Planimetria şi Stereometria – (2) Primii paşi în clasa a 5-a

În prima parte a acestui eseu am luat în discuţie planimetria şi sterometria, dar am încercat şi să pregătesc contextul mai larg legat de problema diferenţelor majore între domeniul acestora şi domeniul demonstraţiei geometrice. Să reluăm pentru început ce-i cu aceste denumiri ciudate, rar folosite în România.

Planimetria se referă la toate acele componente ce se referă la măsurarea (în general metric) a figurilor geometrice plane. Concret, este vorba de determinarea lungimilor în vederea calculului de perimetre şi arii (2D). Stereometria, în mod similar, se referă la măsurarea spaţiului, adică la determinarea ariilor şi volumelor diferitelor corpuri geometrice (3D).

Atât planimetria cât şi sterometria apar clar începând de la sfârşitul clasei a 5-a, prin unităţile de măsură corespunzătoare, motorul preocupaţional reprezentându-l aplicaţiile la fracţiile zecimale. În acest moment se simte clar cât este de greu a porni o nouă materie, dacă ai pretenţia de a preda cât de cât riguros. La unităţile pentru arie trebuie să te bazezi pe faptul că elevii ştiu din clasele mici ce-i acela un pătrat, dar acesta nu a fost predate riguros axiomatic, ci a fost cunoscut doar în mod intuitiv (nu intru aici în procesul prin care un copil poate înţelege ce-i acela un pătrat sau un dreptunghi, dar strădania din clasa a 5-a în noile manual nu este deosebit de reuşită)). La cub lucrurile stau similar, cu diferenţa că spre deosebire de pătrat ce poate fi schiţat, desenat intuitiv, cubul este mult mai greu de prezentat în desen de către copil.

Astfel, este absolut normal ca preocuparea principală să cadă pe arii, volumul fiind abordat intuitiv, în mod similar cu aria (mutatul virgulei în sistem zecimal), şi căutată cât de repede conexiunea cu capacitatea (legăturile dintre litraj şi cubaj). Figura de bază la arie o reprezintă dreptunghiul şi, în mod similar, corpul de bază la volum îl reprezintă paralelipipedul dreptunghic. Pătratul apare la arii în două poziţii diferite, la început ca unitate de măsură, iar apoi din nou ca un caz particular de dreptunghi. Repet şi precizez: principiul de bază pentru formulele de arie îl reprezintă dreptunghiul (de exemplu, eu consider de fiecare dată un hol la care se pun patru rânduri de câte şapte plăci de gresie, deci sunt necesare cu totul  de plăci); formula de arie a pătratului reprezintă doar un caz particular al celei a dreptunghiului. Lumea profesorilor nu este cu adevărat conştientă de această duplicitate a pătratului (se vede acest fapt din felul cum se predă fizic sau în cărţi). Acelaşi fenomen îl întâlnim şi la volum, în “jocul” dintre cub şi paralelipipedul dreptunghic.

Înainte de a merge mai departe în eseul despre importanţa planimetriei şi a stereometriei în şcoli, îmi permit să mai zăbovesc puţin “pe aici”, fiind prea aproape de câteva idei metodico-didactice, încât să îmi permit să le ratez.

*

Legat de momentul introducerii ariei şi a volumului, respectiv a analogiei dintre modul de a gândi în cele două situaţii, în primul rând ar fi de atenţionat asupra faptului că amândouă măsoară mărimea interiorului, aria = interiorul unei figure plane (adică în 2D), pe când volumul = interiorul unui corp în spaţiu (adică în 3D). Acest aspect a fost observat în urmă cu mulţi ani (mai exact în toamna lui 2003) de către un elev dintre cei mai slabi la matematică în clasa respectivă, care a ridicat brusc mâna în timpul orei despre cub în clasa a 8-a, în momentul când lămurisem formula pentru aria totală: dar aria aia dinăuntru când o facem? Nefiind un elev tare pasionat de matematică, acesta a uitat că în clasa a 5-a vorbisem deja de volum; fiind însă un om foarte practic, acesta a sesizat imediat că în spaţiu mai este ceva similar cu situaţia ariei din plan. Am cuprins această idee în următoarea lecţie de prezentare generală a celor trei cuvinte “de calculat” la clasa a 5-a , perimetru, arie şi volum.

