Una din cele mai mari probleme ale predării matematicii – şi nu numai – o reprezintă adresarea profesorilor către elevi într-un limbaj mult prea elevat, înţesat de cuvinte sofisticate, străine lumii ce compune limbajul dobândit la nivel uzual şi folosit de elevi până la ora respectivă (mult prea elevat, dar şi prea repede elevat). Acest articol este scris ca un semnal de alarmă adresat tuturor acelora care exagerează în acest sens. Noi trebuie să conştientizăm că nu sunt puţini aceştia care folosesc un limbaj “extraterestru” pentru vocabularului majorităţii elevilor, care au chiar ca una din liniile ghidante în meseria de profesor să vorbească în acest mod.
Analizând lucrurile la nivelul diferitelor trepte de şcolarizare, plecând de sus putem constata următoarele. La nivelul facultăţii de matematică reprezintă o normalitate folosirea unui limbaj tehnic cât mai elevat şi mai sofisticat. Acolo sunt matematicienii între ei şi se pot potenţa cât doresc în această direcţie (la fel în orice altă facultate cu limbajul specific ştiinţelor respective). Coborând în treapta a doua a liceului, la clasele cu bacalaureat la matematică, te poţi aştepta ca elevii să fi dobândit deja arta însuşirii rapide a unor noi termeni de specialitate; coborând însă mai mult, la primele clase de liceu, se simte că la acestea este nevoie de “puţin tact” în introducerea noilor termeni. Cât despre clasele gimnaziale, care oricum au în componenţă elevi de toate nivelele şi toate orientările intelectuale, aici folosirea inadecvată şi prea incisivă a unui jargon de specialitate devine profund dăunătoare, acţionând distructiv în direcţia tuturor celor care nu se întâmplă să fie “matematicieni pur sânge”. Această afirmaţie capătă un nivel de profunzime maximală în primele două clase gimnaziale, acolo unde avem combinaţia dintre elevi mici (care majoritatea n-au trecut încă în stadiul de gândire operaţională formală), pe de-o parte, şi profesori specialişti de matematică în locul blândei învăţătoare (profesorii venind cu impulsul puternic de a-i pune cât mai repede “pe linia” matematicii pe cei mici).
Aceste afirmaţii ajung la stadiul acut mai ales când ne referim la introducerea elementelor de geometrie în clasele 5-6, aceasta fiind o materie cu totul nouă (99,99%) faţă de ce cunoştea elevul până în acel moment. Mai ales dacă analizăm felul în care începem geometria, anume prin introducerea unei liste foarte lungi de elemente noi ce reprezintă însă doar structura figurilor geometrice, “partea atomică” a acestora, plină de cuvinte noi pentru copii, înţelegem cât de dramatică şi disperată este percepută situaţia de către majoritatea elevilor. Din punct de vedere psihologic, noi ar trebui să plecăm de la pătrate, triunghiuri şi cercuri, elementele cunoscute elevilor, pe care să le disecăm încet şi să ajungem la componentele acestora, la segmente şi unghiuri, şi la relaţiile dintre ele. Dar nu, noi începem de la componente – care nu au nici cea mai mică relevanţă pentru elevi – pentru că doar aşa ştim să predăm geometria, aşa se predă această materie din punct de vedere riguros ştiinţific. În acest proces însă, pentru cei mai mulţi geometria reprezintă materie care luni la rând aduce doar un şir aparent nesfârşit de cuvinte noi – fără nici cea mai mică relevanţă pentru elevul obişnuit, vocabularul de specialitate crescând mult peste orice nivel de suportabilitate normal. Cât despre clasele primare, aici nu văd mari pericole în acest sens, deoarece este puţin probabil ca învăţătoarele să alunece în astfel de extreme ale vocabularului de specialitate.
Ca în paranteza de mai sus, trebuie spus că aceasta este situaţia în cazul oricărei ştiinţe (geometria reprezentând totuşi vârful de lance), doar că matematica este una dintre cele ce apar imediat din clasa a 5-a, alături de biologie, geografie şi istorie. În plus însă, dintre acestea matematica este singura care-şi poate justifica atitudinea “agresivă” în implementarea unui limbaj prea încărcat cu motivaţia examenului din finalul gimnaziului.
