricine se bucură dacă găseşte în acel moment un număr pătrat. Dacă este vorba de calcule cu numere mai mare, atunci la acel moment intervine speranţa că acel număr este pătrat. Eu folosesc acest moment dându-le elevilor probleme cu triplete pitagoreice mai mari, altele decât clasicele (3,4,5) sau (5,12,13), sau amplificări lor. Iar când a treia latură este un număr prim mai mare, lucrurile devin de-a dreptul palpitante. Oricum, la calcule lucrurile sunt simple şi clare: elevul se bucură atunci când într-un exerciţiu obţine un rezultat frumos.

Pe de altă parte, se poate pune întrebarea despre ce ar reprezenta ideea de rezultat frumos în cadrul proprietăţilor geometrice. De pildă, teorema lui Pitagora este oare într-adevăr un rezultat frumos, aşa cum gândeau egiptenii antici, care considerau egalitatea respectivă drept o adunare divină? Sau, faptul că suma unghiurilor unui triunghi este egală cu un unghi alungit (mult mai elegant decât numărul 180o), respectiv suma unghiurilor unui patrulater este egală cu măsura unei rotaţii complete, şi asta indiferent dacă patrulaterul este convex sau concav? Dar, mai ales, cum facem ca în momentul predării unor astfel de proprietăţi, să reuşim să le transmitem elevilor ideea de rezultat frumos?

Algebra şi curajul de a ieşi la tablă (Analiza unui banc – 2)

Spuneam în postarea precedentă că bancul de la început, cel despre geometrie, a umblat de curând pe platforme de socializare. Cam în aceeaşi perioadă am găsit şi bancul de mai sus, unul legat aparent de algebră. De fapt, algebra arată în acest banc destul de pozitiv, într-o comparaţie ipotetică cu geometria. Deci, personajul respectiv a avut măcar acel curaj de a ridica mâna la algebră, că la geometrie nici vorbă (sunt conştient că această observaţie este parţial “trasă de păr”).

Bancul acesta trimite insă foarte clar la atmosfera de la ora de matematică, aşa cum aceasta este percepută de o mare parte dintre elevi. Este vorba despre o stare de frică, uneori de o adevărată teroare, în care trăiesc elevii şi de care este legată relaţia cu această materie. Şi, trebuie clar să precizez, această stare apare peste tot în lume, nu doar la noi. Poate doar că la noi această stare este mult mai dură. Din câte ştiu însă, procentajele sunt orientativ similare. Atât la noi, cât şi înafară, undeva la jumătate din populaţie au o stare de teamă faţă de matematică. Singura diferenţă clară este legată de faptul că această parte a populaţiei, ce nu beneficiază de factorul formativ al gândirii, educat de către matematică la orele din şcoală, această parte a populaţiei îşi formează o gândire după modelul societăţii în care trăieşte: familia, anturajul de prieteni sau de colegi îşi pune amprenta asupra felului în care aceşti oameni judecă. De pildă, la noi, cei care au frica de matematică sunt ceva mai vulnerabili de a fi manipulaţi de către alţii, din anturajul restrâns sau din mass media, de pildă de către politicieni (ca vorbitor de germană, eu urmăresc desigur şi societatea nemţească, şi văd astfel de exemple dar la o scară mai mică; situaţia cu cancelarul austriac şi cu refuzarea accesului nostru în Schengen a fost un contraexemplu ciudat de iraţionalitate în spaţiul ţărilor germane – deşi, cine sunt eu să judec? – te miri ce aspecte noi vor apărea cu timpul, care să justifice atitudinea respectivă).

Revenind la orele de matematică şi la atmosfera din timpul acestora, stau şi mă gândesc că aceasta este una din sursele de bază legate de frica faţă de matematică. Bancul de mai sus exact asta spune: am avut curaj, adică mi-am înfruntat frica faţă de matematică. Pentru a putea produce dorita stare de performanţă în matematică, majoritatea profesorilor ajung să-şi conducă ora cu o atitudine generatoare de frică. Aceasta este însă “doar o faţă a monedei”. Cealaltă sursă a stress-ului este legată de faptul că gândirea matematicii nu este uşoară, mulţi dintre elevi preferând pur şi simplu să o evite. Dimpotrivă, confruntaţi cu o atmosferă blândă la orele de matematică, astfel de elevi nu vor face matematică defel, nu-şi vor face temele, nu-şi vor învăţa lecţiile, iar apoi oricum vor căuta justificarea pentru eşecul lor în explicaţii de felul “toţi profesorii de matematică sunt la fel, chinuie copiii” sau “eu am discalculie” etc., toate sub genericul “cea mai bună matematică este matematica defel!”.

