Boris Kordemsky şi gicitoarea săptămânii în revista SPIEGEL

În ediţia on-line a revistei germane Der Spiegel (se citeşte Şpiigăl) a fost publicată următoarea provocare: Nouă cifre, câteva semne de plus şi rezultatul 99.

Postarea respectivă este de duminică 06.10.2019, iar autorii rubricii respective se numesc Holger Dambeck şi Michael Niestedt. Unul dintre ei scrie următoarele: în căutarea unor problemuţe sau ghicitori palpitante dau deseori peste cărţi foarte vechi. Problema următoare provine din cartea lui Boris Kordemsky, apărută în 1959 la Moscova. Un cititor amabil mi-a trimis cartea publicată în fosta RDG … (notă: Republica Democratică a Germaniei, fosta Germanie de est, pe germană DDR – Deutsche Demokratische Republik). Problema este prezentată în carte scurt, într-o singură frază:

Câte semne de plus trebuie puse între cifrele 123456789, astfel încât să se obţină suma 99? O scurtă explicaţie: dacă punem plusuri între toate cifrele atunci suma obţinută este prea mică (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 < 99). Dacă între 8 şi 9 nu se pune plus, atunci suma este prea mare (1 + 2 + 3 + 4 + 5 + 6 + 7 + 89 > 99).
Articolul se găsește la adresa https://www.spiegel.de/karriere/kann-diese-rechnung-aufgehen-1-2-3-4-5-6-7-8-9-99-raetsel-der-woche-a-1289695.html

*

Primul lucru ce l-am făcut la vederea acestui articol a fost să caut în ediţia în limba română a acestei cărţi (tot din 1959), dar n-am găsit problema (poate este, dar eu n-am văzut-o; vezi B. A. Kordemski, Matematică distractivă, Ed. Tineretului, 1959). Oricum, despre această carte ştiu că există în diferite limbi traduceri cu mici variaţiuni legate de problemele conţinute. De pildă, în traducerea de la Editura Paralela 45 (Boris A. Kordemsky, 359 de probleme de matematică recreativă – Puzzle-uri celebre, Paralela 45, 2015) se găseşte la pagina 41 problema cu pisici care nu apare în exemplarul meu din 1959. Care problemă cu pisici? Păi, să v-o prezint într-o variantă prescurtată şi personalizată: Câte pisici are Iulia, ştiind că numărul lor este egal cu trei sferturi din numărul lor şi încă trei sferturi de pisică? E clar că Iulia iubeste pisicile şi, staţi liniştiţi, nu trebuie să tăiaţi nici măcar o pisicuţă în bucăţi pentru rezolvarea acestei probleme. Revenind la culegerea tradusă la Paralela 45, problema cu pisicile nu este singura problemă ce nu apare în varianta românească din 1959. Nu am cunoştinţă să existe şi alte traduceri vechi din anii comunişti în română.
Dacă tot am deschis subiectul cărţii lui Boris Kordemsky, îmi permit să mai amintesc două aspecte despre aceasta: în primul rând trebuie precizat că este vorba despre probabil cea mai bună şi mai cunoscută carte de matematică distractivă din lume. Am informaţii că inclusiv regretatul Profesor Solomon Marcus s-a exprimat în favoarea republicării acestei cărţi, considerând-o una dintre cărţile de bază. Martin Gardiner, omologul şi prietenul american al lui Kordemsky, a preluat deseori probleme de la acesta, şi chiar s-a implicat (în anii războiului rece) în editarea cărţii lui Kordemsky în America. Aceste informaţii sunt preluate din prefaţa ediţiei de la Paralela 45, care este tradusă în română via engleza americănească. De aici apare al doilea aspect: pe lângă multele probleme noi, ce nu apar în varianta românească din 1959, în tirajul din care am achiziţionat şi eu un exemplar al acestei culegeri din 2015 de la Paralela 45 există din păcate şi greşeli de traducere. Iar acestea nu sunt puţine. Eu am verificat de la pagina 39 la pagina 41 şi am găsit un număr de opt probleme greşite, denaturate sau prezentate într-o situaţie neclară (de la 76; 77A, B, C, …, K; 78 şi până la 83 sunt în total 18 probleme). Nu am verificat restul cărţii – nu este de datoria mea să fac aşa ceva – dar oricum nu am cum recomanda această carte în gura mare, atâta vreme cât am găsit astfel de pasaje şi nu există o certitudine că acestea au fost remediate. Nu am informaţii dacă editura s-ar fi ocupat de corectură sau nu, dar eu mi-am făcut datoria şi i-am anunţat atunci, în primăvara lui 2016 despre aceste greşeli în cascadă; încă nu am primit nici un răspuns în acest sens (totul a pornit de la problema 81 cu Pasagerul adormit, care nu se poate face cu datele oferite, lipsindu-i o parte de text). CTG

π la Biziday (3)

A doua zi după ce D-na Viorica Dăncilă dat renumitul r2 ca răspuns pentru aria cercului, Dl Moise Guran a prezentat în Pastila BiziDay un comentariul cu titlul: Ciudatul mod în care Dăncilă le-a fost multora mai utilă decât anii de şcoală …, Rar mi-a fost dat să aud o analiză atât de profundă a situaţiei predării matematicii din şcolile româneşti, ca în acest eseu. În ultima parte a eseului Moise Guran spune următoarele:

*

Se poate învăţa ca pe apă matematica? Este aceasta o ştiinţă ce poate fi tocită, cum se spune? Da, bineînţeles! La nivel de Examen de Capacitate şi de Bacalaureat, da, dar la acest nivel matematica îşi pierde sensul ei adevărat. Devine doar un şir de formule memorate şi utilizate în exersarea unor tipologii de probleme de examen, la fel cam cum au făcut trainer-ii de campanie cu Doamna Dăncilă: x posibile întrebări pentru care pregătim candidatul cu y variante de răspuns, pe care acesta le memorează şi le livrează precum în schiţa cu crastravetele: “ce este elipsa? Păi, nu e clar că tot un fel de crastravete!”

Râdem. Râdem de mai bine de o sută de ani de crastravete, dar de fapt nu ştim nici noi de ce râdem, căci nu copilul care învaţă mecanic poezia e problema, ci profesorul, dascălul, cel care crede că aria cercului trebuie memorată ca o poezie uşoară, când de fapt misterul cercului este chiar afurisitul de pi. Ce este pi? He he, ha ha ha!

Adevărata întrebare este câtora dintre noi ni s-a explicat la şcoală că nu o constantă cu nume grecesc determină cercul, ci din contră, cercul este cel care îl determină pe acest afurisit de pi, infinit în zecimale. Cum se face că toate, dar chiar toate triunghiurile, indiferent că sunt mai mari sau mai mici, indiferent de formă, răspund cu exactitate înmulţirii dintre bază şi înălţime supra doi? Dar de ce nu supra trei sau supra patru? De ce exact supra doi? Vedeţi, acestea sunt întrebări care dau sensul şi scopul matematicii, căci ele, întrebările şi demonstraţia unei formule, iar nu memorarea ei mecanică, ajută un copil să-şi dezvolte logica, inteligenţa, iar mai târziu, când mai creşte şi ajunge adolescent nebunatic, să vadă într-un pahar de bere un cilindru, al cărui volum poate fi calculat pentru că are baza unei forme de cerc.

Eşecul Doamnei Dăncilă de a răspunde corect la întrebarea “care este aria cercului?” nu demonstrează în mod necesar că aceasta nu ştie matematică, căci o formulă – fie ea şi cea mai simplă formulă – poate fi uitată. Dar momentul mărturiseşte mult, dureros de mult, despre eşecul sistemului de educaţie românesc în general, de ieri şi de azi, căci Doamna Dăncilă nu doar că şi-a tocit diplomele pe vremea comunismului, dar a predat tehnologie la şcoală de stat şi matematică în privat unor copii de azi, pe care i-a pus să memoreze mecanic formule, sisteme, modele de întrebare şi modele de răspuns, un sistem educaţional care a ajuns atât de jos, încât cel mai mare bine pentru beneficiarii săi pare a fi făcut tot Doamna Dăncilă. Uite, judecând după căutările de pe internet, dar şi după râsetele colective de acum, azi probabil ştiu de zece ori mai mulţi români cum se calculează aria cercului, decât ştiau ieri.

