Prezentare de carte: Anii de aur ai cărților despre matematică

În ultimii 20 ani am putut fi martorii unui curent de gândire de excepţie care s-a manifestat prin apariţia unui număr mare de cărţi despre fenomenul matematic şi dezvoltarea matematicii, curent deosebit de efervescent, peste media anilor precedenţi. Au apărut în aceşti ani cărţi oarecum beletristice despre lumea matematicii, cu iz de popularizare a ştiinţei, cărţi ce pot fi lecturate de către orice persoană ce îndrăgeşte matematica (având amintiri pozitive de la orele de matematică din şcoală). Unele chiar sunt scrise nu de către matematicieni pur sânge, ci de către ingineri, ei arătând pentru omul de rând “cum gândesc această subspecie separată de oameni, numiţi matematicieni”.

În acest sens cărţile amintite sunt deosebit de importante pentru profesorul de matematică preuniversitară: ele ne învaţă cum să coborâm din înaltele sfere ale matematicii, jos pe pământul oamenilor de rând cu care trebuie să avem un contact real. Or, dacă le vorbim de prea sus, mult prea abstract şi teoretic, cei mai mulţi “nu ne mai aud”, adică nu ne mai înţeleg.

Un alt motiv pentru care profesorii ar trebui să studieze aceste cărţi îl reprezintă multitudinea de poveşti despre diferite momente din istoria matematicii. Cu acestea ne putem înfrumuseţa orele, prezentându-le elevilor matematica studiată mult mai umană.

Un al treilea motiv pentru lecturarea acestor cărţi îl reprezintă posibilitatea găsirii unor teme pentru opţionale. Noi am generat în acest fel un curs despre codificări deosebit de apreciat de elevii claselor mari de liceu, mai ales cei de la profilul uman.

Un al patrulea motiv pentru studiul unora din aceste cărţi este că ele ne deschid ochii în privinţa unor greşeli pedagogice majore ce ne sunt impuse prin programe şi manuale. Elevii vor înţelege uneori mult mai bine dacă le prezentăm ideile în forma apariţiei lor istorice, nu în forma refăcută acedemic; desigur că acest aspect nu este valabil întotdeauna, existând şi exemple în care “te apucă durerea de cap” sau eventual “te pufneşte râsul” când afli cum s-au chinuit iniţiatorii unor domenii matematice.

În eseul de faţă nu doresc să prezint în mod special vreuna din aceste cărţi, ci curentul în sine care s-a manifestat de fapt vreme de cca. 10 ani, în intervalul 1997 – 2007, începând cu Marea Teoremă a lui Fermat a lui Simon Singh şi încheindu-se în linii mari cu Îmblânzirea infinitului: povestea matematicii a lui Ian Stewart (cca. 12 ani în traducerile româneşti, în intervalul 2000 – 2011).

Iată în continuare lista cărţilor pe care am apucat noi să le găsim prin librăriile clujene în toţi aceşti ani (la finalul fiecărui titlu de carte am pus anul apariţiei româneşti şi în paranteză anul apariţiei originale în limba engleză).

Purtătorul curentului a fost desigur Editura HUMANITAS:

Simon Singh – Marea teoremă a lui Fermat 2000 (1997)*

Mario Livio – Secţiunea de aur, povestea lui phi …2005 (2002)*

Simon Singh – Cartea codurilor, istoria secretă …2005 (1999)*

Ian Stewart – Numerele naturii 2006 (1995)

Gale E. Christianson – Newton (seria Maeştrii Spiritului) 2006 (2005)

Charles Seife – Zero, biografia unei idei periculoase 2007 (2000)

Mario Livio– Ecuaţia care n-a putut fi rezolvată 2007 (2005)

Clifford A. Pickover – Banda lui Möbius 2007 (2006)

John D. Barrow – Cartea infinitului, Scurtă introducere…2008 (2005)

Ian Stewart – De ce Frumuseţea este Adevărul 2010 (2007)*

Keith Devlin – Partida neterminată, Pascal, Fermat şi scrisoarea…2010 (2008)*

Ian Stewart – Îmblânzirea infinitului, Povestea matematicii 2011 (2007)*

Mario Livio – Este Dumnezeu matematician? 2011 (2009)

David Berlinski – Unu, Doi, Trei, Matematica absolut elementară 2013 (2011)

Curentul a fost prefigurat în mod ciudat de către Editura HUMANITAS cu romanul:

Apostolos Doxiadis – Unchiul Petros şi Conjectura lui Goldbach 2003 (?)*

Această carte este absolut fabuloasă, fiind o ficţiune ce descrie incredibil de bine starea de matematician. Cei care s-au luptat cu ideile în matematică o vor savura din plin.