În general, fiecare materie are nevoie de jargonul ei de specialitate pentru a se exprima, iar în consecinţă copiii sunt practic bombardaţi cu cuvinte noi ce se schimbă de la o oră la alta într-un ritm de multe ori prea rapid, mult prea rapid (evident că şi religia se integrează în acest trend, doar că acolo măcar nu-i stres, acolo toţi primesc 10 din oficiu). Efectul psihologic rezultant este desigur faptul că mulţi elevi au tendinţa de “a nu mai auzi” cele spuse de profesori la diferitele ore, nici vorbă de a mai şi încerca să înţeleagă ce spun aceştia (cu trimitere evidentă spre dezvoltare de analfabetism funcţional dacă obiceiul nu este întrerupt în timp util prin trecerea elevului în faza de înţelegere).
Apoi, trebuie vorbit aici şi de cantitatea de cuvinte noi introduse “pe unitate de timp”. Un coleg a reuşit în urmă cu cca. 20 de ani să contabilizeze la o clasă de a 9-a în ziua cea mai densă a săptămânii, cumulat la toate materiile 142 de itemi noi (din câte ţin minte). Ne putem imagina câţi dintre aceşti itemi fuseseră termeni noi de specialitate. Părerea, impresia că odată definit, un astfel de termen este clar înţeles şi însuşit de către elevi este pur şi simplu utopică, iar aşteptarea ca ei să înveţe acasă noţiunile respective şi să le poată folosi automat începând de ora următoare, asta este una din cauzele faptului că elevii nu învaţă să gândească ci înţeleg prin învăţare doar simpla toceală. Astfel, cuvântul nou nu intră într-un vocabular natural al elevului, ci rămâne suspendat undeva între necunoaştere şi o folosire artificială, dar de fapt neînţeleasă. Eu simt aici că putem vorbi de o folosire de faţadă a acestor cuvinte, un fel de mascaradă de obicei neînţeleasă, de genul “la orele astea vorbim cu astfel de cuvinte”.
Uneori apar referiri la acest fenomen al limbajului prea sofisticat şi în alte părţi decât în procesul de învăţământ din şcoală. De pildă, în emisiunea Antrenorul părinţilor din data de 4 iunie 2023, Gaspar Gyorgi îi explică Mirelei Retegan următoarele: G.G. … oameni care veneau şi-mi spuneau: “Gaspar, e un pic ciudat felul în care vorbeşti” – pentru că atunci vorbeam mult mai mult în jargon de specialitate decât o fac acum – “dar, dincolo de asta, ce ajunge la mine este ca spui ceva important şi aş vrea să mă ajuţi să înţeleg un pic mai bine, aşa că te rog vorbeşte pe limba omului obişnuit, încearcă să-mi explici în aşa fel încât să-mi fie un pic mai uşor de înţeles”. M.R. … eu asta fac aici, îl ajut pe Gaspar să vorbească pe limba omului obişnuit. G.G. … ăsta e paradoxul psihologiei în România, că în facultate eşti învăţat să-ţi însuşeşti un limbaj de specialitate, iar după aceea, pentru a te înţelege cu oamenii trebuie să renunţi la acel limbaj de specialitate (urmăriţi înregistrarea https://www.youtube.com/watch?v=a2hqWYlXmAE între minutele 37:20 – 38:00). Da! Fără comentarii!
Folosirea unui limbaj inaccesibil este clar una din cauzele eşecului şcolii actuale din România, a procentajului uriaş de elevi cu analfabetism funcţional în toate direcţiile. Accesibilizarea limbajului duce evident la accesibilizarea mesajului transmis, dar pentru asta profesorii trebuie să conştientizeze că “soluţia problemei” este la ei şi să nu mai dea simplu “vina” pe elevi.
Desigur că nici evitarea introducerii termenilor noi nu este o soluţie viabilă pe durată; cu greu ar mai putea avea loc evoluţia elevilor pe drumul învăţării matematicii (practic a oricărei ştiinţe) fără cuvintele ce-i compun limbajul specific. Ca în orice domeniu, nici aici nu este bine a trece dintr-o extremă în cealaltă. La fel ca oriunde şi aici calea de mijloc este de obicei cea mai sănătoasă.