*

Da, dl. Moise Guran surprinde în aceste rânduri esenţa predării matematicii în şcoli, reuşeşte să atingă dincolo de orice dubiu marile întrebări şi dileme ale predării matematicii (atât de mari încât profesorii nici măcar nu le mai văd în zdroaba lor zilnică la catedră). Aproape că am impresia că dânsul i-a citit pe George Pólya sau pe Eugen Rusu. Să reluăm analiza ideilor exprimate. Gândul central al acestor rânduri îl reprezintă opoziţia dintre înţelegerea unei idei din matematică şi învăţarea ei pe de rost (în cazul de faţă aria cercului, dar se poate discuta despre orice alt element de matematică, iar Moise Guran ia repede spre exemplificare şi aria triunghiului). Ce interesantă ar fi o emisiune “Avocatul Diavolului” în care ascultătorii să fie chemaţi a dezbate cu argumente dilema între cele două păreri: “de ce trebuie învăţată matematica pe de rost” şi “de ce matematica trebuie înţeleasă”! Realitatea este că matematica cu greu poate trăi în mintea unui om fără oricare dintre aceste două componente.

Marea problemă a matematicii şcolare româneşti este că există cu duiumul dascăli care consideră că se poate atinge un nivel bun de matematică doar cu învăţarea pe de rost şi fără înţelegerea unui fenomen. Asta datorită faptului că învăţarea pe de rost este mult mai lesne de verificat decât înţelegerea. Primul pas greşit în acest sens îl fac desigur învăţătoarele, care oricum nu sunt setate spre o prea profundă poziţionare înspre înţelegerea matematicii, dânsele confundând în general gândirea unui fenomen cu învăţarea pe de rost a unei reţete de rezolvare. Mult mai dureros este că întâlnim profesori de matematică de liceu care cer învăţarea pe de rost a rezolvărilor exerciţiilor predate chiar şi la clase de mate-info. Cum s-a ajuns la această situaţie? Eu consider că am vreo câteva explicaţii.

În primul rând, datorită faptului că învăţarea pe de rost a unei probleme (de către elevi capabili şi antrenaţi în acest sens) este mult mai lesniceoasă decât formarea gândirii, care este o mare consumatoare de timp. Or, datorită creşterii exponenţiale a cantităţii de tipuri de probleme cu care se confruntă profesorul şi elevii spre excelenţă, tot mai mulţi ajung la ideea că cel mai bine este să înveţi pe de rost că, de verificat te verifică dacă le poţi rezolva, nu dacă le-ai înţeles.

De aici ajungem la a doua cauză: forma problemelor date la examen, chiar şi la olimpiade. Există probleme la modă, cu şanse mari de a fi date, profesorul îi cere să le înveţe (adică să le ştie) iar elevul înţelege că este suficient să le înveţe rezolvările. Există elevi care le ştiu printr-o combinaţe de gândire şi repetiţie, dar există şi mulţi elevi care le învaţă pur şi simplu pe de rost. Odată deschisă această posibilitate pe creierul elevului, acesta va merge tot mai des pe calea învăţării rezolvării (asta se consideră a fi de fapt pregătirea pentru examinarea la matematică), începând tot mai clar să neglijeze înţelegerea fenomenului.

Dar, dacă gândirea şi înţelegerea reală a fenomenului nu se cer la examen, de ce ar mai trebui formată gândirea? Refuz să intru într-o dezbatere a acestei întrebări! Cine nu este în stare să dezvolte un răspuns coerent la această întrebare, acela este deja demn de milă (din punctul meu de vedere). Mai degrabă m-aş ocupa de întrebarea – pe care Moise o atinge doar tangenţial, anume când ar trebui să ne ocupăm de formarea gândirii, de vreme ce cea mai mare parte a timpului orelor de matematică se desfăşoară sub spectrul pregătirii examenului. În diversele mele articole am încerca să dau un răspuns la această întrebare, şi anume că avem datoria să ne ocupăm de formarea gândirii raţional-logice deductiv-argumentative, dar şi că putem face aceasta foarte bine în cadul introducerii noilor noţiuni şi cunoştinţe. Cu alte cuvinte, dezvoltarea gândirii se poate face eficient îndrumând elevul spre cunoaşterea fiecărui pas din matematică pe o cale similară cu cea pe care a fost descoperit pasul respectiv, adică refăcând traseul de gândire urmat de descoperitorul acelui pas.

Eu folosesc pentru descrirea acestei căi denumirea de “predare prin problematizare”. Aceasta însă nu poate fi aplicată la ora actuală din două mari motive. Întâi că este mare consumatoare de timp şi ar trebui să i se facă loc în timpul orelor de matematică (ghici ce componentă a orelor de matematică ar trebui restrânsă, adică unde ar trebui să scadă pretenţiile?). Apoi, din punct de vedere a pregătirii metodico-didactice a profesorilor de matematică, predarea prin problematizare nu a fost şcolită deloc în cea mai mare parte a facultăţilor, profesorii neînţelegând ce ar trebui să facă, metoda fiind cvasi-dispărută din mentalul breslei noastre (de aia mă agit atâta, pentru că am impresia că sunt printre ultimii, dacă nu chiar ultimul, care mai ştiu câte ceva despre asta).

Pe lângă aceste două aspecte ce ţin de profesori, mai există şi unul colateral, ce ţine de elevi. Se poate face predarea prin problematizare la orice elev care colaborează şi nu închide poarta gândirii, preocupându-se la oră doar să scrie de pe tablă, cel mai bine rămânând chiar puţin în urmă, asigurându-şi astfel o preocupare “serioasă” pentru momentele când profesorul le cere elevilor să lucreze ceva independent (dar, copiez).

Toate aceste aspecte ar trebui să facă subiectul unei preocupări intense din partea conducătorilor matematicii şcolare româneşti. Institutul de ştiinţe a educaţiei ar trebui să fie centrul acestei preocupări de “desţelenire” a respectivului teritoriu al cunoaşterii demult uitat, dar intens studiat şi analizat în anii ’60-’70 de Polya la nivel mondial, dar şi la noi prin Profesori Eugen Rusu, A. Hollinger ş.a. (Universitatea din Bucureşti a avut până prin anii ’90 demni continuatori ai acestor doi metodişti legendari şi sigur se poate reînoda tradiţia acelei forme de pregătire a profesorilor).

Ultimele gânduri – cele legate de pregătirii metodico-didactice a profesorilor – reprezintă oarecum o a treia cauză a supraevaluării ideii de învăţare pe de rost. Obsesia teoreticistă introdusă în cadrul reformei “din 1980” (reforma uitată ce s-a pornit prin 1977 şi a ajuns la apogeu prin 1981), cu care a fost bombardaţi profesorii în anii ’80, a ajuns să fie acceptată şi însuşită ca paradigmă de marea masă a profesorilor în anii ’90, iar acum colegii nu înţeleg cu ce greşesc, pentru că ei aşa sunt setaţi. Or, o schimbare de paradigmă la nivelul predării necesită mult mai mult decât câteva pagini explicative în jurul unei noi programe (vezi programa de gimnaziu din 2017).

Cu alte cuvinte, este mult mai uşor să dictezi simplu o definiţie, decât să te chinui să formezi intuitiv, prin gândire, respectiva noţiune. De fapt greşesc prin această afirmaţie, pentru că starea de fapt este mult mai dramatică: oare, câţi profesori îşi pun măcar întrebarea că ar putea introduce o noţiune altfel decât dând o definiţie sau o explicaţie?

