Reforma uitată (partea a II-a)

Privire asupra psihologiei predării matematicii şcolare

De ce ar trebui să schimbăm forma actuală de învăţământ şi cum ar trebui să o schimbăm, aceasta este tema principală a prezentului. Toată lumea vede aspecte de care este deranjată şi vine cu propuneri de corectări pe măsură pentru mult aşteptata reformă de care se tot vorbeşte.

În partea a doua a eseului Reforma uitată am încercat o analiză a efectelor formei actuale a învăţământului matematic asupra copiilor, plecând de la analiza istorică a reformei din 1980 şi a componentelor acesteia.

Am tratat teme cum ar fi împovărarea materiei şi efectele acesteia, cultul pentru furt, incapacitatea organizatorică pe scară largă, slaba dezvoltare a comportamentului social, cultivarea non-calităţii, slaba dezvoltare a gândirii etc.

În continuare am încercat să dau soluţii pentru găsirea unor căi de reparaţie a acestor defecte întâlnite pe scară largă, căi ce pot fi alese la baza unei reforme sănătoase şi eficiente a predării matematice, reformă ce ar putea fi aplicată şi suportată atât de marea masă a dascălilor, cât şi de marea masă a elevilor români. Totodată am avertizat despre capcana ce ar reprezenta-o încercarea introducerii unor alte modele copiate din diferite ţări. Orice model străin ar trebui mai întâi verificat pe un eşantion românesc. Teoria prezentată se aplică majorităţii materiilor şcolare, având astfel un mare avantaj.

Ideile prezentate nu epuizează subiectul, dar deschid căi nediscutate până în prezent pentru un studiu complet al efectelor predării matematicii în şcoli.

Reforma uitată PII.pdf

Reforma uitată (partea I)

Istoria unei reforme uitate a matematicii şcolare româneşti

Poate a venit vremea să vedem cum s-au petrecut lucrurile la o altă reformă, pe vremea lui Ceauşescu, despre ce a fost vorba în reforma acestuia, impusă profesorilor cu forţa începând de prin 1980. De ce ne-ar interesa acum o reformă petrecută cu peste 35 de ani în urmă? Pentru simplu fapt că trebuie să înţelegem în sfârşit de unde provine actuala paradigmă a învăţământului, de unde provin toate acele apucături ale sistemului pe care actualmente le critică toată lumea.

Impresia personală estă că lumea “nu vede pădurea de atâţia copaci” (o traducere a unei vorbe din germană, preferată de-a profesorului meu de matematică din gimnaziu).

Trebuie să ne aducem aminte ce s-a întâmplat şi să recunoaştem într-un sfârşit cum am fost manevraţi de către Ceauşescu, cum, după un sfert de secol mergem în continuare după cum ne-a programat el. Din acest motiv am intitulat eseul de faţă Reforma uitată.

În studiul realizat am încercat să evidenţiez următoarele aspecte:

  1. Învăţământul matematic din România anilor ’60-’70 a fost unul de foarte bună calitate, având o profundă viziune psihologico-didactică, ce face faţă şi acum unei analize riguroase conform cerinţelor societăţii actuale. Acel învăţământ a fost prezentat magistral în lucrările profesorului Eugen Rusu şi poate fi regăsit în toate manualele şcolare din acei ani. Forme similare de curriculum erau valabile şi la celelalte ştiinţe (desigur cu excepţia istoriei).
  2. Din păcate acel învăţământ a fost înlăturat cu forţa în anii ’80 prin noile manuale şi inspectorii care ajungeau în clase. Degeaba profesorii s-au apărat, până la urmă rând pe rând toţi au cedat, iar cei veniţi noi erau înregimentaţi direct noii linii de predare. Această reformă se sprijinea pe doi piloni:
  3. În primul rând a fost valul de creştere a rigurozităţii în exprimare, a încărcării materiei şi a ordonării acesteia după principiile organizării axiomatice provenită din sistemul universitar. Acest val a devastat ca un adevărat tsunami mai ales geometria gimnazială, responsabilă cu formarea gândirii intuitive la elevi.
  4. Apoi a fost cerinţa din partea conducerii de stat şi de partid de a creşte masiv preocuparea pentru probleme tot mai grele, pentru olimpiade de matematică, ca un mod de dovedire a superiorităţii orânduirii socialiste, în varianta sa mioritică. Această preocupare a prins foarte bine datorită înclinaţiei native a matematicienilor români pentru matematica sportivă.
  5. Din păcate, după înlăturarea lui Ceauşescu nimeni nu a îndrăznit a încerca să corecteze gravele aberaţii ale acelei reforme, astfel încât după o vreme mulţi profesori s-au obişnuit până în măduva oaselor cu acest stil de şcoală, cu această paradigmă. Actualmente nimeni nu mai ştie să vindece această boală, pentru că nimeni nu mai ştie cum arată un învăţământ sănătos. Toată lumea critică învăţământul actual, dar nimeni nu are o alternativă viabilă clară. Eu mă străduiesc de 20 de ani să lucrez în paradigma prezentată de Eugen Rusu în lucrările sale şi pot depune oricând mărturie cât de bine funcţionează la aceşti elevi, la această materie, la aceste examene, la aceste cerinţe.