D-na profesoară Birte Vestergaard, despre care am scris în câteva rânduri, are ca unul dintre obiectivele principale exact recuperarea acestor elevi înspăimântaţi de ora de matematică. Ca argument pentru eficienţa metodei sale, dânsa ne-a arătat câteva pasaje din interviuri, în care foşti elevi slabi la matematică îşi prezentau evoluţia sentimentelor, de la frica totală de matematică – cu accent pe frica de a se face de râs în faţa colegilor – şi până la nivelul în care au ajuns să gândească şi să lucreze matematică fără nici cea mai mică problemă. Metoda respectivă este bună deaorece îi ajută şi pe cei buni să empatizeze cu cei slabi şi să conştientizeze zdroaba acestora în cadrul activităţii matematice.

Eu personal mă străduiesc constant să generez o atmosferă în care şi elevii speriaţi de matematică să ajungă la o stare dezinhibată cu matematica. Din păcate unii înţeleg aceasta ca o permisivitate către a face orice altceva în oră. La alţii totuşi funcţionează, adică îmi reuşeşte să-i aduc în starea de atenţie şi participare la oră, desigur în momentele care prezintă matematică accesibilă pentru nivelul lor. Mă gândesc de exemplu la un elev care de fiecare dată când suntem în pasaje mai uşoare, el automat devine activ, ridică mâna nesilit şi răspunde de fiecare dată corect. Acel elev, deşi nu este un mare matematician, îşi cunoaşte foarte bine nivelul, dar de fiecare dată când poate îmi arată de fapt că nu-i este frică de matematică.

Unul dintre exemplele cele mai sugestive despre starea de frică faţă de matematică şi faţă de inaccesibilitatea acesteia, l-am trăit în urmă cu câţiva ani. Aveam prima oră la o nouă clasa de liceu (a 9-a de uman), în care erau elevi de la foarte buni (dar care doreau să rămână în Waldorf) şi până la nivelul cel mai slab posibil. M-am gândit să nu-i speriu din prima cu cine ştie ce complicaţiune, aşa că m-am dus la ei cu o chestie ce nu implică defel cunoştinţe anterioare, desigur în afară de simpla adunare până la zece. Le-am dus un zar pe care îl puneam în faţa lor pe masă şi îi întrebam ce faţă este dedesupt (îl ţinem cu două degete lateral, aşa încât să nu funcţioneze prin excludere). Pentru cine nu ştie poanta, suma feţelor opuse la un zar este întotdeauna 7 (de pildă 2 şi 5 sunt pe feţe opuse). Întrebarea desigur se adresa celor noi în clasă (cei ce veneau din clasa a 8-a o ştiau deja). Imaginaţi-vă cum mergeam de la un elev nou la altul şi îi întrebam, iar aceştia încercau să gândească, pentru că era evident că nu se lega de nimic din ce învăţaseră până atunci. Unii se prindeau pe când alţii nu.

În această stare am ajuns la o elevă foarte speriată, care nu se prindea de poantă şi gata. Eu totuşi îi arătam răbdare, dar ea nu şi nu. Până la urmă unul dintre colegi i-a spus că trebuie să dea împreună 7. Eleva a făcut ochii mari, eu i-am mai pus o dată întrebarea (de fiecare dată întorceam zarul), iar ea s-a concentrat şi a răspuns corect. I-am arătat dosul zarului spre confirmare, iar ea s-a ridicat în picioare şi a început să fugă în cerc strigând “Da! Ştiu matematică!!!”. Am realizat atunci că am de-a face cu un caz deosebit de dificil şi, într-adevăr, tot liceul a cam trebuit să-i dau 5-ul “din burtă”.

Surpriza a venit la sfârşitul clasei a 12-a când elevii “îşi împărţeau profesorii”, care la care să dea clasicul buchet de flori, la festivitatea de încheiere. Această elevă a insistat ca ea să-mi dea mie flori. Doar pentru acel moment de la începutul clasei a 9-a (şi poate pentru faptul că am avut grijă tot liceul să nu se simtă înjosită pentru că nu putea mare lucru la matematică). Să nu credeţi însă că “nu am făcut matematică” cu acea clasă. Dimpotrivă, de multe ori depăşeam nivelul programei, pentru cei care puteau, dar întotdeauna cu respect faţă de cei slabi. Concluzionând, cum bine spunea Dl Profesor Radu Gologan, matematica şcolară trebuie să devină mai umană. Titus Grigorovici

Figurile geometriei (Analiza unui banc – 1)

“Scrierea” de mai sus, ce provine de pe o platformă de socializare, se doreşte a fi un banc (adică ceva de râs). Doar că aceasta punctează ceva ce este mai degrabă de plâns: dispariţia – lentă dar sigură – a figurilor din anturajul geometriei, ca materie, atât în cadrul lecţiilor, cât mai nou şi în cadrul problemelor, atât din ideea de necesitate în structura mentalului unor profesori, cât şi – ca urmare – din mentalul unor elevi.