Un al doilea aspect ce merită evidenţiat aici se referă la folosirea cuvintelor pătrat respectiv cub pentru puterile a doua şi a treia. Eu studiez cu elevii în semestrul I al clasei a 5-a numerele figurate pe bază de punctuleţe (în plan, respective cu biluţe în spaţiu) şi lămuresc acolo de unde vine denumirea de “trei la pătrat” pentru 32 (la început chiar folosesc o scriere de felul 3□ pentru numere pătrate, iar prin analogie 3Δ pentru numere triunghiulare). Dacă nu intraţi în acest subiect în semestrul I, în apropierea momentului când predaţi puterile, atunci este neapărat necesar de a puncta sursa acestor denumiri ciudate atunci când studiaţi în finalul clasei a 5-a aria pătratului, respectiv volumul cubului.

Pentru un al treilea aspect, ce merită aici evidenţiat, trebuie să vă pregătiţi de o nouă critică dură la adresa matematicii şcolare din România. Figurile de bază în planimetrie (2D) sunt pătratul şi dreptunghiul, denumirile acestora fiind amândouă uşor de folosit şi în afara matematicii (putem vorbi liniştit despre o masă pătrată sau un teren dreptunghiular etc.). Corpurile de bază în stereometrie (adică în spaţiu, deci în 3D) sunt cubul şi paralelipipedul dreptunghic. Sesizaţi problema?

Dacă ne este uşor să vorbim despre cubuleţe de zahăr (care de obicei nici nu prea sunt chiar cuburi), ne va fi greu să vorbim despre o cutie paralelipiped-dreptunghică!!! Uau! Cei aia? Aici, în strădania de a găsi un echilibru între corectitudinea teoretică şi o exprimare cât de cât folosibilă din punct de vedere practic, mulţi vorbesc despre o cutie paralelipipedică. Este clar însă că această exprimare este greşită, chiar şi numai dacă ne gândim că, făcând drumul analogiei invers, ar trebui să vorbim despre o masă paralelogramică!!! Şi în geometrie poate fi făcută această analogie: astfel, în geometria plană ar trebui să vorbim despre un paralelogram dreptunghic!!!, nu despre un dreptunghi (la fel cum vorbim despre un triunghi dreptunghic sau despre un trapez dreptunghic). Făcând din nou drumul analogiei de la 2D la 3D, de vreme ce vorbim de un teren dreptunghiular, ar trebui să putem vorbi de o cutie dreptunghipedică!!!

Simţim aici că suntem împinşi într-o situaţie de blocaj: matematicienii folosesc pentru corpul care este cel mai des întâlnit la ora actuală o denumire total nefolosibilă din punct de vedere practic, forţându-ne la exprimări incorecte de tipul: 99,99% din tot ce se ambalează vine ambalat într-o cutie “dreptunghiulară”. Eu am sesizat acest aspect pentru că în limba germană cunosc o denumire mult mai lesne de folosit. Astfel, nemţii au în 2D denumirile Quadrat (pătrat) şi Rechteck (dreptunghi), iar în 3D denumirile Würfel (pentru cub), respectiv Quader (pentru paralelipipedul dreptunghic). Este evident că denumirea nemţească este mai uşor de folosit şi în situaţii practice, în afara matematicii, fiind mult mai scurtă decât cea prezentată în şcolile româneşti.

Pentru cei care vor susţine că asta e, n-ai ce-i face, rigurozitatea în matematică primează, acestora le-aş răspunde că există aici şi o clară doză de răutate, un soi de “bullying ştiinţific”. Cum îmi susţin un astfel de punct de vedere? Păi, fenomenul continuă prin seturile de probleme, din manuale sau culegeri, dar şi în prin alte exemple. Apar tot mai des exprimări de felul: “o prismă dreaptă cu baza pătrat” în loc de oficiala “o prismă patrulateră regulată”, sau “o piramidă triunghiulară regulată cu muchia laterală egală cu muchia bazei” în loc de “tetraedrul regulat”. Una din cele mai mari răutăţi întâlnite în ultimii ani a fost expresia “cubul PIRAMIDĂ”.

Dar să ne rezumăm doar la exemplul cu prisma dreaptă. Pentru ca elevii să înţeleagă ce-i aia o prismă dreaptă, ar trebui să le explicăm cum este o prismă care nu e dreaptă, adică să le povestim de prisma oblică, dar şi să le dăm exemple de prismă dreaptă dar neregulată. Toate acestea sunt însă abuzuri la adresa elevului de rând, care este constant înjosit că nu ştie cutare sau cutare lucru. Aceste abuzuri ar trebui interzise de către organizatorii materiei de predate, de vreme ce profesorimea, prin redactorii de manual sau auxiliare, nu se poate stăpâni să nu facă tot timpul acest bullying ştiinţific la adresa elevilor de rând.

