Impresii din Elveţia

În săptămâna 5-9 oct.2015 am participat la Dornach lângă Basel, în Elveţia, la prima întâlnire mondială a profesorilor de matematică din şcolile Waldorf. Din acest voiaj am adus o mulţime de cadouri matematice cu care ne vom preocupa în perioda următoare (poate tot anul). Înainte de a vă prezenta la rând conferinţele acestui congres, permiteţi-mi să vă ofer două scurte impresii, cu implicaţii matematice.

Prima mea surpriză în Elveţia a fost moneda de ½ Fr (de o jumătate de franc, pentru cine nu a înţeles). Da, aţi văzut bine, pe această monedă nu scrie 50 (Rappen se numesc subunităţile francului elveţian), ci scrie ½ . Elveţienilor nu le este frică să scrie pe o monedă foarte des folosită o fracţie! Asta arată că acestui popor nu îi este frică de matematică.

Să analizăm cum stăm noi faţă de acest subiect. Păi, un singur gând îmi trece în acest sens prin minte: felul în care Banca Naţională a renunţat la moneda de 25 bani, respectiv bancnota de 25 lei (Banca Naţională sau ce decident o fi fost atunci, la începutul anilor ’90, dar şi la introducerea leului tare cu renunţarea la patru zerouri de la reforma din 2005). Sistemul nostru monetar este construit pe operaţia 2 ∙ 5 = 10, care este una din cele mai simple operaţii (ştiţi, majoritatea avem două mâini cu câte cinci degete:). Sistemul vechi, din anii lui Ceauşescu, era construit pe operaţia 4 ∙ 25 = 100, care este o operaţie mai evoluată. Cea actuală necesită capacităţi de calcul până la 10, de nivel de grădiniţă, pe când la cea veche trebuia să te poţi descurca în mare până la 100. Calculul 25 ∙ 4 = 100 reprezintă o operaţie de puterea a doua (22 ∙ 52 = 102), pe când actuala necesită doar o gândire banală. Varianta actuală, cu valorile 1, 5, 10, 50, 100 etc. este practică pentru cei inculţi, dar nu permite decât foarte greu o simplă operaţie de împărţire la patru (împărţirea la patru este una din operaţiile de cultură elementară: oricine ştie să împartă un măr în patru sferturi – avem şi un cuvânt pentru aşa ceva, un sfert).
Care este unul dintre efectele vizibile a acestei schimbări a politicii monetare din România? De prin 1996 am început să observ la elevi un fenomen deranjant: aceştia nu mai ştiu de pildă de câte ori intră 23 în 100; elevii au mari dificultăţi la 3 x 25, dar mai ales la descompunerea lui 75 nu simt că se divide cu 3 şi încep descompunerea cu împărţirea la 5 (dar 75 : 5 = 15 se face mai greu decât 75 : 3 = 25). După ’90 orice puşti ştia că 750 : 3 = 250; acum aceasta este pentru mulţi o situaţie foarte dificilă (pe care eventual o fac cu calculatorul de pe telefon).
Da, concluzia este una singură, renunţarea la sistemul 25 ∙ 4 a contribuit şi aceasta, pe lângă multe altele, la creşterea fricii omului de rând faţă de matematică.
Revenind la francii elveţieni, nu m-am putut abţine să nu observ anul monedelor aflate încă în circulaţie (şi n-am stat tare mult să caut). Este chiar nevoie de o mică concentrare să calculezi ce vârstă are o monedă din 1971. Uau! Asta da stabilitate a unei ţări! Aşa mai înţeleg şi eu un articol găsit în ziarul Schweitz am Sonntag din 11 oct. 2015: un interviu cu directorul Comisiei federale pentru energie a Elveţiei, Dl Walter Steinmann, în care se vorbea despre planul de politică energetică a Elveţiei până în anul 2050 (iarăşi: Uau!). Da, o naţiune căreia nu-i este frică de fracţii, poate face planuri serioase pe 35 ani.
Este greu în acest moment să nu facem iar comparaţia cu situaţia de la noi şi cu actuala creştere promisă de 15% a salariilor cadrelor didactice din dec. 2015. Aţi observat desigur momentul (12 oct. 2015): cele două creşteri de 5% din cursul anului împreună cu aceasta de 15% nu dau împreună 25%, ci mai mult, peste 26%. Câţi au înţeles ce s-a întâmplat, care este fenomenul matematic conform căruia 10 + 15 nu dă 25? Un renumit om de presă comenta că şi politicienii care n-au înţeles sunt tot rezultatul acestei şcoli. Dacă de politicienii de la vârf nu trebuie să ne facem griji să înţeleagă, poate noi, profesorii de matematică ar trebui să ne ocupăm măcar ca dragii noştri colegi ne-matematicieni să priceapă “ce şi cum”, adică de ce 10% + 15% > 26%.

Titus Grigorovici 22 oct. 2015

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInEmail this to someone

One thought on “Impresii din Elveţia”

  1. Socotitul în minte, deunăzi la îndemâna tuturor care treceau prin clasele primare, a devenit un fel de “rara avis”.
    Mă umplu de mâhnire când văd tinere fete, vânzătoare de boutique, tastând nonşalant “2*3,5+4=” şi mirându-se dacă le întind suma exactă înainte ca ele sa-şi fi terminat tastarea.

    Înţelepciunea vine cu timpul iar inteligenţa poate fi antrenată prin exerciţii de matematică.

Leave a Reply

Your email address will not be published. Required fields are marked *

Solve : *
15 − 7 =