Revenind la dezvoltarea gândirii prin problematizare, desigur că gândirea poate fi dezvoltată şi prin problematizarea simplă, adică prin problematizare în rezolvarea unei probleme. Nu este neapărat să o faci doar în cazul predării, adică a introducerii noţiunilor noi, şi chiar este de dorit să o faci şi în cazul problemelor (de reţinut desigur că şi în acest caz devine consumatoare de timp). “Problema este că” în mentalul elevilor lecţiile sunt oarecum mai importante decât problemele (şi Moise Guran sugerează asta prin discursul său), aşa că sunt şanse crescute să fie mai atenţi şi mai colaborativi la lecţie decât la probleme: poate că elevul a auzit despre radicali şi este curios cum sunt aceştia (deşi şi problemele au argumentele lor: “pot veni la test”).

Moise Guran atinge în discursul său şi un alt punct important: faptul că matematica îi poate atrage pe elev spre gândire prin declanşarea fenomenului de uimire. Din păcate şi acest proces al mirării urmat de dorinţa de a găsi un răspuns “că de ce se întâmplă aşa”, şi acest proces este unul mare consumator de timp. Dar predarea teoreticist definiţionistă practicată în ultimii 30 de ani ca politică oficială în nici un caz nu poate stârni gânduri de uimire. Uimirea apare în matematică atunci când este descoperit un fenomen nou, iar nu când vine un profesor şi-ţi expune în stil plat-academic a succesiune de definiţii, observaţii şi teoreme, pe un ton monoton. Uimirea a avut loc atunci când un matematician a descoperit ceva. Dimpotrivă, uimirea a fost eliminată, desfiinţată atunci când un profesor universitar a prelucrat acele idei şi le-a organizat într-o formă corect-demonstrativ teoretică. Dacă la nivel academic acest proces îşi găseşte justificarea prin ordonarea teoretică a matematicii, introducerea absolutizată a acestui stil de predare la nivel preuniversitar a distrus încetul cu încetul formarea gândirii la elevi. Deci, elevului trebuie să i se permită parcurgerea de paşi de descoperire similari cu cei parcurşi de descoperitorii matematicii, iar asta cât mai des posibil. Aceşti paşi sunt cei formatori de gândire şi nu “turnarea cu tolcerul” (cu pâlnia) a lecţiilor în capul elevului, oricât de riguroasă ar fi aceasta.

Elevul trebuie să se poată lupta cu înţelegerea fenomenului de pi măcar o vreme, aşa cum omenirea s-a luptat secole, chiar milenii cu acest proces. Materia şi lecţiile trebuie astfel aranjate încât elevul să facă pasul de judecată pentru înţelegerea cauzei formulei ariei triunghiului, înainte de învăţarea formulei respective pe de rost. Dimpotrivă, predarea ariei triunghiului printr-o definiţie, aşa cum se putea găsi într-un manual “alternativ” din 1997, această formă de predare a fost una anihilatoare de gândire, prin definire omorându-se de fapt din faşă orice tentativă a întrebării “de ce?”, întrebare ce reprezintă sămânţa gândirii.

Este evident că acest subiect merită continuat şi analizat şi răs-analizat, dar cred că este suficient pentru această a treia parte a eseului de analiză pastilei BiziDay din 20 noiembrie. În vacanţă mă voi concentra pe o altă cauză – una năucitoare – a faptului că evaluarea prea agresivă este în sine anihilatoare de gândire, fiind una din cauzele eşecului sistemului de educaţie românesc în general, de ieri şi de azi. Nu închei însă înainte de a atrage atenţia asupra felului deosebit de organic în care se leagă textul lui Moise Guran de ştirea despre “eşecul” învăţământului românesc la Studiul PISA, ştire ce avea să pice peste nici două săptămâni. CTG

Steaua Domnului – o poveste geometrică de Crăciun

Ca un fel de final la seria cu Impresii din Germania vă prezint o cărticică de copii pentru Crăciun pe baze geometrice evidente. Cărticica se numeşte Emmi şi Jonas – copiii cu steluţă (în original Emmi und Jonas als Sternekinder; se citeşte Ionas, cu I nu cu J; de acolo şi încurcătura din numele preşedintelui: pe familia sa îi cheamă Johannis, pe el când l-a înscris l-a trecut Iohannis, pronunţia fiind identică pentru nevorbitorul de germană). Cărticica este apărută în 2017 sub egida Cornelius-Buchhandlung GmbH în colaborare cu Herrnhuter Sterne GmbH. Textul este semnat de Margit Lessing, iar imaginile şi aranjamentul realizate de Juliane Wedlich. În continuare reiau povestea în rezumat, prezentând înclinat doar pasajele preluate identic.

Povestea este despre o întâmplare a doi fraţi, Emmi – surioara, şi Jonas – fratele, care merg în vizită la bunici, pe vremea târgurilor de Crăciun. Povestea începe cu cei doi aflaţi în tren: sunt îmbrăcaţi bine, cu căciuliţe, fulare şi mănuşi, ţinând fiecare în braţe un rucsăcel. Călătoria nu este lungă, dar pentru că au fost trimişi singuri, teama începe să se arate la Jonas. Sora sa este puţin mai raţională, amintindu-i că la sosire îi aşteaptă bunicul în staţie. Doar că în staţia de sosire a micului târg e mare aglomeraţie şi bunicul nu-i de găsit. Lângă gară nimeresc într-un frumos târg de Crăciun unde zăbovesc uitându-se la toate cele. Acolo găsesc amenajată şi o scenă cu Naşterea Domnului, Maria şi Iosif lângă Pruncul sfânt în iesle; în spate un rege şi alături câteva oiţe.

“Uite!” strigă Jonas în timp ce se apropie. Deasupra tuturor luminează o stea portocalie mare. “Are multe raze!”, se miră el şi începe să le numere: “… 23, 24, 25, …!”

Se tot gândesc dacă să-l mai aştepte pe bunic, dar Emmi îl asigură pe Jonas că cunoaşte drumul, aşa că cei doi o iau spre casa bunicilor. Doar că totul arată acum altfel: s-a întunecat mult mai devreme şi străzile sunt goale. Cei doi merg pe strada principală pe lângă magazine închise. Unele case sunt împodobite cu luminiţe. Aproape de ieşirea din orăşel o iau pe o srăduţă, iar Jonas exclamă: “Uite Emmi! Acolo, la casa din capăt luceşte o steluţă. Acolo trebuie să fie!” Fug către casa cu steluţa atârnată deasupra intrării, deschid portiţa şi bat nerăbdători la uşă. Bunica le deschide şi toţi trei răsuflă uşuraţi.

După ce beau un lapte cald cu cacao, Emmi fuge la cufărul cu haine vechi ale bunicii, în care îi place să cotrobăie. “Am o idee!” strigă ea. “Buni, poţi să-mi coşi un costum din acest material frumos? Un costum de steluţă. Te rog, te rog!” Apoi îi povesteşte bunicii despre serbarea de Crăciun în care cei doi vor fi copiii cu steluţă, doar care nu au costum pentru că nu i-au spus nimic mamei, dorind să-i facă o surpriză. Aşa că bunica se apucă să croiască două costumaşe. Între timp apare şi bunicul, după ce i-a căutat prin toată gara şi prin tot târgul.

Jonas îl roagă pe bunic să-l ajute să lipească câte o steluţă aurie pe două baghete, explicându-i şi bunicului despre jocul de Crăciun în care cei doi vor fi copiii cu steluţă. Bunicul îl ajută, după care le arată ce le-a cumpărat de la târg: două seturi de asamblat Steaua Domnului (în original Herrnhuter Stern, Herr – Domn, Stern – stea; vezi în final o traducere mai clară). Cei doi iau curioşi cutiuţele albastre şi le desfac, analizând multele bucăţele: bucăţi de plastic cu colţuri şi găuri şi multe piese ascuţite galbene. “Vai, bunicule!” se vaietă Jonas, “Da’  e foarte greu. Ne arăţi cum se face?”