Reforma uitată PI.pdf

Reforma învăţământului în direct

Pentru prima dată avem posibilitatea să vedem în timp real ce se întâmplă. Lucrurile se petrec cu repeziciune, cum ar spune neamţu’ Hieb auf Hieb, lovitură peste lovitură.

Mass-media şi internetul, în aceste timpuri ce au urmat dezastrului din Colectiv, nu mai iartă nimic, şi bine fac. Fiecare pas al comisiei însărcinată de Dl. Ministru Adrian Curaj cu această nouă reformă este prezentat publicului larg. Şi publicul larg este pentru prima dată în istoria noastră activ în însoţirea acestei reforme. În premieră societatea are posibilitatea să-şi spună cuvântul şi este ascultată.

Pentru prima dată noi, oamenii de rând, avem posibilitatea să intervenim în timp real. De pildă vineri 12 feb. 2016, la Avocatul diavolului de la Europa fm ascultătorii au avut intervenţii deosebite şi emisiunea a trebuit prelungită cu 30 minute.

Pentru prima dată au fost spuse, prin vocea d-lui Cristian Tudor Popescu, adevăruri mari, despre care până acum doar s-a şuşotit în media noastră. Citez un exemplu: Eu am reparat copii stricaţi o viaţă întreagă. Ani în şir cu asta m-am ocupat, cu copii care spuneau “nu ştiu matematică, e greu, nu-mi place”…, copii blocaţi…, au avut un contact greşit, imbecil, din partea profesorului şi s-au scârbit, s-au îndepărtat de matematică. … Această aberaţie numită a preda: copiii stau şi scriu stresaţi, nu înţeleg nimic şi uite-aşa nu reuşesc să intre în contact intim cu matematica..

Săptămâna trecută dl. Moise Guran comentânt despre starea învăţământului la postul tv Digi 24, a luat peste picior autorităţile decidente din învăţământ, clasificându-l în glumă pe Dl. Academician Solomon Marcus drept un extraterestru. Şi într-adevăr aşa este: pentru unii se pare că Solomon Marcus vorbeşte dintr-o altă lume.

Daţi-mi voie să mă coalizez cu dânsul şi să nu mă mai ascund. Da, recunosc în faţa tuturor: şi eu sunt un extraterestru! Da, şi eu predau aşa cum povesteşte dl. Solomon Marcus că ar trebui să facem; da, predau aşa pentru că am avut norocul să înţeleg că trebuie să mă uit mai întâi la elev, la posibilităţile şi la nevoile sale, la elevul de rând, nu numai la vârfuri şi la rigorile unor manuale mult prea pedante. Da, recunosc că mă strădui în fiecare zi să găsesc metode pentru a le prezenta elevilor lecţii cât mai atractive. Da, recunosc, şi eu sunt un profesor dintr-o altă lume.

Titus Grigorovici

16 februarie 2016

Istoria unei descoperiri

În toamna anului 1982 eram în clasa a X-a. La o oră de matematică mama mea, care ne era profesoară, a adus la oră şi câteva probleme cu trapeze. După primele două probleme destul de accesibile a venit o a treia care ne-a lovit puternic. Un alt coleg a fost la tablă, aşa că am putut gândi liber. Deşi am relatat de nenumărate ori ce a urmat, acum este prima oară când “aştern pe hârtie” povestea acelei întâmplări memorabile.

Pe scurt, în următoarele minute am descoperit o nouă “formulă pentru aria triunghiului”, o reţetă necunoscută până în acel moment; nici un profesor nu o cunoştea şi aceasta nu se găseşte în nici o carte. În ora respectivă mintea mea a umblat pe unde nu a mai umblat nici o minte de om. Descoperisem “o mică pată albă” pe întinsa hartă a matematicii, iar aceasta nici măcar nu era la periferie, ci se afla în zona centrală, elementară a matematicii, zona pentru elevi.

