Programa clasei a VII-a cuprinde de foarte mulţi ani (de prin 1998?) studiul complet al rădăcinii pătrate, prin aceasta înţelegând introducerea noţiunii, apoi extragerea rădăcinii, ideea de număr iraţional şi calculul algebric cu numere reale. Sunt prea multe etape cuprinse într-un singur capitol, astfel încât foarte mulţi elevi ajung bulversaţi şi nu înţeleg de fapt mai nimic. Aruncând o privire în străinătate observăm că peste tot în lume acest proces se întinde pe parcursul câtorva ani, fiind eşalonat în două mari faze: una, să-i spunem “aritmetică”, iar a doua – dacă aceasta mai apare – o fază “algebrică” (de obicei în liceu). Pentru înţelegerea noţiunii de rădăcină pătrată elevii au nevoie să petreacă în prima fază mult mai mult decât cele 2-3 ore alocate prin programă.
De foarte mulţi ani predau prima fază, cea aritmetică, într-o serie de lecţii după cum urmează. Aceste lecţii (de descoperit intuitiv cu elevii în clasă) se pot înţelege foarte uşor urmărind temele date din fişa de lucru anexată prezentei postări.
- Tabla pătratelor perfecte şi introducerea rădăcinii pătrate ca operaţie inversă la ridicarea la pătrat. La această metodă scriem pur şi simplu primele trei-patru coloane de pătrate perfecte (prima coloană 12=1, 22=4, …, 102=100; a doua coloană 112=121, …202=400; a treia coloană 212=441,…). Prima coloană este cunoscută, a doua coloană este de învăţat pe de rost. De obicei mă apuc să scriu şi tabla rădăcinii pătrate, adică forma “în oglindă”, dar după câţiva paşi concluzionăm toţi că de fapt nu are rost să ne mai ostenim, pentru că ne descurcăm cu prima variantă. Acest pas nefăcut, dar atins, este foarte important pentru că elevii conştientizează de fapt că ei pot gândi, că o treabă ciudată precum radicalul se bazează pe ceva foarte uşor, că radicalul este operaţia de probă a ridicării la pătrat, adică a înmulţirii unui număr cu sine. Ca temă de casă a acestei lecţii sunt exerciţiile 1, 2 şi 3 de pe fişă. Aceasta este prima metodă de extragere a rădăcinii pătrate, anume cu tabla pătratelor perfecte şi învăţarea rezultatelor pe de rost.
- Metoda găsirii intuitive a rădăcinii pătrate. Lecţia următoare poate începe cu comentariul despre rădăcina pătrată a lui 2500. Astfel, putem redacta o nouă coloană de pătrate perfecte, anume 102=100, 202=400, 302=900, … 902=8100, 1002=10000. Pe baza acestei noi liste putem deduce o a doua metodă de găsire a rădăcinii pătrate, una foarte intuitivă. Găsiţi pentru aceasta explicaţii în cadrul exerciţiului 4 de pe fişa de teme, dar şi în poza tablei de la lecţia respectivă. Pentru pasul al doilea al metodei trebuie să faceţi însă un studiu al evoluţiei ultimelor cifre a pătratelor pe tablă pătratelor perfecte din lecţia precedentă. Tema de casă a acestei lecţii cuprinde exerciţiile 4 şi 5, cu extindere la 6 şi 7. Această metodă îi ajută pe elevi să pătrundă foarte bine natura rădăcinii pătrate, deoarece îi obligă tot timpul la probă. Pentru că este o metodă în general necunoscută vă ofer şi poza tablei de la această lecţie:
- A treia metodă studiată este determinarea rădăcinii pătrate prin descompunerea în factori primi. Şi aceasta poate fi uşor dedusă împreună cu elevii – predare prin problematizare – pe baza analizei câtorva descompuneri a unor numere şi a pătratelor perfecte ale acestora. La întrebarea unor elevi despre ce se întâmplă dacă la descompunere apare un factor “singur”, răspunsul este simplu: în acest caz nu avem pătrat perfect şi pe acestea le vom studia mai târziu. Tema de casă la această lecţie constă în exerciţiul 8
- A patra metodă de calcul este cunoscutul algoritm de extragere a rădăcinii pătrate, legat de care aici trebuie să fac câteva observaţii metodologice. În această lecţie facem doar exemple care “ies exact”, adică cu radicali din pătrate perfecte (îi ajută pe elevii începători, dându-le siguranţă , respectiv bucuria rezultatului final în cazul calculului corect). Este foarte important ca să ajungem repede la exemple în care pasul al doilea să devină repetitiv, adică să luăm pătrate perfecte cu cel puţin 5-6 cifre. Cu cât numărul de sub radical este mai mare, cu atât metoda se înţelege mai bine. Tema acestei lecţii este exerciţiul 9.
- În a cincea oră luăm exerciţii “cu virgulă”, studiind rădăcina pătrată cu rezultate fracţii zecimale. Acestea sunt de două tipuri. În primul rând apar exemple ca în exerciţiul 10, anume rădăcini din fracţii zecimale “pătrate perfecte”, a căror mecanism se înţelege destul de repede, iar apoi se trece la extragerea rădăcinii din numere care nu sunt pătrate perfecte. Aici apare ideea de aproximaţie; tot aici sunt calculate cu 2-3-4 cifre zecimale rădăcinile lui 2, 3, 5 etc. Desigur că lecţia a 5-a se poate prelungi pe parcursul a 2-3 ore. În cadrul acestei lecţii scriem pe marginea paginii o listă cu rădăcinile pătrate ale numerelor naturale, cu razultatele scrise de la început ale radicalilor din pătrate perfecte; acum se vede foarte clar care este următoarea sarcină, anume calculul aproximativ al rădăcinilor numerelor nepătrate perfecte (2, 3, 5, 6, 7, 8, 10 etc.)
Cât rămânem cu elevii la nivelul aplicativ aritmetic, aceasta este o altă discuţie şi ţine de felul cum înţelegem gândirea copilului. Eu personal încerc să rămân cu clasa a VII-a în această fază măcar câteva săptămâni. Concret, în ultimii ani am trecut la calcule algebrice cu numere reale de-abia în semestrul II. Pe de altă parte, această etapă de introducere a rădăcinii pătrate ar putea fi inclusă lejer deja în clasa a VI-a, aşa cum era înainte de a fi aduse în clasa a VII-a la finalul anilor ’90.
Titus Grigorovici