“Întâi asamblezi corpul de bază. Apoi pui lipici şi lipeşti o rază. Pui iar lipici şi mai pui o rază. Fiecare stea are nevoie de 25 de raze lipite în jurul corpului de bază”, răspunde bunicul. “Nu-i greu!”

Emmi wrea să ştie ce este acela un corp de bază. “Asta este  scurt şi uşor de explicat!”, zice bunicul.  “Închipuie-ţi un cub. Dacă ai tăia de la un cub toate colţurile şi toate muchiile, atunci ai obţine un corp cu mult mai multe feţe decât şase, care este structura de bază pentru Steaua Domnului. – Dacă vreţi, ne şi apucăm să lipim o steluţă!”

Cu avânt lipesc cei doi rază după rază (vârf după vârf, ţep după ţep, piramidă după piramidă; alegeţi voi care variantă vă place, pentru că nu găsesc corespondent în română la Sternzacke nach Sternzacke). Şaptesprezece raze patrulatere şi opt raze triunghiulare mai mici. Una după cealaltă, roată împrejur. Vârful fiecărei raze se îndreaptă în altă direcţie. Doar într-o parte rămâne o gaură patrulateră liberă, pentru că acolo vrea bunicu să monteze un mic beculeţ.

“Gata!”, strigă bunicu. “Acum mai lipseşte doar luminiţa!”

Jonas admiră mica steluţă. Jenat se uită apoi la mica stea plată de pe bagheta sa, dezlipimd-o hotărât: “Vreau o steluţă rotundă pe bagheta mea!”

Între timp bunica a terminat de cusut cele două cămăşuţe pentru copiii cu steluţă, iar cei doi le probează plini de bucurie. Până la cină sunt apoi montate şi steluţele cu beculeţi şi cu baterie pe cele două baghete. În timpul mesei stabilesc că şi bunicii trebuie să primească o invitaţie la serbare. La culcare, cei doi primesc şi o poveste spusă de bunica, în timp ce bunicul se aşează comod în fotoliul de alături.

“Vreţi să ascultaţi o anumită poveste?”, întreabă bunica. “Da!”, strigă cei doi. “Povesteşte-ne cine a inventat această steluţă frumoasă!”, în timp ce mişcă cu grijă în semiîntuneric baghetele cu steluţe minunat luminate.

“Eu cunosc această Steaua Domnului încă din copilărie”, începe Bunica. “Străbunicul vostru păstra vârfurile acelei steluţe şi clemele de prindere într-o cutie de carton lunguiaţă. În prima zi de Advent (Postul Crăciunului) ne aşezam cu toată familia la masă, la fel ca şi azi, şi asamblam steaua. Îi dădeam tatălui la mână vârfurile potrivite şi ţineam apoi de scară până tata fixa steaua de tavan.”

“Bunică, dar cineva trebuie că a inventat această stea?”, întreabă curios Jonas. “Întrebaţi-l pe bunicul vostru!” Emmi şi Jonas se uită curioşi înspre Bunicu, dar acesta are ochii închişi şi scoate doar un sunet fin de sforăit. Jonas îl îmbrânceşte scurt pe Bunicu: “Ăă, N-am dormit! Am găsit căsuţa unde se vând steluţele!” “Ba ai dormit!” îi răspunde Jonas. “Bunica zice că tu şti cine a inventat steluţa asta.”

“Oh, da, da. Dar asta este o poveste lungă. A fost aşa. Timp de câţiva ani am fost elev în internatul Unităţii-Frăţiei. Toţi băieţii de acolo ştiau să construiască această stea unică. Se zicea că, în urmă cu un secol un profesor de matematică a avut o idee genială, pentru a le face elevilor din internat cursul de geometrie mai accesibil (mai plăcut, în original mai gustos). Pentru că era tocmai vremea dinaintea Crăciunului, i-a încurajat să gândească şi să construiască diferite corpuri stelare. Din timpul şcolii mai am undeva în pod notiţe despre această stea, într-un geamentan vechi de piele.”

A doua zi dimineaţa, totul era acoperit de nea proaspătă. După micul dejun, cei doi îl ajută pe Bunic la curăţatul zăpezii de pe trotuar. Apoi fac un om de zăpadă şi trag o mică bulgăreală. Între timp sosesc şi părinţii. După servitul cafelei pleacă toţi la o plimbare până la târgul de Crăciun. Peste tot se aud colinde şi se simt mirosuri de Crăciun.

Bunicul le arată standul manufacturii ce vinde Steaua Domnului. “Aşa de multe stele!” se miră Emmi. “Şi aşa de frumoase!” se miră şi Jonas. “Bunicule, de aici ai cumpărat steluţele noastre?” Bunicul dă din cap afirmativ în timp ce-i zâmbeşte vânzătoarei. Apoi merg mai departe şi Jonas vrea să le arate tuturor marea Stea a Domnului ce este agăţată deasupra ieslei cu Naşterea Domnului.

Odată ajunşi cu părinţii acasă, cei doi le dezvăliue şi acestora surpriza cu serbarea de Crăciun, cu costumaşele şi cu baghetele cu Steaua Domnului. Desigur că la serbare au fost prezenţi şi Bunicii. Această cărticică mai are şi o continuare: Emmi şi Jonas şi Povestea de Crăciun (în original Emmi und Jonas und die Weihnachtsgeschichte).

Evident că am fost curios şi am pornit la căutat HERRNHUTER pe net, găsind imediat site-ul firmei. La adresa https://www.herrnhuter-sterne.de/de/ găsiţi istoricul acestor stele, ce se fabrică în oraşul saxon Herrnhut (traductibil Adăpostul Domnului, de unde am tradus Steaua Domnului pentru  Steaua din Adăpostului Domnului).

Cât despre “corpul de bază” al steluţei, acesta este un Rombicuboctaedron, de găsit pe Wikipedia la adresa https://en.wikipedia.org/wiki/Rhombicuboctahedron, unde găsiţi şi o transformare frumoasă a acestuia în cub sau în octaedru. CTG

PISA 2018 – un nou scandal cu matematica şcolară în prim-plan

Parafrazând un vechi cântec reluat prin anii ’90 (Alice, who … is Alice), putem întreba pe bună dreptate: PISA, ce-i aia PISA? Am gasit pe HotNews.ro câteva elemente sugestive şi câteva explicaţii destul de clare pe care le-aş relua şi le-aş suplimenta cu anumite comentarii (vezi întregul material la https://www.hotnews.ro/stiri-educatie-23528977-rezultate-pisa-2018-performante-slabe-ale-elevilor-romani-cel-mai-mic-punctaj-din-2012-pana-acum.htm).

PISA este prescurtarea pentru Programme for International Student Assessment (în traducere Programul pentru Evaluarea Internaţională a Elevilor) şi este o testare care se desfăşoară o dată la 3 ani şi arată nivelul elevilor de 15-16 ani la matematică, ştiinţă şi citire.
PISA evaluează măsura în care elevii au dobândit cunoştinţe şi abilităţi esenţiale pentru participarea deplină la viaţa socială şi economică. Evaluările PISA nu caută să vadă doar dacă elevii care se află la sfârşitul învăţământului obligatoriu pot reproduce ceea ce au învăţat, ci examinează cât de bine pot ei extrapola din ceea ce au învăţat şi dacă îşi pot aplica cunoştinţele în situaţii necunoscute, atât în şcoală cât şi în afara acesteia.

Studiul PISA este realizat de Organizaţia pentru Cooperare şi Dezvoltare Economică (OECD) şi are în vizor toată populaţia şcolară, dorind să ofere o imagine a generaţiei respective asupra abilităţii acestora de integrare în viaţa activă a societăţii peste numai câţiva ani. La fel ca şi sondajele de opinie în vederea alegerilor, şi studiul PISA se desfăşoară pe eşantioane alese astfel încât să fie reprezentative pentru întreaga populaţie şcolară a unei ţări. Cu alte cuvinte, rezultatele unui astfel de studiu s-ar schimba dramatic dacă s-ar alege eşantioane favorabile, în conformitate cu curentul de mândrie naţională despre „olimpicii noştrii”, curent rămas oficial şi după 1989 (reamintesc că acest curent de opinie a fost impus de Ceauşescu în anii ’80 când am auzit 10 ani despre “societatea multilateral dezvoltată” şi despre “omul de tip nou”). O astfel de alegere însă şi-ar pierde relevanţa pentru societatea românească.