Câteva cărţi deosebite despre matematică au apărut şi la Editura Theta:

Paul J. Nahin – O poveste imaginară, Istoria numărului 2000 (1998)*

Keith Nevlin – Vârsta de aur a matematicii 2001 (1988)

Eli Maor – e Povestea unui număr 2006 (1998)

Eli Maor – Splendorile trigonometriei 2007 (1998)

Perechea lucrării lui John D. Barrow de mai sus a apărut la Editura Tehnică:

John D. Barrow – Mic tratat despre nimic 2006 (2000)

O poveste deosebit de romanţată a apărut la Editura NEMIRA:

Amir D. Aczel – Însemnările secrete ale lui Descartes 2008 (2005)*

O colecţie de articole foarte frumoase am găsit şi la Editura CADMOS:

Ion Ionescu – Povestiri ştiinţifice 2008 (după articole din 1941)

Ca supliment la Săptămâna Financiară a apărut la Editura LITERA:

Laurent Joffrin – Istoria Codurilor Secrete 2010 (2009), un rezumat cu completări la lucrarea lui Simon Singh (în opţionalul despre codificări, pe lângă aceste două lucrări am folosit şi exemplele de criptare din renumitul roman al lui Dan Brown Codul lui Da Vinci publicat în 2007 la Editura RAO).

Pentru cei ce ar dori să pornească în lecturarea acestor cărţi, am ataşat câte o steluţă – desigur subiectivă – preferatelor noastre, rezistând cu greu tentaţiei de a le ordona într-un top al celor mai….

P.S. Un regret uriaş este faptul că, datorită cantităţii uriaşe de hârţogărie birocratică zilnică şi cursuri inutile pentru ciudatele puncte obligatorii, profesorii de matematică nici nu prea au când să mai citească toate aceste cărţi (cărţi din care s-ar perfecţiona cu adevărat). Şi să fim lămuriţi: lista cărţilor prezentată mai sus nu are pretenţia de a fi completă, nici în sensul lucrărilor traduse în limba română, nici în sensul general, al lucrările la nivel internaţional.

12 dec. 2015

Mariana Grigorovici

Titus Grigorovici

Prezentare de carte: Eugen Rusu – Problematizare și probleme în matematica școlară

De la începutul trebuie precizat că această carte ar trebui ridicată la rangul de “biblie a profesorului de matematică”. Orice profesor ar trebui să aibă un exemplar din aceasta, iar cartea ar trebui să fie la a “nu-ştiu-câta” ediţie. Din păcate lucrurile nu stau deloc aşa.

Să o luăm ordonat: lucrarea este apărută în anul 1978 la Editura didactică şi pedagogică, deci nu poate fi căutată decât în anticariate sau biblioteci.

Despre profesorul Eugen Rusu nu ştiu prea multe date. Pe Wikipedia există doar o menţionare a sa într-o listă a autorilor de manuale de matematică din România. Într-adevăr, numele său apare ca unic autor al unor manuale gimnaziale de aritmetică şi algebră din anii ’70 (manualele din care a învăţat generaţia mea). În lista bibliografică a cărţii despre problematizare apar o serie de alte şapte lucrări de metodică publicate în perioada 1957 – 1972. În subsolul paginii 62 apare chiar următoarea observaţie: Un astfel de manual am alcătuit în 1938, el a fost aprobat de Minister, dar iminenţa războiului a împiedicat tipărirea lui (este vorba despre un manual de geometrie analitică). După ’78 numele său nu mai apare ca autor; putem deci concluziona liniştiţi că lucrarea despre problematizare este “testamentul metodico-didactic” al profesorului Eugen Rusu.

Ajungând la titlul lucrării, acesta este clar prea lung; o formă de tipul “Problematizarea în matematică” sau eventual “Problematizarea ca metodă de predare a matematicii” ar fi un titlu mult mai potrivit.

O prezentare ordonată a conţinutului cărţii ar fi greu de făcut, iar cuprinsul nu dezvăluie mai nimic din nestematele ascunse în text sau printre rânduri. Cuprinsul este oficial şi serios, fără a oferi vreo impresie despre marea bucurie a “artei predării matematicii prin problematizare” ce se regăseşte în paginile acestei lucrări. Redând doar pasajele ce m-au entuziasmat la o primă lectură, şi ar trebui să citez cel puţin o treime din carte.

Ca urmare voi recurge la câteva citate cu gândul declarat de a vă trezi interesul pentru achiziţionarea şi lecturarea acestei cărţi.