Deja în urmă cu cca. 15 ani am ajuns să întâlnesc elevi care să-mi spună că “figurile nu contează”, citat reluat desigur de la adulţi din anturajul lor, de obicei chiar de la profesorul de la clasă. Ţin minte că mă chinuiam cu un copil la care toate triunghiurile desenate erau isoscele, ce-mi spunea cu un aer de siguranţă că “oricum, figurile nu contează!”.

Actualmente lucrurile au luat-o razna rău de tot: am început să întâlnesc lecţii sau probleme de geometrie fără figură! Şi mă refer aici nu la situaţii din acelea relativ simple, la care putem considera că figura geometrică poate fi uşor imaginată în cap, pentru rezolvarea problemei. Vă dau câteva exemple întâlnite în această toamnă.

1) Să vorbim pentru început despre o lecţie, una cunoscută, anume lecţia care trebuie să facă prezentarea conexiunilor între unghiurile ce se întâlnesc în cazul a două drepte paralele tăiate de o secantă. De foarte mult timp ştiu că există ideea de a desprinde din această lecţie, ca un soi de fază pregătitoare, o primă etapă în care să fie prezentate perechile respective de unghiuri (alterne interne, corespondente, etc.) pe o figură “generalizată”, adică pe o figură cu două drepte neparalele tăiate de o secantă. Nu ştiu unde, când sau la cine a apărut această idee, dar este una deosebit de dăunătoare, chiar nocivă pentru dezvoltarea gândirii, aş putea zice chiar nocivă pentru apariţia gândirii. Chiar şi privit doar superficial putem susţine această afirmaţie deoarece figura respectivă – cu cele două drepte neparalele – confruntă mintea elevului începător cu o situaţie ce nu se va întâlni niciunde.

Afirmaţia se susţine şi dacă privim mai profund: în această situaţie încercarea de înţelegere a copilului este forţată să se dezvolte “sprijinindu-se” pe mult mai puţine elemente logice, eliminate fiind cele mai uşoare, mai intuitive, şi lăsate doar de cele mai grele. Ce vreau să spun aici? Studiate pe o figură cu drepte paralele, elevii pot vedea respectivele “perechi de unghiuri” sprijiniţi de evidenţa congruenţei, care se vede clar. Mă refer aici desigur la unghiurile corespondente, dar şi la cele alterne interne. Datorită congruenţei, elevul înţelege mult mai clar alegerea unor anumite perechi de unghiuri şi logica aranjării acestora în figura respectivă (de exemplu, “alterne” pentru că alternează de-o parte şi de cealaltă a secantei, la fel ca şi casele numerotate alternativ de-o parte şi de alta a străzii, respectiv “interne” pentru că sunt în spaţiul acela interior delimitat de cele două paralele); la celelalte perechi de unghiuri studiate gândirea şi înţelegerea se poate sprijini deja pe structurile mai complicate de aranjare ce au fost reliefate la primele două categorii.

Pe figura cu două drepte paralele, acestea – cele două drepte paralele – se evidenţiază minţii în formare a elevului ca o pereche clară, dreapta secantă evidenţiindu-se separat, cu un alt rol logic în această structură. Dimpotrivă, la figura “generalizată”, cea cu perechea celor două drepte neparalele, tăiate de o a treia, pe post de secantă, aici mintea elevului nu va vedea la fel de uşor faptul că primele două acţionează împreună într-un fel, pe când a treia în alt mod. Personal, eu nu mai ţin minte foarte clar, dar cred totuşi că am predat o dată, în primul an la catedră pornind de la această figură (anul şcolar 1990-1991), după care am abandonat ideea (am în amintire o impresie vagă că elevii n-au înţeles nimic; ceva de genul că-mi lipsea privirea aia de “aha, am priceput!” de pe feţele lor; altfel spus, am simţit empatic că elevii n-au înţeles nimic din acea figură). Deci, practic, de 30 de ani nu am mai folosit această figură premergătoare, însă doar acum am ajuns să fac “teoria chibritului” pe seama acesteia (veţi vedea în curând de ce).