Din păcate – din cauza lipsei unei analize realiste a stării ideologice a societăţii noastre – România a făcut în toţi aceşti 30 de ani şi în educaţie doar jumătate de pas înspre o schimbare reală şi sănătoasă, la fel ca în orice domeniu de altfel (spre exemplificare: vrem calitate de maşini nemţeşti de elită, strâmbând din nas la orice nu este top, dar când producem noi ceva, cei mai mulţi suntem dominaţi în continuare de “merge şi-aşa!” sau de renumitul “da’ ce-are!” când ne este reclamată o deficienţă a rezultatului muncii noastre). Aşadar, la fel ca în orice domeniu şi în cazul educaţiei apare respectiva schizofrenie: comandăm ca ţară studiul PISA şi plătim pentru asta peste 150.000 de euro, după care vine D-na proaspăt Ministru Monica Anisie şi declară că “nu trebuie neapărat să ne îngrijoreze, pentru că accentul nu se pune neapărat pe ce ştiu elevii, ci pe ce aplică”. În matematică folosim q.e.d.: adică, DA, noi ştim că o foarte mare parte din populaţia ţării este neglijată cu totul de către politica educaţională a statului român, dar ce mândri suntem de restul, de “olimpicii noştri” şi de toţi cei care învaţă bine în clasele şi în şcolile noastre bune şi care apoi aplică la şcoli înalte din străinătate (ultimul m-a anunţat aseară că va aplica la o facultate din Scoţia) şi apoi devin “Ăştia” şi veci nu se mai întorc (“citat” pamfletar printre rânduri!). Da, aşa se înţeleg D-nă Ministru, vorbele dvs. Şi când te gândeşti că era atât de simplu să fiţi cinstită şi să daţi pur şi simplu vina pe cei dinaintea dvs. Sau, poate, chiar aţi fost cinstită în sinea dvs., şi de fapt aşa gândiţi. Atunci înseamnă că a avut dreptate Moise Guran cu desfiinţarea inspectoratelor şcolare.

Aşadar, facem o testare despre întregul spectru de elevi, dar nu ne interesează ce ne spune aceasta despre CE se pricep să aplice, sau mai exact să nu aplice, după ani buni de şcoală aproape jumătate din populaţia şcolară. “Ei ştiu de altfel foarte multe lucruri după toţi aceşti ani de şcoală, dar nu ştiu să le aplice”. Asta sună cam ca aia din 2008 a D-lui Tăriceanu, că economia românească duduie, iar criza mondială n-are cum să ne îngrijoreze.

Cu alte cuvinte fiind spus – şi acest aspect nu l-am regăsit în nici măcar o luare de poziţie – Studiul PISA oferă o imagine a învăţământului nostru opusă structural imaginilor tradiţional măgulitoare oferite de sistemul elitist, în sensul că ne atrage atenţia şi asupra celeilalte părţi a populaţiei şcolare, asupra celor slabi la matematică (deşi nici imaginile oferite de sistemul elitist olimpic nu mai sunt ce-au fost altădată, decăzând la rând cu celelalte domenii gândite de Ceauşescu pentru a ne convinge de eficienţa politicii sale, cum ar fi Naţionala de fotbal sau gimnastica – la Olimiada de la Tokyo nici măcar nu vom mai fi reprezentaţi de echipa de gimnastică, iar exemplele pot continua mult şi bine). Pe când rezultatele elitiste ne oferă o imagine luminoasă, Studiul PISA integrează în tablou şi partea neglijată a populaţiei şcolare, iar faptul că această parte neglijată creşte de la un Studiu PISA la următorul, această stare de lucruri ar trebui să ne îngrijoreze!

Totul revine însă la o altă paradigmă groaznică ce ne conduce mental activitatea: pentru ce învăţăm de pildă matematica? Pentru examene (obligatoriu) şi pentru concursuri (cei mai buni). Păi da, şi atunci cei care nu dau examene, cu aceştia ce facem? Păi, aceştia pot să rămână analfabeţi funcţionali în matematică! Situaţia lor “matematică” nu ne interesează. Da, cam aceasta este atitudinea societăţii despre matematică şi cei care nu o ştiu. Toţi elevii care nu învaţă şi nu ştiu matematică, chiar şi la un nivel minimal, toţi aceştia nu vor trage deloc foloase din capacitatea formatoare a matematicii înspre dezvoltarea unei gândiri raţionale şi logice. Cu alte cuvinte, toţi cei 47% dintre elevi români care nu au atins măcar nivelul 2 din studiul PISA, toţi aceştia pot fi clasificaţi drept analfabeţi funcţional din punct de vedere al gândirii raţional logice. Mai exact, aceşti elevi nu pot interpreta şi recunoaşte, fără instrucţiuni directe, modul în care o situaţie simplă poate fi reprezentată matematic, cum ar fi de exemplu, compararea distanţei totale pe două rute alternative sau convertirea preţurilor într-o monedă diferită.

Mai mult, chiar şi dacă aceştia reuşesc să identifice reţeta de aplicat (dintre cele învăţate la clasă) şi o şi aplică, ei nu sunt în stare să-şi recunoască validitatea sau falsitatea răspunsului dat. De pildă, am dat în finalul lui noiembrie la clasa a VII-a următoarea problemuţă: Ducem la curăţătorie un covor rotund cu diametrul de 2,80 m. Stabiliţi câţi m2 are acest covor (formulă şi calcul cu două zecimale exacte). Dintre cei care au ştiut să identifice că trebuie să calculeze aria (deşi nu era precizat concret cuvântul arie) şi au pus corect formula (mulţumim D-na Viorica!), dintre aceştia au fost totuşi foarte mulţi care n-au pus la rezultat virgula unde trebuie (inclusiv unii care n-au pus-o deloc). Aceştia nu şi-au dat seama că un astfel de covor nu poate avea 60 m2 sau chiar 600 m2. Pentru ei aceste numere nu au o însemnătate clară, pentru ei acestea sunt doar „numere” (şi matematica lucrează cu numere că aşa vrea ea). Întrebarea „oare mi-a dat corect” nu este acoperită de vreun fel de gândire (cred că în mintea unora rezultatele problemelor de matematică au un statut similar cu datul cu zarul: la ambele e vorba de numere şi apoi „om vedea ce iese”). Probabil că peste ani, într-o situaţie de calcul a preţului la o curăţătorie de covoare, ei îşi vor da seama că ceva nu e bine, dar acum „li se rupe-n 14”.

Aceste gânduri ne duc mai departe şi la o altă întrebare despre care încă n-am auzit o analiză realistă: Cine-i de vină? Există articole care vorbesc despre vina sistemului sau despre vina profesorilor, despre lipsa manualelor, despre planul cadru sau despre programe; dar cine-i bagă în seamă pe toţi aceştia care aparent doar dau cu părerea? Chiar şi reprezentanţii Consiliului naţional al elevilor au ieşit la declaraţii: ei consideră că planul cadru şi metodele de predare ar fi de vină şi serios că nu-i pot contrazice.

Pe de altă parte există articole care vorbesc despre vina părinţilor; mai puţine însă vorbesc şi despre vina atitudinii elevilor. Nu vorbeşte însă nimeni despre cauzele acestora şi, mai ales, nu li se explică părinţilor despre urmările în ne-dezvoltarea atenţiei şi a capacităţilor de gândire, despre urmările extinderii folosirii excesive a ecranelor la nivel naţional, prin reţelele ce oferă pachete de televiziune prin satelit în fiecare locuinţă (până şi în ultima cocioabă conectată la reţeaua electrică), dar şi despre urmările accesul nelimitat la internet prin telefoanele inteligente (2007 primul i-phone, după 2010 încet dar sigur la tot mai mulţi copii de vârste tot mai fragede petrecând tot mai mult timp în faţa ecranelor).