… înainte de război…la matematică a existat o tendinţă foarte activă de a realiza …lecţii în care materia era transformată în probleme de cercetare…Numai profesorii slab pregătiţi făceau lecţii expozitive; se sileau să ţină minte şi să reproducă un text…(pag.6).

Distingem trei aspecte principale ale matematicii: 1) matematica euristică; 2) matematica – sistem logic; 3) matematica aplicată (pag.12). În continuare urmează pe faţă o pledoarie a părţii euristice şi a intuiţiei; iată aici un citat din J. Hadamard: “Obiectul rigoarei matematice este să întărească şi să legitimeze cuceririle intuiţiei”(pag.13).

Obiectivele noastre principale rămân: a face pe elev să resimtă plăcerea de a descoperi implicaţii logice; a-l ajuta să-şi întărească gândirea investigatoare şi gândirea logică – prin exercitarea ei în condiţii favorabile (pag. 60).

…În acest fel se fixează în memorie formula în sine, fără justificarea ei – chiar şi când aceasta este foarte simplă….Dacă însă s-a procedat prin problematizare, formulele se reţin prin memorare raţională, singura admisibilă în matematică, adică împreună cu procedeul prin care au fost descoperite; în acest caz nu mai este nevoie de prea multe exerciţii de fixare, activitatea este conştientă, nu mecanică. Aceasta este o superioritate clară a problematizării (pag. 64-65).

Dacă am împărţi conţinutul lecţiilor de geometrie în: 1) chestiuni pe care “le explică” profesorul; 2) chestiuni pe care le descoperă elevul călăuzit de întrebările profesorului şi 3) chestiuni pe care le descoperă elevul necălăuzit, am vedea că în 1) pot rămâne foarte puţine lucruri (pag.66).

Lăsând la o parte stabilirea unui vocabular – care este sarcina profesorului sau a manualului – restul activităţii, tot restul intră în atribuţia gândirii elevului – de la caz la caz cu sau fără călăuzirea profesorului. Din acest punct de vedere, nu trebuie să facem distincţie între teoreme şi probleme. În învăţământul informativ – instituit încă de la Euclid care, deşi plecând de la o intenţie pedagogică s-a dovedit a fi cel mai chinuitor pedagog, de-a lungul veacurilor – distincţia între teoreme şi probleme există. Teoremele sunt scrise: intăi enunţul, apoi demonstraţia – fără nici o preocupare pentru procesul găsirii lor – şi se învaţă; exerciţiile şi problemele se fac. În învăţământul formativ, distincţia se estompează sau se şterge complet. Ca mod de tratare, nu trebuie să existe deosebire (pag.67).

Cred că nici tabla înmulţirii… nu trebuie învăţată pur şi simplu pe dinafară. Acest “pe dinafară” trebuie întâi să se coacă “pe dinăuntru”. Dacă întreb un copil de clasa I cât fac 4 cu 3 şi acesta răspunde prompt şi sigur şapte, am o îndoială. Dacă îşi ascunde degetuţele la spate – ca să nu văd eu ce face – şi caută să pună alături 4 de la o mână şi 3 de la alta, îl simt că este pe drumul matematic autentic … pentru că el caută prin mijloace proprii să se convingă … Tabla înmulţirii trebuie ştiută pe dinafară nu învăţată pe dinafară (pag.79-80).

Închei această spicuire cu un citat din G. Glaeser oferit la începutul capitolului VI: Scopul meu este de a deschide discuţia şi a pune probleme, în speranţa de a stimula pe cititor să regândească bazele funcţiei de educator (pag.97).

*

Pentru cei care sunt nedumeriţi în urma citatelor de mai sus, neştiind ce să înţeleagă clar din ideea de problematizare, daţi-mi voie să fac o scurtă prezentare a acestei teme.

Problematizarea este procesul prin care elevul este “obligat” să gândească, nu prin frica de note, ci prin trezirea curiozităţii. Activarea gândirii prin problematizare este cea mai sănătoasă şi aceasta poate fi făcută atât la diferite probleme (inclusiv la demonstrarea unor teoreme privite ca problemă în sine), cât şi la generarea anumitor părţi de lecţie, posibilă pe baza unor cunoştinţe deja însuşite (sau nu!).

Pentru ca gândirea elevului să fie activată cu adevărat trebuie doar ca pasul cerut elevilor să fie posibil de făcut de către mintea acestuia, adică cerinţa să fie adaptată elevilor de faţă. Desigur că dacă întrebarea este măsurată doar după capacităţile maxime ale elevului/grupului cel mai bun din clasă, atunci pentru restul elevilor demersul este degeaba (chiar antiproductiv, convingându-i pe majoritatea cât sunt de “proşti”, iar de aici în continuare discuţia intră în domeniul psihologilor, amintind de Peter Gallin cu teoria sa despre persoane avariate matematic).

