Proporţionalitate şi asemănare – prima lecţie

Foarte multe lecţii sau chiar capitole sunt de obicei aranjate conform criteriilor rigurozităţii matematice ştiinţifice. Nevoile elevilor – aflaţi la primul contact cu materia – sunt însă de obicei altele, deseori opuse, acestea ţinând mai degrabă de criterii psihologice. Astfel, linia cea mai sănătoasă, recomandată de către toţi specialiştii în didactică, este drumul de la concret la abstract, de la cunoscut la nou, de la ceea ce elevul cunoaşte şi stăpâneşte la ceea ce urmează a fi prezentat ca material nou.

Capitolul despre proporţionalitate şi asemănare în geometrie este un exemplu perfect în acest sens. Plec de la premiza că este cunoscută cititorilor ordinea lecţiilor din manuale. De prin 2000 eu predau însă la începutul acestui capitol o lecţie de prezentare în care parcursul este unul profund intuitiv, plecând de la o problemă cunoscută din clasa a VI-a, şi ajungând la teoremele capitolului nou în urma unui proces de abstractizare în paşi clari. Pasul de la o etapă la următoarea se face sub întrebarea “la ce putem renunţa din forma precedentă?”. Astfel, la primul pas (1→2) am renunţat la ciobănaş, la oiţe, dar şi la planul orizontal, care ne dădea unghiul drept, total nerelevant pentru studiul nostru. La al doilea pas (2→3) am renunţat la elementele din natură, rămânând cu totul în domeniul geometriei. Următorul pas (3→4), la fel ca la congruenţa triunghiurilor (unde acestea erau constatate ca “egale prin suprapunere”), face o încercare de suprapunere. Desigur că nu funcţionează, dar încercămsuprapunerea măcar într-un colţ, adică pe un unghi comun. În acest caz “se pierd” şi congruenţele de unghiuri, două dintre aceste relaţii fiind înlocuite cu paralelismul a două laturi corespunzătoare (desigur, cu sprijinul teoriei unghiurilor alterne interne). În pasul final (4→5) se renunţă şi la “ultimul sprijin” care ne-a însoţit în precedentele etape ca o schelă de nădejde, anume culoarea (verde de la brad, respectiv roşu de la stâlp). Cu ce rămânem la sfârşit? Cu o proporţie de patru segmente. În acest fel am sintetizat esenţa acestui capitol, anume manifestarea proporţiei unor segmente în geometrie.

Un aspect metodic merită a fi relevat aici: ne plângem de multe ori că elevii “nu învaţă”. Procedând însă după cum am arătat, vedem cum elevii învaţă aranjarea segmentelor proporţionale prin repetarea succesivă chiar în cadrul lecţiei de la clasă. Desigur că scrierea acestora cu cele două culori ale problemei încetineşte parcursul lecţiei, dar vă garantez că creşte vizibil înţelegerea fenomenului de către elevi. Practic, elevii au scris proporţionalitatea segmentelor în câteva forme (primele trei identice dar pe situaţii trensformate, ultimele două apoi tranformate profund).

Merită să precizez în acest context că în Germania ultima situaţie (numită la noi Teorema lui Thales) este cuprinsă în toate formele sale sub titlul de Teoremele de proporţionalitate. Nu există nici măcar un indiciu istoric cum că Thales ar fi dat o astfel de teoremă, ci doar povestea despre stabilirea înălţimii piramidei; aceasta însă presupune exact situaţia de început din problema clasei a VI-a cu stabilirea înălţimii bradului.

După această lecţie introductivă vin în ordinea cunoscută lecţiile din programă luate una câte una: Teorema lui Thales, Teorema fundamentală a asemănării, respectiv Cazurile de asemănare ale triunghiurilor, fiecare cu paşii cunoscuţi.

Înainte de a vă prezenta pozele tablei cu această lecţie inedită trebuie să accentuez atenţia ce o dau părţii estetice, cum ar fi faptul că cele cinci faze trebuie cuprinse, sub forma unui tablou, pe două pagini alăturate ale caietului studenţesc de matematică (primele două tablouri formând “actul I” apar pe pagina din stânga, respectiv ultimele trei tablouri formând “actul II” pe pagina din dreapta). Astfel, lecţia ne apare ca o adevărată “operă”, lăsând impresii puternice în sufletul elevilor. Desigur că şi pe tablă scrisă de profesor întreaga lecţie apare unitar, fără ştersături, elevii putând în orice moment privi în urmă la procesul de transformare a formelor geometrice şi a scrierii corespunzătoare.

Prof. C. Titus Grigorovici

P.S. Lecturând din Descoperirea în matematică a lui George Pólya, pasajul în care acesta vorbeşte despre cât sunt de necesare sau nu demonstraţile de la un caz la altul, de la o vârstă la alta sau de la un nivel de maturitate matematică la altul, în funcţie de elev (pag 324-326), mi-am dat seama că trebuie să fac aici o anumită precizare.

La actualii elevi de clasa a VII-a lecţia prezentată în această postare ţine în mod intuitiv loc de demonstraţie pentru Teorema fundamentală a asemănării, pentru Teorema lui Thales, în forma directă sau reciprocă a acestora, dar şi pentru cazurile de asemănare a triunghiurilor. Oricum, demonstrarea Teoremei lui Thales în cazul iraţional nu este posibilă la nivelul gimnazial, dar de fapt nici măcar în cazul raţional nu mai trebuie să ne obosim a o explica. Astfel, pot fi abandonate din predare diferite elemente ce îi sperie pe elevi la începutul acesti capitol, cum ar fi teorema paralelelor echidistante.

Din punctul meu de vedere, Teorema fundamentală a asemănării, Teorema lui Thales, în forma directă sau reciprocă, dar şi cazurile de asemănare a triunghiurilor se învaţă prin înţelegere intuitivă şi se aplică simplu, ca atare, în rezolvări de probleme sau în demonstraţii.

Desigur că acest Post Scriptum deschide larg poarta pentru apariţia unei întrebări năucitoare: De fapt, trebuie să demonstrăm teoremele din geometria şcolară sau nu? Poate întrebarea ar trebui pusă, mai exact, astfel: Care teoreme ar trebui demonstrate şi care nu? La această întrebare, eu aş răspunde cu o contraîntrebare: Din punct de vedere al elevului – al posibilităţilor sale de înţelegere, dar şi al nevoilor sale de dezvoltare intelectuală – care demonstraţii ar trebui parcurse şi care omise? (omise simplu sau înlocuite cu diverse justificări intuitive ca în exemplul de mai sus) Consider însă că aceste întrebări pot reprezenta subiectul pentru un nou eseu, despre care mă voi preocupa în curând.

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInEmail this to someone

Leave a Reply

Your email address will not be published. Required fields are marked *

Solve : *
20 − 5 =