Toată această îmbârligătură de vini bănuite sau nebănuite susţine o stare în care oricine poate arăta cu degetul în altă parte, numai la el nu: „Ceilalţi sunt de vină, nu eu!”. De fapt, pe mine personal nici nu mă interesează cine-i de vină, cum nici nu m-ar încălzi cu nimic tragerea la răspundere a vinovaţilor. Singurul lucru cu adevărat important ar fi recunoaşterea completă a situaţiei şi luarea unor decizii de corectură în conformitate cu tabloul complet. Nici măcar nu m-ar interesa de fapt ca acest proces să se desfăşoare la vedere. Ar putea fi foarte bine manager-uit de către o comisie de încredere. Problema este că ne-am cam săturat de atâtea „comisii” care ne duc dintr-o reformă în alta. Vorba lui Tudor Gheorghe: „30 degeaba!”.

P.S. Apoi, ce să mai vorbim despre faptul că la sezonul de alegeri de peste 5 ani, aceşti 47% vor avea drept de vot? Oare, cum se vor putea ei păzi de a nu fi fraieriţi de un partid sau de un candidat anume? UAU! Vremuri grele ne aşteaptă! Oare această stare de fapt a fost intenţionat cauzată, sau „it just hapened”? Hmmm!

π la Biziday (2)

A doua zi după ce D-na Viorica Dăncilă a scos perla cu renumitul r2 pentru aria cercului, Dl Moise Guran a prezentat în Pastila BiziDay (20 noi. 2019) un comentariul cu titlul: Ciudatul mod în care Dăncilă le-a fost multora mai utilă decât anii de şcoală …, comentariu la adresa evenimentului, dar şi în general la adresa matematicii şi a politicii educaţionale prin care aceasta este introdusă elevilor. Am prezentat în prima parte a acestei serii întregul text, cât şi o primă analiză la adresa pasajului introductiv despre clasica întrebare retorică a elevilor “La ce ne ajută matematica?”. După pasajul introductiv şi scurtul solo la chitară (de origine Iron Maiden), Moise Guran intră direct în profunzimea metodicii predării matematicii:

MG: Deşi formula ariei cercului are o muzicalitate aparte, aşa – pi-er-pătrat – ceea ce e drept o face uşor de confundat cu perimetrul cercului – doi-pi-er – tot e mult mai uşor de reţinut decât oricare altă formulă matematică, de exemplu baza ori înălţimea supra doi, cum ar fi aria afurisitului de triunghi, de exemplu. Sau poate, nu acestea sunt formulele, şi le-aş putea greşi la rândul meu. Nu le-am mai folosit de mult. Cu adevărat greşit însă, în tot ceea ce v-am spus eu, este expresia “uşor de reţinut”. Sunt lucruri pe care le reţinem mecanic pentru că le folosim tot timpul, aşa cum ar fi, în cazul meu, numărul de telefon al nevestei, sau sunt lucruri pe care mu le-am mai folosit de mult şi firesc le uităm pentru a face loc în memorie altor numere de telefon, pinului de la card, parolei contului de facebook sau doar altor informaţii de zi cu zi.

CTG: Da, aici este atinsă exact acea parte de matematică ce trebuie învăţată pe de rost. Nu poţi de fiecare dată să-ţi demonstrezi “again & again” (din nou şi din nou) fiecare formulă. Cele des folosite trebuie şi merită învăţate pe de rost. Unii elevi se împotrivesc şi calculează de fiecare dată cât face pătratul lui 12, până când oricum încep să-l ştie. Aceştia îţi vor explica că se descurcă şi la extragerea radicalului prin descompunere. Pe ei îi vom lămurii că la rădăcina lui 169 sau a lui 289 nu se vor descurca cu descompunere. Pe cei care nu se lasă, îi “bubuim” cu un radical din 361. În urmă cu mulţi ani la o simulare de clasa a 8-a, toată clasa a fost blocată timp de 10 minute din cauza acestuia. La sfârşitul simulării a venit în clasă diriginta, care era profesoară de engleză: “Ei, cum a fost?” a întrebat ea. Când i-am spus că n-au ştiut radical din 361, s-a îndreptat indignată către ei: “Cum? Naţi ştiut că-i 19?” Toată clasa a rămas blocată (ei neştiind că Diriga lor se pregătise pentru matematică până în martie în a 12-a, la rândul ei de dragul dirigintei, care era profesoară de matematică).  Alţii consideră că nu-i nevoie să înveţe pe de rost şi a aplica automat formula (a + b)2, încercând de fiecare dată să înmulţească (2x + 7) cu el însuşi, neştiind că astfel nu vor face faţă la lecţia simetrică de descompunere în factori, şi exemplele pot continua mult şi bine.

Da, mulţi elevi se opun învăţării pe de rost, dar nici politica educaţională a matematicii nu-i ajută. Elevii ar trebui să primească suficiente exerciţii elementare care să-i pună în situaţia reţinerii unei formule sau a unor numere speciale pe baza folosirii dese. După 1997 odată cu apariţia manualelor alternative au dispărut din repertoriul de zi cu zi al orelor de matematică şi al temelor aplicaţiile de bază într-o cantitate suficientă încât elevii să memoreze elementele datorită folosirii acestora de multe ori în situaţii elementare. De-abia după acest moment ar fi voie de trecut la aplicaţii mai avansată. Or, dacă studiaţii orice manual sau auxiliar, la momentele de bază cu greu găseşti 2-3 aplicaţii simple. Este mult mai uşor să-i bombardezi din prima cu aplicaţii superioare, iar în paralel să le ceri să înveţe pe de rost orice. Am întâlnit colegă ce predă la o şcoală de elită şi care le cerea elevilor de liceu de la mate-info să înveţe pe de rost şi rezolvările diferitelor exerciţii (adevărate probleme superîmbârligate, numite “exerciţii” doar pentru că nu au un text consictent).

Ce este deci cel mai rău, este că profesorii ajung să absolutizeze ideea învăţării pe de rost (dar nu numai profesorii, ci şi părinţii sau chiar elevii). Chiar şi acest aspect a ajuns să fie atins de Moise Guran ceva mai încolo:

MG: Râdem de mai bine de o sută de ani de crastravete, dar de fapt nu ştim nici noi de ce râdem, căci nu copilul care învaţă mecanic poezia e problema, ci profesorul, dascălul, cel care crede că aria cercului trebuie memorată ca o poezie uşoară …Eşecul Doamnei Dăncilă de a răspunde corect la întrebarea “care este aria cercului?” nu demonstrează în mod necesar că aceasta nu ştie matematică, căci o formulă – fie ea şi cea mai simplă formulă – poate fi uitată.

Aşadar, secretul constă în găsirea liniei juste de departajare între cele de învăţat pe de rost, pe de o parte, cele de gândit pe de altă parte şi cele mediane, acele exerciţii a căror rezolvare devine automată, dar nu se învaţă pe de rost. Însă, despre cele de gândit vom discuta în a treia parte a comentariilor despre această pastilă Biziday. CTG

P.S. Încerc să ţin o ordine a postărilor cât de cât coerentă, dar cu greu fac faţă frecvenţei cu care apar în ultima vreme în viaţa publică evenimente ce au legătură cu predarea matematicii. Eu sunt un simplu profesor, pe lângă ore (ce trebuie pregătite) am şi teste de redactat şi de corectat; apoi am şi o viaţă extramatematică şi nu mai apuc să scriu tot ce ar fi nevoie. Sper să apuc în vacanţă, adică vreau să spun că sper că în vacanţă se vor mai linişti şi nu vor mai apărea evenimente noi de analizat, astfel încât să le pot epuiza pe cele ce s-au îngrămădit în ultima vreme. Oricum , e clar că dacă n-ar fi existat, pentagonia ar fi trebuit inventată. Glumesc desigur, dar în spatele acestei glume se ascunde o situaţie rar întâlnită. Nu ţin minte să mai fi fost o stare atât de evidentă de agitaţie în jurul matematicii şcolare, ca în această perioadă.