În acest sens recomand lecturarea în Caietele de matematică PENTAGONIA a două exemple din anii ‘90 de predare prin întrebări (vezi PENTAGONIA Nr.2 Apariţia numerelor complexe şi PENTAGONIA Nr.4 Fracţiile zecimale)

Există şi o altă modalitate de abordare a problematizării. Am auzit despre aceasta de la tatăl meu: profesorul său de matematică o folosea pe când era tata elev la Vatra Dornei. Astfel, elevii primeau la începutul orei o problemă cu care erau lăsaţi să se preocupe cca. 10 min. Apoi veneau “răspunsurile” la care însă nu se zăbovea mult. Chiar dacă nu se găsea un răspuns sau o rezolvare clară, profesorul pornea noua lecţie şi în timpul acesteia elevii se trezeau că studiază un subiect cu care s-au întâlnit în problema primită iniţial. Astfel, în lecţia respectivă apărea metoda, calea pentru găsirea răspunsului la problema iniţială. Aici problema oferită spre gândire avea rolul de a le trezi curiozitatea şi a le destupa atenţia în domeniul respectiv: în urma problemei în mintea elevului se năştea o mare întrebare, iar pe fondul acestei curiozităţi lecţia venea cu răspunsul eliberator.

24 nov.2015

Titus Grigorovici

Prezentare de carte

Cine nu ia o carte de matematică în mână pătruns de un sentiment de sacru, nu va găsi mare lucru în această carte. NOVALIS

În ultimele trei caiete PENTAGONIA, din 2001 şi 2002, am început să prezentăm cărţi de matematică. Nu este vorba despre culegeri de exerciţii şi probleme, şi nici despre manuale de matematică, ci despre cărţi care vorbesc despre matematică, despre istoricul acesteia şi despre cum ar trebui să ne apropiem împreună cu elevii de matematică.
Citindu-le, profesorul de matematică poate găsi inspiraţie în a-şi structura lecţiile mai atractiv, fie cu mici detalii de o coloratură atractivă, fie în general, ca atitudine de intrat la clasă.

Lucrarea lui Simon Singh, Marea Teoremă a lui Fermat, ajunsă între timp la ediţia a 3-a la Editura Humanitas, rămâne în continuare un posibil cap de afiş în spectacolul acestor cărţi minunate (vezi prezentarea din Caietul PENTAGONIA No.7 din martie 2001), reprezentând o lectură obligatorie pentru orice profesor de matematică ce doreşte să-şi extindă cultura. În Vest această carte a stârnit un val întreg de lucrări de popularizare a matematicii. Este extrem de lăudabil faptul că multe din acestea au fost publicate la Humanitas, devenind astfel accesibile cititorului român, dar despre acestea într-o intervenţie ulterioară.

În Caietul PENTAGONIA No.8 am prezentat mama şi tata tuturor cărţilor de popularizare a matematicii, cele două lucrări ale lui Egmont Colerius, De la tabla înmulţirii la integrală, respectiv De la punct la a patra dimensiune, apărute în perioada interbelică şi traduse în româneşte în 1967. În legătură cu această carte iată o istorioară interesantă: profesorul Wolf Klein de la Şcoala Waldorf din Klagenfurt, Austria, a contactat pe vremuri editura ce a publicat iniţial cartea în germană şi a obţinut o reeditare pentru elevii săi. Cu acest exemplu în faţă, cred că merită să o citim şi noi. (De căutat prin anticariate sau biblioteci cu carte mai veche).

O lucrare îmi este foarte special apropiată de suflet: Paul J.Nahin, O poveste imaginară. Istoria numărului radical din –1 a apărut în 2000 la editura Theta, Bucureşti (vezi prezentarea din Caietul PENTAGONIA No.9 din sept.2002). Pentru profesorul de liceu aceasta reprezintă o lectură obligatorie, mai ales din prisma cunoaşterii apariţiei acestor numere şi a înţelegerii aberaţiei didactice reprezentată de lecţiile de introducere a numerelor complexe în forma actuală, existentă în manuale de prin 1980. În acest sens vă recomand şi lecturarea articolului metodic Apariţia numerelor complexe; predarea noţiunii prin întrebări din Caietul PENTAGONIA No.2. În 1998 o elevă de-a 7-a la citit şi ne-a zis că a înţeles tot. Oare, de ce din forma de predare din manuale nu înţelege nimeni nimic?

Alte prezentări de carte vor urma.