Iată în continuare cele trei probleme şi evoluţia gândurilor mele din acea oră.

  • Fie trapezul oarecare ABCD cu AB || CD şi O punctul de intersecţie al diagonalelor. Demonstraţi că ΔAOD şi ΔBOC au aceaşi arie (sunt echivalente).
  • În trapezul oarecare ABCD alegem M mijlocul laturii oblice [AD]. Demonstraţi că AriaΔMBC = ½ ∙ AriaABCD.
  • Prin punctul O de intersecţie al diagonalelor unui trapez trasăm o paralelă la baze, aceasta intersectând laturile oblice în punctele E respectiv F. Demonstraţi că O este mijlocul segmentului [EF].

Imaginea prezentată este o scanare din culegerea De la Cercul lui Thales la Moneda lui Ţiţeica, C. Titus Grigorovici, Mariana Grigorovici, publicată în 2006 la Humanitas Educaţional. În culegere am schimbat ordinea problemelor faţă de cea din ora respectivă.

După cum am spus, demonstraţiile primelor două probleme mi s-au părut accesibile; chiar am avut atunci o senzaţie de frumos în acele momente, probabil şi datorită faptului că reprezentau o îmbinare de geometrie şi algebră.

1) Având aceaşi bază şi înălţimile egale, ΔADC şi ΔBDC au aceeaşi arie. Din egalitatea celor două scădem porţiunea comună, aria ΔODC, obţinănd egalitatea ariilor ΔAOD şi ΔBOC. Nu am în amintire cum s-a scris rezolvarea pe tablă, dar ştiu cum am scris-o eu:

AriaΔADC = AriaΔBDC | – AriaΔODC
AriaΔADCAriaΔODC = AriaΔBDCAriaΔODC
AriaΔAOD = AriaΔBOC

2) Trasând linia mijlocie [MN] observăm că ΔBMN şi ΔCMN au aceeaşi arie, având baza comună şi înălţimile egale (cât jumătate din înălţimea trapezului). Obţinem astfel:

AriaΔMBC = AriaΔBMN + AriaΔCMN =

3) La a treia problemă lucrurile nu arătau deloc la fel de frumos, în primul rând pentru că rezolvarea previzibilă era cu asemănare de triunghiuri; era o rezolvare lungă şi istovitoare. Nu aveam nici un chef de aşa ceva; se prevedea o demonstraţie urâtă în comparaţie cu precedentele. Ei, şi atunci mintea mea a început să lucreze, observând anumite coincidenţe:

– triunghiurile echivalente din prima problemă apăreau şi aici;

– cele două triunghiuri echivalente stăteau ambele înclinate, într-un colţ; la fel şi triunghiul MBC din problema a doua (triunghiurile stau de obicei pe bază, nu înclinat);

– triunghiul MBC din a doua problemă are aria egală cu semiprodusul “orizontalei” prin M cu înălţimea totală a triunghiului, adică “diferenţa de nivel” între B şi C;

– cele două triunghiuri echivalente din prima problemă au aceeaşi înălţime totală, adică “diferenţa de nivel” între vârful de la baza mică şi cel de la baza mare a trapezului, iar cerinţa spune că “orizontalele” prin vârful intermediar ar trebui să fie egale;

– avem deci trei mărimi care se pare că depind una de cealaltă: aria unui astfel de “triunghi răsturnat”, apoi “înălţimea totală” a triunghiului, adică “diferenţa de nivel” între vârful situat cel mai jos şi vârful situat cel mai sus, iar pe post de bază “orizontala” prin punctul intermediar până la latura opusă.

Dacă reuşeam să demonstrez că aria unui triunghi ce este poziţionat înclinat, adică neavând baza aliniată pe “orizontala” figurii, aria unui astfel de triunghi respectă modelul tradiţional de baza ori înălţimea pe doi, atunci era rezolvată problema 3). De aici lucrurile au mers uşor: mi-am făcut o figură separată pentru “teorema” ce-o doream demonstrată, am descompus triunghiul mare în două pe baza “orizontalei”, m-am jucat puţin cu factorul comun şi VOILA!, gata era teorema mea.