Profesorul care stăpâneşte “arta predării matematicii” ştie cum să introducă în limbaj un nou cuvânt, o nouă expresie, astfel încât să nu “îi şocheze” pe elevi, să nu îi repulsioneze. Mai ales în clasele 5-6 este important ca profesorul de matematică să ia în calcul frica de matematică cu care vin elevii din ciclul primar şi să încerce să preîntâmpine adâncirea lor în această stare.
Mi-a fost dat să cunosc o astfel de atitudine grijulie la profesori din Germania, la care am observat de-a lungul timpului expresia “triunghiurile cutare şi cutare sunt congruente, adică egale prin suprapunere“. Observăm cum folosirea termenului nou, străin limbajului uzual al copilului, este însoţit imediat în exprimarea adultului de “o traducere” mai accesibilă elevilor (pe germană termenul “deckungsgleich” înseamnă mai exact “egal prin acoperire” fiind şi mai apropiat în limbajul uzual decât traducerea mea “egal prin suprapunere“). În spaţiul de cultură în limba germană ideea este atât de împământenită încât şi dacă dăm spre căutare cuvântul “deckungsgleich”, toate adresele oferite pe net, inclusiv wikipedia.org, dau automat în text ambele “kongruent (deckungsgleich …)“.
Personal nu cred totuşi că ar fi sănătos să înlocuim definitiv, adică pe durată cuvântul “congruente” cu expresia “congruente, adică egale prin suprapunere” după modelul nemţilor, dar am preluat ideea că la început să folosesc expresia combinată, până când simt că elevii s-au obişnuit cu cuvântul “congruent” în cadrul lecţiei despre metoda triunghiurilor congruente (adică pentru o vreme, oarecum pe parcursul clasei a 6-a, până când am percepţia clară că elevii şi-au însuşit noţiunea).
Desigur, asta funcţionează doar cu condiţia să fi făcut înaintea lecţiei respective – măcar printr-o “poveste” descriptivă – analiza situaţiei de “egalitate prin suprapunere” prin constatarea că foile cu triunghiurile construite de doi elevii puse una peste cealaltă pe geamul clasei vor arăta prin transparenţă suprapunerea perfectă a celor două triunghiuri (construite pe aceleaşi date, de pildă prin cazul de construcţie LUL; asta este de fapt ideea introducerii acestora mai întâi sub formă de “cazuri de construcţie”, ducând deci la triunghiuri “egale prin suprapunere” numite apoi “congruente”, iar doar ulterior drept “cazuri de congruenţă” în cadrul unei noi metode de demonstraţie).
Legat de “exerciţiul” aici evocat, precizez că eu nu am mai făcut acest exerciţiu concret la clasă de peste 20 de ani – este şi greu de făcut, deoarece elevii desenează de obicei în caiet; ca să-l pot face ar trebui să le cer construcţia pe coli de hârtie separate şi de obicei nu consider să-mi iau acest timp. Făcându-l concret, aş avea garanţia că toţi elevii au priceput, dar nu acesta este obiectivul meu aici; oricum elevii slabi ai clasei nu vor beneficia de idee pentru că ei oricum nu vor învăţa cu adevărat metoda triunghiurilor congruente la demonstraţii (sau, poate greşesc?). Pe de altă parte, elevul mediu, elevii din blocul central al Clopotului lui Gauss, acesta îşi pot imagina exerciţiul, cu condiţia măcar să ne luăm 2-3 minute să il povestim, iar de aici mai departe vor putea conecta cu “imaginea” imaginată în acest moment (iar asta întăreşte capacitatea de imaginare a elevilor, mai ales în aceste vremuri când ei sunt obişnuiţi să vadă totul pe ecrane).
În mod similar, în cazul cuvintelor “complementare” sau “suplementare”, eu folosesc pentru început, pentru o vreme, măcar în apariţiile izolate din clasa a 6-a expresia dublată că “cele două unghiuri au împreună 180o, adică sunt suplementare” sau “unghiurile B şi C sunt complementare, adică au împreună 90o” (măcar din când în când, cel puţin la apariţii noi, când nu le-am folosit de mult). Apoi, trec destul de repede la folosirea curată, spunând simplu “complementare” sau “suplementare”, Important este să le acord elevilor timpul să se obişnuiască cu noile cuvinte, fără ca să apară în ei senzaţia că nu înţeleg ce vorbesc (probabil, mai reiau ideea de dublare descriptivă a cuvântului şi la primele apariţii din clasa a 7-a, dar apoi gata). CTG