Mai zăbovesc un pic la prima idee, anuma la faptul clar că figura respectivă – cu cele două drepte neparalele – confruntă mintea elevului începător cu o situaţie ce nu se va întâlni niciunde. Eu am o teorie, anume faptul că la geometrie elevii trebuie să ţină minte nişte FIGURI TIP, pe care să le aibă imprimate bine în minte pentru a le putea recunoaşta ulterior în diferite structuri mai complicate, adică de obicei în figurile diferitelor probleme. Pentru a mă face înţeles, dau aici câteva exemple de figuri tip: două drepte secante (“Crucea Sf. Anton”) pentru unghiuri opuse la vârf, un triunghi oarecare secţionat de o paralelă mai jos sau mai sus de linia mijlocie, pentru situaţii de proporţionalitate (teorema lui Thales sau teorema findamentală a asemănării), şi exemplele pot continua mult şi bine (există figuri tip chiar şi la zona de algebră, de pildă “Crucea Sf. Anton” pe elementele unei proporţii, în timp ce spui în minte că “produsul mezilor este egal cu produsul extremilor”).

Desigur că figura cu două drepte paralele tăiate de o secantă este o figură tip! Imprimarea ei pe mentalul elevilor este deosebit de importantă şi datorită faptului că aceasta nu apare de obicei întreagă în figurile diferitelor probleme, aşa încât elevul trebuie să fie capabil să completeze în minte figura astfel încât să recunoască figura tip şi să poată vedea apariţia a două unghiuri congruente (să zicem unele alterne interne, de exemplu).

Astfel, se înţelege că este extrem de important ca această figură să “se imprime” cât mai repede şi cât mai bine pe mentalul elevilor, iar aceasta se poate face cel mai bine printr-o prezentare repetată. Eu, de pildă, refac figura tip cu două paralele tăiate de o secantă la fiecare fel de pereche de unghiuri studiate în această lecţie, adică măcar de 3-4 ori. Astfel, o fac prima dată la unghiurile corespondente (pe acestea le fac primele pentru că “stau la fel”, astfel încât congruenţa poate fi justificată, “demonstrată”, prin translatarea unuia de-a lungul secantei până în celălalt). Apoi refac figura a doua oară pentru unghiurile alterne interne (ce poate fi justificată pe baza primeia împreună cu deja cunoscuta situaţie a unghiurilor opuse la vârf). Cu această ocazie elevii încep să priceapă că această figură este una importantă. Uneori o fac şi pentru unghiurile alterne externe, dar asta doar de dragul teoriei, cât şi a elevilor care întreabă după a doua categorie “dar, există şi unghiuri alterne externe?”, precizându-le insă clar că acestea nu se folosesc defel. Apoi vine figura obligatorie în cazul unghiurilor interne de aceeaşi parte a secantei, care se dovedesc suplementare (şi aceasta poate fi justificată pentru înţelegerea elevilor, apropos de faptul că unii colegi au ajuns doar să prezinte elementele unei lecţii, fără a mai explica defel de unde vin acestea). Situaţia perechii de unghiuri externe de aceeaşi parte a secantei sigur n-o mai fac, eventual o amintesc dacă întreabă un copil (din logica denumirii acestora), dar atunci cu precizarea clară că nici acestea nu se folosesc nicăieri.

Am făcut această prezentare extinsă a importanţei figurilor din lecţia despre unghiurile ce apar la două paralele tăiate de o secantă pentru a scoate în evidenţă cât mai bine stupiditatea următoarei situaţii. Astfel, de curând mi-a fost dat să văd această lecţie predată doar cu prima figură, acea cu două drepte neparalele tăiate de o secantă, în care erau prezentate extins, în text, pe baza numerotării celor opt unghiuri vizate, a tuturor perechilor respective. Urma apoi un fel de teoremă în care erau precizate faptul că dacă dreptele acelea sunt paralele, atunci “următoarele unghiuri sunt …..”. În lecţia respectivă nu apărea defel figura cu două drepte paralele tăiate de o secantă. Cu alte cuvinte, profesorul respectiv prezentase doar figura nefolositoare, pe când cea deosebit de importantă nici nu era prezentă în lecţie (decât doar în text).

Fără figura cu două drepte paralele elevul este “împins” să înţeleagă această lecţie doar în mod “intelectual”, eliminându-se posibilitatea înţelegerii vizuale directe. Pentru a înţelege, elevul este obligat să facă doi paşi logici, anume să urmărească situaţia şi afirmaţiile textului şi să-şi închipuie figura conform noilor condiţii (două drepte paralele), ca apoi să le conecteze în minte pe cele două. Este evident că această cale este mult mai dificilă, chiar inaccesibilă pentru cei mai mulţi dintre elevii actuali.