Desigur, rezolvarea mea era mai scurtă şi datorită faptului că fentasem, folosind rezultatul primei probleme drept cunoscut. Oricum însă, terminasem cu câteva minute bune înaintea colegului de la tablă, care se chinuia împreună cu maică-mea printre rapoarte şi triunghiuri asemenea. Iar eu eram literalmente în al nouălea cer, având în plus şi o teoremă şmecheră în buzunar!

Este uşor de închipuit cum am stat “ca pe ace” ca să se termine demonstraţia stupidă de la tablă şi cu aceasta şi ora, ca să fug la mama – pardon, la Tovarăşa Profesoară – să-i prezint isprava mea.

O singură întrebare mai rămâne de lămurit: de ce a ales mama cele trei probleme în această succesiune? Prima şi a treia au cam aceeaşi figură; a doua se integrează şi ea cumva. Nu ştiu ce să zic, dar momentul a fost superb.

Titus Grigorovici

Impresii din Elveţia

În săptămâna 5-9 oct.2015 am participat la Dornach lângă Basel, în Elveţia, la prima întâlnire mondială a profesorilor de matematică din şcolile Waldorf. Din acest voiaj am adus o mulţime de cadouri matematice cu care ne vom preocupa în perioda următoare (poate tot anul). Înainte de a vă prezenta la rând conferinţele acestui congres, permiteţi-mi să vă ofer două scurte impresii, cu implicaţii matematice.

Prima mea surpriză în Elveţia a fost moneda de ½ Fr (de o jumătate de franc, pentru cine nu a înţeles). Da, aţi văzut bine, pe această monedă nu scrie 50 (Rappen se numesc subunităţile francului elveţian), ci scrie ½ . Elveţienilor nu le este frică să scrie pe o monedă foarte des folosită o fracţie! Asta arată că acestui popor nu îi este frică de matematică.

Să analizăm cum stăm noi faţă de acest subiect. Păi, un singur gând îmi trece în acest sens prin minte: felul în care Banca Naţională a renunţat la moneda de 25 bani, respectiv bancnota de 25 lei (Banca Naţională sau ce decident o fi fost atunci, la începutul anilor ’90, dar şi la introducerea leului tare cu renunţarea la patru zerouri de la reforma din 2005). Sistemul nostru monetar este construit pe operaţia 2 ∙ 5 = 10, care este una din cele mai simple operaţii (ştiţi, majoritatea avem două mâini cu câte cinci degete:). Sistemul vechi, din anii lui Ceauşescu, era construit pe operaţia 4 ∙ 25 = 100, care este o operaţie mai evoluată. Cea actuală necesită capacităţi de calcul până la 10, de nivel de grădiniţă, pe când la cea veche trebuia să te poţi descurca în mare până la 100. Calculul 25 ∙ 4 = 100 reprezintă o operaţie de puterea a doua (22 ∙ 52 = 102), pe când actuala necesită doar o gândire banală. Varianta actuală, cu valorile 1, 5, 10, 50, 100 etc. este practică pentru cei inculţi, dar nu permite decât foarte greu o simplă operaţie de împărţire la patru (împărţirea la patru este una din operaţiile de cultură elementară: oricine ştie să împartă un măr în patru sferturi – avem şi un cuvânt pentru aşa ceva, un sfert).
Care este unul dintre efectele vizibile a acestei schimbări a politicii monetare din România? De prin 1996 am început să observ la elevi un fenomen deranjant: aceştia nu mai ştiu de pildă de câte ori intră 23 în 100; elevii au mari dificultăţi la 3 x 25, dar mai ales la descompunerea lui 75 nu simt că se divide cu 3 şi încep descompunerea cu împărţirea la 5 (dar 75 : 5 = 15 se face mai greu decât 75 : 3 = 25). După ’90 orice puşti ştia că 750 : 3 = 250; acum aceasta este pentru mulţi o situaţie foarte dificilă (pe care eventual o fac cu calculatorul de pe telefon).
Da, concluzia este una singură, renunţarea la sistemul 25 ∙ 4 a contribuit şi aceasta, pe lângă multe altele, la creşterea fricii omului de rând faţă de matematică.
Revenind la francii elveţieni, nu m-am putut abţine să nu observ anul monedelor aflate încă în circulaţie (şi n-am stat tare mult să caut). Este chiar nevoie de o mică concentrare să calculezi ce vârstă are o monedă din 1971. Uau! Asta da stabilitate a unei ţări! Aşa mai înţeleg şi eu un articol găsit în ziarul Schweitz am Sonntag din 11 oct. 2015: un interviu cu directorul Comisiei federale pentru energie a Elveţiei, Dl Walter Steinmann, în care se vorbea despre planul de politică energetică a Elveţiei până în anul 2050 (iarăşi: Uau!). Da, o naţiune căreia nu-i este frică de fracţii, poate face planuri serioase pe 35 ani.
Este greu în acest moment să nu facem iar comparaţia cu situaţia de la noi şi cu actuala creştere promisă de 15% a salariilor cadrelor didactice din dec. 2015. Aţi observat desigur momentul (12 oct. 2015): cele două creşteri de 5% din cursul anului împreună cu aceasta de 15% nu dau împreună 25%, ci mai mult, peste 26%. Câţi au înţeles ce s-a întâmplat, care este fenomenul matematic conform căruia 10 + 15 nu dă 25? Un renumit om de presă comenta că şi politicienii care n-au înţeles sunt tot rezultatul acestei şcoli. Dacă de politicienii de la vârf nu trebuie să ne facem griji să înţeleagă, poate noi, profesorii de matematică ar trebui să ne ocupăm măcar ca dragii noştri colegi ne-matematicieni să priceapă “ce şi cum”, adică de ce 10% + 15% > 26%.