Revenind la exemple mai paşnice, am observant de-a lungul anilor că doar noi românii folosim “tetraedru regulat”, toată lumea folosind simplul “tetraedru” pentru corpul perfect regulat; tot felul de alte tetraedre nu se studiază în materia pentru oameni obişnuiţi în şcolile din vest (pentru situaţiile special, adică la studierea unor tetraedre care nu sunt regulate, mă gândesc că ei le descriu concret în situaţia respectivă).

Ce-i de făcut? O posibilitate ar fi reintroducerea obligatorie, atât prin programa naţională cât şi prin manualele oficiale, a unei vechi denumiri, anume cea de cuboid. Desigur că mulţi ar sări în sus “ca o bombă americană” la aşa o inepţie. S-a mai încercat acest lucru, dar destul de timid spre sfârşitul anilor ’90, pe vremea introducerii primului Examen de Capacitate, dar mişcarea a fost destul de firavă şi a murit în faşă. O variantă de compromis între cele două extreme (rigurozitatea teoretică şi accesibilitatea practică a denumirii) am găsit-o la străini: astfel, nemţii folosesc uneori în predare, când vorbesc despre cub, concomitent două denumiri sinonime “Würfel oder Cubus” (”zar sau cub”; cuvântul Würfel este folosit atât pentru cub cât şi pentru zar; nemţii folosesc mai rar şi denumirea Cubus preluată din cultura renascentistă care s-a desfăşurat iniţial preponderent în latină).

În acelaşi fel nemţii mai folosesc deseori două denumiri sinonime împreună şi când vorbesc despre congruenţă: astfel, de multe ori profesorii germani folosesc expresia dublată “congruent sau egal prin suprapunere” (în germană:”congruent oder deckungsgleich”). Ei folosesc dubla denumire la început, până când se asigură că auditoriul şi-a amintit de denumirea teoretică, după care le folosesc liniştit alternativ, când pe una, când pe cealaltă. La fel am putea preda şi noi despre “paralelipipedul dreptunghic sau cuboidul”. Dacă apoi am folosi în probleme alternativ cele două denumiri, când una când cealaltă, sau uneori împreună, am putea da drumul oficial şi folosirii în viaţa extra-matematică a unei denumiri mai practice, astfel aceasta fiind recunoscută drept corectă teoretic. Atenţionez că aici vorbesc oricum de un proces de lungă durată (10-20 ani).

Desigur că există şi o altă variantă, anume acea a inventării unui nou cuvânt pentru acest corp atât de răspândit în lumea actuală. De pildă, am putea introduce denumirea de “dreptunghioid”. Expresia “o cutie dreptunghioidă” nu ar fi cu nimic mai complicată decât expresia “o cutie paralelipipedică”. Se pot găsi însă şi alte denumiri, dar problema este ca să fie acceptată existenţa acestei gafe de proporţii între lumea matematică şi lumea de zi cu zi, cât şi să se caute soluţii de rezolvare din partea oficialităţilor.

Doresc însă să scot în evidenţă şi un alt aspect al acestei stupide situaţii, anume ruptura dură existentă în societatea românească între poporul de rând şi specialiştii dintr-un domeniu. Aceştia din urmă s-au obişnuit să-şi impună un limbaj de specialitate îngâmfat, “cu nasul pe sus”, forţând plebea la o stare de înjosire lingvistică prin care să se simtă incapabili. La rândul lor, oameni de rând învaţă din această stare de îngâmfare teoreticistă a specialiştilor doar să nu-i respecte, să nu-i creadă, creându-şi o lume separată a lor, la nivelul lor de incultură. Ne-am mirat apoi, în perioada din urmă, de ce mare parte a poporului român nu-i crede, nu-i înţelege şi nu-i ia în seamă pe specialişti, atunci când aceştia ne vorbesc despre pericolul reprezentat de Covid 19 şi “se dau de ceasul morţii” rugându-ne să păstrăm distanţarea fizică şi socială. Glumind şi parafrazându-l pe Cornel Udrea (efectul razelor de lună asupra galoşilor de gumă), am putea vorbi aici sub titlul “paralelipipedul dreptunghic şi pandemia de Coronavirus la români”. Constantin Titus Grigorovici

Leave a Reply

Your email address will not be published. Required fields are marked *

Solve : *
22 ⁄ 11 =