Cum să înţeleagă acei elevi lecţia respectivă??? Mintea mea nu înţelege aşa ceva decât alegând din una dintre următoarele două situaţii: fie este vorba despre o “prostire” profesională a unor dascăli, fie o răutate cronică faţă de elevi. Oricum este evident faptul că elevii sunt împinşi, fie în braţele sistemului de meditaţii particulare, fie înspre pierderea contactului cu matematica, cu gândirea.

Foarte aproape de această stare se situează şi variantă întâlnită prin anumite lucrări, care prezintă ce-i drept figurile cu două drepte paralele, însă mici şî înghesuite, astfel încât elevii să le perceapă foarte greu.

2) Un al doilea exemplu de geometrie fără figuri este întâlnit mult mai des, anume în lecţiile rezumative din diferite “auxiliare”, ce prezintă teoria fără nici măcar o singură figura geometrică (vorbesc de partea teoretică poziţionată înaintea multitudinii de probleme pentru acea lecţie). Am de pildă în minte situaţia unei culegeri de la o editură renumită (de vârf pe piaţă): de exemplu, la fiecare din seturile de probleme despre patrulaterele speciale apar enumerate toate proprietăţile, fără ca autorii să fi considerat ca importantă prezentarea figurii tip a acelui patrulater (paralelogram, dreptunghi etc.). Vă daţi seama că elevii sunt astfel tentaţi să vadă lucrurile din geometrie de felul că “astea trebuie învăţate pe de rost, în nici un caz şi înţelese”.

3) În urma unor astfel de situaţii cu care se confruntă elevii, nici nu ne mai miră apariţia unor situaţii în care elevii vin cu rezolvări, chiar cu demonstraţii ale unor probleme, fără ca acestea să fie însoţite de o figură geometrică. Elevii ajung să nu-i mai vadă necesitatea prezenţei unei figuri geometrice la o problemă. Fie că o copiază din carte, fie că o preiau de la un coleg, care poate şi el o are făcută de altcineva, elevii nu mai au conexiunea mentală a legăturii indivizibile între figură şi rezolvarea sau demonstraţia corespunzătoare. Faptul că nici aplicaţiile de pe telefoanele prea deştepte cu care toţi sunt dotaţi, se pare că nu dau rezolvări însoţite de figuri, asta doar accentuează profunzimea şi dramatismul situaţiei despre care vorbesc aici.

Din păcate însă, toate acestea se integrează perfect cu noua politică a examenului de Evaluare Naţională, în forma cea nouă, aplicată din 2021 (odată cu generaţia care a început prima dată cu clasa pregătitoare). Subiectele sunt pline de figuri geometrice, însă doar cu scop de a fi “citite”, însă pentru eficientizarea testării, acest nou tip de subiecte nu mai are în conţinutul său sarcini la care elevii să fie puşi să facă o figură geometrică.

Deja din ultimii ani ai formatului vechi de examinare (cel folosit până în anul de graţie 2020), deseori unii elevi nu mai refăceau figurile de pe foaia cu subiecte, cele din subiectul III (atât la figura de geometrie plană, de la problema 1, cât şi la figura de geometrie în spaţiu, de la problema 2), ci trasau şi notau pe foaia lor de subiecte câte o linie suplimentară de care aveau nevoie. În aceste condiţii te puteai trezi cu câte o rezolvare în care trebuia să-ţi imaginezi ce a desenat elevul respectiv, fără a avea însă o certitudine în acest sens. Dar oricum, majoritatea făceau totuşi respectivele figuri, inclusiv unele figuri ajutătoare, iar toţi elevii desenau desigur şi figura de la începutul Subiectului II. Deci, până în 2020 elevii trebuiau să facă figuri geometrice şi la examen.

Acum, pe formatul nou de EN elevii nu mai trebuie să deseneze figuri geometrice complete, fiind nevoiţi să traseze cel mult câte o nouă linie pe figurile pre-gătite pe foaia de examinare (am pus intenţionat liniuţa de despărţire pentru a evidenţia asemănarea cu fenomene similare de pildă din zona de alimentaţie, acolo unde la ora actuală se poate cumpăra o varietate tot mai mare de mâncare pre-gătită, funcţia de bucătăreasă fiind deseori redusă la funcţia de încălzitoare a mâncării pre-gătit cumpărate). Cum va arăta viitorul, respectiv cum vor evolua sau – mai bine zis – cum vor involua abilităţile elevilor de a face o figură geometrică corectă, asta este uşor de imaginat. Aşadar – în concluzie, până nu e prea târziu – cum a fost spus de la început, daţi geometriei figurile înapoi! Titus Grigorovici