Impresii din Germania (6) – Zaruri din corpuri platonice la München

În vizita din vară în Germania ne-am oprit pentru 2-3 zile la München. De mult îmi doream să vizitez magazinul de la sediul central Dallmayr, cel cunoscut de pe ambalajele de cafea prodomo, doar aşa să ştiu că am fost şi pe acolo (se pronunţă Dalmaiăr cu un ă mai scurt, nu Dalmair ca în nu-ştiu ce reclamă). N-am cumpărat nimic pentru că totul era foarte scump, acolo “în buricu’ târgului”, dar dacă tot am ajuns în centrul vechi, în Marienplatz, am căscat şi noi gura prin jur. La un colţ de stradă într-un magazin specializat mai mult pe jucării din lemn (pentru oameni mari sau pentru copii), în subsolul magazinului am găsit să cumpăr zaruri din corpuri perfecte, altele decât cubul. Cele trei din poza alăturată, în ordine, de la stânga la dreapta, sunt dodecaedrul (12 feţe), octaedrul (8 feţe) şi icosaedrul (20 feţe). În poză găsiţi inclusiv adresa magazinului (din păcate, nefiind produse de ei, pe site-ul magazinului nu se găsesc de comandat astfel de zaruri, dar dacă ajungeţi prin centrul München-ului …). Titus und die drei platonische Körper aus Bayern

π la Biziday (1)

A doua zi după ce D-na Viorica Dăncilă “a scos porumbelul pe gură” cu renumitul r2 pentru aria cercului, Dl Moise Guran a prezentat în Pastila BiziDay (20 noi. 2019) un comentariu extraordinar la adresa evenimentului, dar şi în general la adresa matematicii şi a politicii educaţionale prin care aceasta este introdusă elevilor. Comentariul din această Pastilă Biziday cu Moise Guran poate fi ascultat la adresa https://www.youtube.com/watch?v=H2s078_RDmY, sub titlul: Ciudatul mod în care Dăncilă le-a fost multora mai utilă decât anii de şcoală … Iată în continuare în text întregul discurs (cu câteva adăugări minore pentru cursivitate şi claritate în lecturare):

*

Acum vreo câţiva ani, pe când era fiu-meu la şcoală, unul dintre puşti a întrebat-o pe profa de mate “la ce ne foloseşte Doamna matematica în viaţă?”. Profesoara s-a cam ofensat şi n-a avut un răspuns foarte concret. Pe vremuri, pe vremuri mai golăneşti aşa, pe când eram eu în liceu iar Revoluţia ne făcuse să credem că democraţia înseamnă să stăm cu profii la fumat şi uneori şi prin baruri, un amic i-a pus aproximativ aceeaşi întrebare profesorului nostru de matematică: “Domnu’, dacă n-ar fi Bacalaureatul iar noi n-am fi la mate-fizică, ne-ar trebui la ceva matematica asta în viaţă?”, iar profesorul nostru de atunci, un gentelman de care îmi amintesc cu plăcere, deşi nu prea mă scotea din 5 şi 6, a zis cam aşa: “Da, tinere domn, ca să ştii şi tu câte pahare poţi să bei înainte să nu te mai poţi ridica de pe scaun”.

Deşi formula ariei cercului are o muzicalitate aparte, aşa – pi-er-pătrat – ceea ce e drept o face uşor de confundat cu perimetrul cercului – doi-pi-er – tot e mult mai uşor de reţinut decât oricare altă formulă matematică, de exemplu baza ori înălţimea supra doi, cum ar fi aria afurisitului de triunghi, de exemplu. Sau poate, nu acestea sunt formulele, şi le-aş putea greşi la rândul meu. Nu le-am mai folosit de mult. Cu adevărat greşit însă, în tot ceea ce v-am spus eu, este expresia “uşor de reţinut”. Sunt lucruri pe care le reţinem mecanic pentru că le folosim tot timpul, aşa cum ar fi, în cazul meu, numărul de telefon al nevestei, sau sunt lucruri pe care mu le-am mai folosit de mult şi firesc le uităm pentru a face loc în memorie altor numere de telefon, pinului de la card, parolei contului de facebook sau doar altor informaţii de zi cu zi.

Se poate învăţa ca pe apă matematica? Este aceasta o ştiinţă ce poate fi tocită, cum se spune? Da, bineînţeles! La nivel de Examen de Capacitate şi de Bacalaureat, da, dar la acest nivel matematica îşi pierde sensul ei adevărat. Devine doar un şir de formule memorate şi utilizate în exersarea unor tipologii de probleme de examen, la fel cam cum au făcut trainer-ii de campanie cu Doamna Dăncilă: x posibile întrebări pentru care pregătim candidatul cu y variante de răspuns, pe care acesta le memorează şi le livrează precum în schiţa cu crastravetele: “ce este elipsa? Păi, nu e clar că tot un fel de crastravete!”

Râdem. Râdem de mai bine de o sută de ani de crastravete, dar de fapt nu ştim nici noi de ce râdem, căci nu copilul care învaţă mecanic poezia e problema, ci profesorul, dascălul, cel care crede că aria cercului trebuie memorată ca o poezie uşoară, când de fapt misterul cercului este chiar afurisitul de pi. Ce este pi? He he, ha ha ha!

Adevărata întrebare este câtora dintre noi ni s-a explicat la şcoală că nu o constantă cu nume grecesc determină cercul, ci din contră, cercul este cel care îl determină pe acest afurisit de pi, infinit în zecimale. Cum se face că toate, dar chiar toate triunghiurile, indiferent că sunt mai mari sau mai mici, indiferent de formă, răspund cu exactitate înmulţirii dintre bază şi înălţime supra doi? Dar de ce nu supra trei sau supra patru? De ce exact supra doi? Vedeţi, acestea sunt întrebări care dau sensul şi scopul matematicii, căci ele, întrebările şi demonstraţia unei formule, iar nu memorarea ei mecanică, ajută un copil să-şi dezvolte logica, inteligenţa, iar mai târziu, când mai creşte şi ajunge adolescent nebunatic, să vadă într-un pahar de bere un cilindru, al cărui volum poate fi calculat pentru că are baza unei forme de cerc.

Eşecul Doamnei Dăncilă de a răspunde corect la întrebarea “care este aria cercului?” nu demonstrează în mod necesar că aceasta nu ştie matematică, căci o formulă – fie ea şi cea mai simplă formulă – poate fi uitată. Dar momentul mărturiseşte mult, dureros de mult, despre eşecul sistemului de educaţie românesc în general, de ieri şi de azi, căci Doamna Dăncilă nu doar că şi-a tocit diplomele pe vremea comunismului, dar a predat tehnologie la şcoală de stat şi matematică în privat unor copii de azi, pe care i-a pus să memoreze mecanic formule, sisteme, modele de întrebare şi modele de răspuns, un sistem educaţional care a ajuns atât de jos, încât cel mai mare bine pentru beneficiarii săi pare a fi făcut tot Doamna Dăncilă. Uite, judecând după căutările de pe internet, dar şi după râsetele colective de acum, azi probabil ştiu de zece ori mai mulţi români cum se calculează aria cercului, decât ştiau ieri. Indiferent că-l văd, sau că nu mai pot să-l vadă pe fundul unui pahar. Momente şi schiţe, aceasta este ţara.

*

Rar mi-a fost dat să aud o descriere atât de profundă a situaţiei predării matematicii din şcolile româneşti, ca în acest eseu. Haideţi să analizăm pentru început pasajul introductiv ce atrage atenţia asupra unei întrebări cu care orice profesor de matematică se confruntă dacă elevii ajung să simtă un oarecare curaj (un ascendent) în faţa sa.