Titus Grigorovici 22 oct. 2015

Editorial Pentagonia

Pe lângă prezentarea din primul număr, în caietele Pentagonia găsiţi următoarele eseuri-editoriale despre situaţia predării matematicii şcolare. În fiecare din acestea găsiţi păreri exprimate mai timid sau mai hotărât despre ce merge, dar mai ales despre ce nu merge bine în matematica de la clasă. Citindu-le după atâţia ani, cât sunt de valabile în continuare, considerăm că merită citite şi acum (unele integral, altele măcar parţial).

Prof. C.Titus Grigorovici

Arta predării matematicii

Prin artă înţelegem nu doar marea artă reprezentată de marile nume, cum ar fi Grigorescu sau Celibidache. Prin artă înţelegem şi mica artă reprezentată de anonimii – muzician sau olar – care ne încântă la colţul străzii sau în bazare; mă gândesc la croitorul care a cusut o rochie superbă sau la fierarul care a făcut elemente frumoase pentru o poartă, sau la sticlarul care a conceput o sticlă frumoasă din care ne vom încânta cu un vin deosebit; meşteşugarii cei mulţi, lăutarii sau artizanii populari în ceramica de la Horezu sau în porţile maramureşene, lista putând continua la nesfârşit. Aceşti meşteşugari reprezintă baza piramidei în vârful căreia au ajuns Porumbescu sau Brâncuşi. Mica artă poate fi denumită şi arta de zi cu zi. Cu marea artă te întâlneşti rar, dar cu mica artă te întâlneşti des.

Orice meserie îşi are artiştii săi, cei care o practică atât de bine încât rezultatul muncii lor să devină o încântare. Chiar şi predarea matematicii poate fi practicată ca o artă, făcută să încânte, iar beneficiarul acestei încântări va fi elevul. Predarea la ora de matematică trebuie să aducă bucurie elevilor: cât mai des şi cât mai multor elevi!

Se nasc aici două mari întrebări: De ce să facem astfel?, şi Cum să facem astfel?. În cazul ambelor întrebări se pot da multe răspunsuri şi oricine poate să-şi dea drumul imaginaţiei.

La prima întrebare aş încerca un răspuns cu implicaţii naţionale. Cu cât lecţia de matematică este mai atractivă pentru cât mai mulţi elevi, cu atât mai eficientă va fi această materie în formarea gândirii ordonate, logice. Cu cât mai multă matematică ajunge la sufletul copiilor, cu atât mai clar matematica îşi poate îndeplini rolul său formator de bază, anume formarea capacităţii de a lua decizii corecte, lipsite de subiectivitate. Matematica este una dintre cele mai obiective discipline de studiu în şcoală, şi ea este probabil principalul formator de obiectivitate în mintea elevilor. Or, la poporul nostru, şi latin şi balcanic totodată, deci plin de subiectivităţi în toate cele, este foarte important ca matematica să ajungă cât mai des şi la cât mai mulţi elevi în suflet, pentru a mai echilibra balanţa dintre obiectivitate şi subiectivitate.