MG: Acum vreo câţiva ani, pe când era fiu-meu la şcoală, unul dintre puşti a întrebat-o pe profa de mate “la ce ne foloseşte Doamna matematica în viaţă?”. Profesoara s-a cam ofensat şi n-a avut un răspuns foarte concret.

CTG: Despre întrebările “La ce foloseşte matematica?” am mai vorbit. Poate merită totuşi accentuat şi aspectul realist ce se ascunde în spatele acestor întrebări. Foarte mulţi (actuali sau foşti elevi) simt într-adevăr că matematica pare să se preocupe mai mult de ea însăşi decât de elevi. Profesorii de matematică sunt de prea multe ori slujbaşi ai matematicii şi nu ai elevilor, aşa cum ar trebui de fapt să fie; sunt slujbaşi ai unei matematici despre care elevii în nici un caz nu simt că le-ar folosi; nu-i văd sensul şi le repugnă.

Desigur că şi elevii greşesc de multe ori atunci când consideră că “cea mai bună matematică este atunci când aceasta lipseşte cu desăvârşire”, dar această părere vine tocmai din faptul că elevul nu înţelege sensul celor ce se întâmplă la ora de matematică. În linii mari sunt trei direcţii în care este impinsă excesiv matematica, direcţii care-i uită pe majoritatea elevilor şi din cauza cărora aceştia se simt neglijaţi (în funcţie de rapiditatea cu care se instalează pubertatea la elevi, aceştia încep să “comenteze”, să pună întrebări de tipul evocat de Moise Guran). Cele trei direcţii care rup matematica de zi cu zi de majoritatea elevilor, respingându-i constant, sunt următoarele: 1) Rigurozitatea în sine a matematicii; 2) Excelenţa (olimpiade şi alte concursuri); 3) “Pregătirea pentru examene”. Să le analizăm pe rând (şi pe scurt, fiecare putând reprezenta în sine subiectul unui eseu extins).

1) Despre rigurozitatea matematicii am tot vorbit: la nivelul şcolar (gimnazial şi liceal) aceasta a fost ridicată la cote greu de suportat pentru elevi în cadrul reformei de la sfârşitul anilor ’70 (vedeţi postările în care am vorbit despre “Reforma uitată”). Rezultatul unor cursuri universitare despre predarea axiomatică au fost turnate mai întâi în liceu, apoi chiar în gimnaziu. Înţelegerea iniţială a matematicii, care trebuie să aibă loc în mod natural pe căi intuitive, a fost eliminată cu totul, elevii fiind puşi în situaţia de a lua contactul cu fenomenele studiate doar la nivel abstract teoretic “axiomatico-definiţionist”. Majoritatea covârşitoare a elevilor nu a înţeles şi nu a făcut faţă noii abordări, dar sistemul – printr-o atitudine de stat poliţienesc – nu a ţinut cont de realitatea din şcoli (timp de un sfert de secol, cam până la începutul anilor 2000). Acum, deşi noua programă de gimnaziu cere o revenire, profesorii la rândul lor nu înţeleg această cerinţă şi nu sunt dispuşi a părăsi “zona de comfort”, mai ales că dinspre “minister” nu vine clar o lămurire despre ce şi cum (nici inspectorii care ar trebui să fie vectorul principal de reformare, nici dânşii nu înţeleg foarte bine ce şi cum).

Abordarea excesiv de riguroasă îi alungă pe majoritatea elevilor, dar elevii se împart în două categorii din acest punct de vedere: a) majoritatea nu o înţeleg, iar pentru aceştia rigurozitatea devine o corvoadă imposibil de dus; b) cei puţini care o înţeleg şi îi fac faţă, o duc cumva, dar îi chinuie şi nu prea pricep la ce le ajută. Chiar şi acestora, de la un anumit nivel în sus rigurozitatea nu le foloseşte la nimic.

2) Preocuparea pentru excelenţă îi alungă pe toţi elevii care nu fac faţă problemelor şi aplicaţiilor mult prea grele pentru pregătirea olimpiadelor. Şcolile sau clasele unde se trage tare pentru excelenţă sunt pline şi de elevi care se chinuie în această atmosferă. În funcţie de posibilităţile familiilor, mulţi rezistă doar cu ajutorul orelor particulare; alţii au nevoie de psihiatru, iar totul se întâmplă în numele celor câţiva elevi beneficiari reali ai sistemului, care o vor lua clar pe o linie reală (studii ulterioare axate pe matematică). Ah, da, şi totul se întâmplă desigur şi în numele profesorului sau a şcolii, care este considerat/ă bun/ă.

Cât despre restul elevilor, al claselor sau chiar al şcolilor, toţi cei care nu intră în această goană după rezultate la olimpiade, sau nu-i fac faţă, sunt din start catalogaţi mai mult sau mai puţin slabi, rataţi, “ei nu sunt de succes” etc. Ce frustrare aduce acestă politică la nivelul întregii ţări? Nimeni nu discută oficial de acest aspect.

3) Singura direcţie ce se justifică cât de cât este învăţarea matematicii pentru examen, dar această motivaţie nu ţine la elevii claselor începătoare de ciclu (5-6, respectiv 9-10). Ca atare, deoarece la acest nivel profesorii nu ştiu altă tactică, matematica este introdusă şi abordată în stil clasic, adică prin metode specifice statului poliţienesc dictatorial autoritarist. De abia prin a 8-a, respectiv prin11-a elevii încep să înveţe cu adevărat pentru examen. Dar ce se întâmplă la clasele care nu au examen de matematică la BAC? Aceştia refuză cu totul matematică. Reacţia alergică este atât de brutală încât o mare parte a populaţiei şcolare nu apucă să beneficieze de factorul formator al matematicii, de acele aspecte prin care matematica le va folosii o viaţă întreagă: gândire logică, luarea unor decizii raţionale, capacitatea de a nu fi influenţabil etc. Fără să mai discutăm de utilitatea acestor cunoştinţe pentru cei care decid să mai rămână în sistem pentru încă un ciclu de învăţământ, de pildă într-o Politehnică. Exact acest al treilea aspect îl evocă Moise Guran în a doua idee a introducerii sale:

MG: Pe vremuri, pe vremuri mai golăneşti aşa, pe când eram eu în liceu iar Revoluţia ne făcuse să credem că democraţia înseamnă să stăm cu profii la fumat şi uneori şi prin baruri, un amic i-a pus aproximativ aceeaşi întrebare profesorului nostru de matematică: “Domnu’, dacă n-ar fi Bacalaureatul iar noi n-am fi la mate-fizică, ne-ar trebui la ceva matematica asta în viaţă?”, iar profesorul nostru de atunci, un gentelman de care îmi amintesc cu plăcere, deşi nu prea mă scotea din 5 şi 6, a zis cam aşa: “Da, tinere domn, ca să ştii şi tu câte pahare poţi să bei înainte să nu te mai poţi ridica de pe scaun”.

Desigur că întrebarea “La ce ne ajută matematica?” este una profund retorică. Până la momentul când elevul respectiv şi-a luat curajul să-şi întrebe profesorul/ profesoara, el s-a simţit din plin agresat de această materie, a auzit deja acasă sau în grupul de prieteni această întrebare, şi pentru el punerea întrebării este doar un act de sfidare a autorităţi în faţa celorlalţi. Ca urmare, orice răspuns just sau explicativ este în van. Doar un răspuns subtil înjositor poate să “salveze pielea”, adică onoarea dascălului în ochii colegilor: dacă răspunsul face faţă provocării, atunci cei din  “audienţă”vor ţine minte răspunsul (cum bine o dovedeşte Moise Guran): “ce l-a făcut pe ăla!”. În rest, puteţi să fiţi siguri: chiar pe nici un elev nu-l interesează la ce foloseşte matematica (şi asta nu din răutate; pur şi simplu, la vârstele şcolare nu este normal să te intereseze aşa ceva). CTG