Este un fenomen uimitor aici: aducând mai mult sentiment pozitiv (adică ceva subiectiv) în ora de matematică, elevii se apropie mai mult de această disciplină şi dobândesc în final capacitatea unor decizii mai obiective. Dimpotrivă, predarea mult prea riguroasă, de inspiraţie a prelegerilor universitare, deci foarte obiectivă, este accesibilă foarte puţinor elevi, restul nebeneficiind de caracterul formator al matematicii şi trăind mai tot timpul paralel cu aceasta. Care este rezultatul a zeci de ani de astfel de predare, mult prea seacă, a matematicii? În jurul nostru, la toate nivelele, putem observa generaţii întregi de adulţi la care singurul mod de decizie este cel subiectiv; generaţii întregi care nu pot lua şi nu pot accepta decizii obiective; generaţii care nu reuşesc să discearnă datele obiective ale unei situaţii, de părerile şi impresiile lor subiective. Cât de sănătoasă este o astfel de politică şcolară matematică, trebuie alţii să decidă; eu doar observ.

Despre cea de-a doua întrebare, Cum?, revenind la arta predării matematicii şi la profesorul de la clasă, acesta trebuie să fie pe deplin conştient de menirea sa, atât pentru viitorul elevului, cât şi pentru viitorul naţiunii. Deci, ce educăm? Educăm elevi buni, sau educăm oameni pregătiţi sănătos pentru viaţă? Eu înclin spre cea de-a doua variantă (care în mod ciudat o include şi pe prima).

Dar cum se face asta? Nu cred că se pot da reţete clare. Putem încerca doar să dăm cât mai multe exemple de bună practică (cât de abuzată este această expresie, oricum foarte subiectivă!), exemple care pe noi ne-au ajutat să trezim lumina în ochii elevilor la ora de matematică, după cum exclama un elev în urmă cu ceva ani, în astfel de momente: MINUNE DUMNEZEIASCĂ!

Prof. C.Titus Grigorovici, aug.2015

De ce Pentagonia?

Pentru că Pentagonia este un tărâm de vis în care toţi oamenii iubesc matematica, admirându-i zilnic minunăţiile nesfârşite.

Aici au trăit şi au gândit Pitagora sau Thales, dar şi Leonardo da Vinci, Carl Friedrich Gauss sau János Bólyai. Toţi aceştia, dar şi mulţi alţii rămaşi anonimi, au cunoscut imensa satisfacţie ce te cuprinde atunci când reuşeşti să rezolvi o problemă considerată de nerezolvat, pe care ai învins-o cu puterea minţii tale; sau bucuria neţărmuită din momentul în care ai descoperit un colţişor de matematică necălcat până atunci de nimeni.

Cei mai mulţi profesori de matematică au fost în Pentagonia şi povestesc cu drag despre frumuseţile întâlnite acolo. Chiar şi unii elevi au ajuns să cunoască această lume minunată.

Revista de faţă îşi propune să-i ajute pe profesori în predarea matematicii, astfel încât numărul elevilor ce ajung să iubească matematica să fie cât mai mare cu putinţă. Pot fi tratate subiecte total necunoscute, dar şi subiecte demult uitate, poveşti matematice, dar şi teme de actualitate pentru pregătirea examenelor, culegeri de probleme pe o anumită temă sau probleme izolate cu un farmec deosebit, rezolvări seci de calcul, dar şi rezolvări inedite (de exemplu cu ajutorul foarfecii şi al hârtiei împăturite), probleme diferite care se rezolvă cu aceeaşi metodă, dar şi mai multe metode de rezolvare pentru o aceeaşi problemă; în fine, cât mai multe din minunăţiile ce pot fi întâlnite în Pentagonia.

C.Titus Grigorovici

Cluj-Napoca, dec.1997

PS

Caietele Pentagonia îşi propun să ofere o matematică atractivă şi accesibilă cât mai multor elevi, să prezinte într-un mod liber şi elemente din matematică neincluse în programa şcolară, iar pentru pregătirea în vederea examenelor şcolare să ofere profesorilor şi elevilor seturi de probleme pe diferite teme de interes, dar şi probleme recapitulative începând chiar din clasa a VII-a.

Pentagonia se doreşte o publicaţie despre frumuseţea matematicii, despre bucuria ce trăieşte în matematică, în şcoală aceste sentimente fiind constant neglijate, alungate uneori de o matematică mult prea riguroasă, alteori de o ordine a lecţiilor contrară normalului.

Editorialul şi coperta IV

Caietul PENTAGONIA No.1, ian.1998