Planimetria şi Stereometria – (7) Scurt istoric al studiului despre drepte şi plane

Am văzut în acest eseu-serial cum la geometria în spaţiu din clasa a 8-a avem de fapt o formă de predare orientată după criteriile rigurozităţii matematicii, dar care sfidează criteriile pedagogice. Această formă poate fi înţeleasă de către vârfurile populaţiei şcolare, dar se desfăşoară mult prea sus din punct de vedere intelectual pentru cea mai mare parte a populaţiei şcolare. Probabil că mulţi dintre matematicieni nu înţeleg de ce “prostimea” nu face faţă geometriei, pentru că doar, măcar ariile şi volumele “sunt simple”. Păi, DAAAA!, chiar şi lucrurile simple devin de neînţeles pentru mulţi dacă sunt prezentate în context complicat sau într-o formă fără sens! Iar după o vreme apare atât negarea şi refuzul, din punct de vedere psihologic, cât şi incapacitatea pură de a urmări şî a înţelege un conţinut, chiar dacă acesta este prezentat evident simplu, din punct de vedere al capacităţii intelectuale. Cu alte cuvinte, o predare mult prea elevată duce la îndobitocirea maselor!

Haideţi să vă prezint ce amintiri am eu despre clasa a 8-a în legătură cu acest subiect, al studiului poziţiei relative a dreptelor şi planelor şi a demonstraţiilor cu acestea înaintea elementelor de stereometrie. Nu ţin minte mai nimic, în afara faptului că după o anumită oră din clasa a 8-a m-am dus acasă şi mi-am construit o mică machetă pentru teorema celor trei perpendiculare (o machetă foarte mică, la care “planul” era reprezentat de un dreptunghi de la o cutie de chibrituri, care la vremea respectivă încă erau făcutedin plăcuţe foarte subţiri de lemn lipite împreună cu hârtie). Singura datare clară a momentului respectiv este că a fost cândva înainte de Crăciun, pentru că respectiva machetă a ajuns atârnată în bradul împodobit, şi a rămas mulţi ani printre podoabele pentru pom (chiar şi când eram prin facultate o mai găseam acasă la părinţii mei în bradul de Crăciun).

Nu am amintiri de geometrie în spaţiu dinaintea acestui moment, dar bănuiesc ca ceva am înţeles din acele ore, de vreme ce am priceput teorema respectivă, despre care ţin minte o stare de relativ entuziasm, după care am putut să fac corect macheta respectivă când am ajuns acasă. Precizez că am făcut-o din proprie iniţiativă; nu a fost temă. Următoarele amintiri le am despre formulele de arii şi volume, undeva prin primăvară.

Cu alte cuvinte, şi atunci, pe forma de manuale ale lui Hollinger, în ultimul an de valabilitate al acestora (1980-1981), toamna era ocupată de studiul relativ detaliat al dreptelor şi planelor, un studiu greu şi pentru elevii cu o vedere geometrică bună (nu am nici cea mai mică amintire despre probleme sau teste, dar probabil că nici nu făceam mare lucru; problemele adevărate în acest sens au venit la a doua trecere, în clasa a 10-a). Cât era acest studiu de detaliat, dar totuşi prezentat pe baze intuitive, se poate vedea din oricare manual din anii ’60-’70. Nu mi-am propus acum să vă prezint această formă într-un studiu detaliat (cea din timpul şcolii mele), dar este evident că respectivele manuale ar trebui studiate şi actualmente, atât de către autorii de programe, cât şi mai ales de către autorii de manuale.

Mai am însă o relatare despre acest subiect, una profund diferită şi totuşi pe aceeaşi linie, anume de la mama mea. Zilele acestea (după publicarea primelor patru părţi ale prezentului eseu) îi povesteam mamei mele despre acest subiect şi iată ce mi-a povestit (la telefon). Partea de studiu a dreptelor şi planelor i-a fost una dintre cele mai urâte părţi din matematică, vorbind aici cu referire la clasa a 10-a (Mama a predat toată cariera ei în liceu). De abia după ce apăreau corpurile şi apăreau cerinţe pe corpuri, de abia atunci simţea că elevii încep să înţeleagă respectivele situaţii (nu vorbea aici de arii şi volume, ci doar de studiul comportamental al dreptelor şi planelor în spaţiu). Cu alte cuvinte, nici măcar în clasa a 10-a, la o a doua trecere prin subiect) elevilor nu le erau accesibile problemele cu demonstraţii în spaţiu dar fără corpuri (vorbim aici de liceul din Or. Victoria, ca un eşantion destul de reprezentativ pentru toată ţara: cu reprezentanţi ai elevilor din toate nivelele, de la cei ce urmai să ajungă muncitori de rând, apoi mulţii viitori intelectuali, până la cei ce urmau să ajungă în cele mai înalte poziţii universitare, la nivel naţional sau internaţional, şi până la locul I la Olimpiadele naţionale de matematică).

Traduc eu: problemele pe structuri artificiale, de tipul celei date azi vară la EN-8, sunt mult mai greu de înţeles pentru elevi decât situaţiile prezentate în corpuri, care sunt nişte structuri mai uşor de înţeles. Corpurile acţionează aici ca un fel de “schelă” suport pentru înţelegerea şi gândirea elevului, pentru capacitatea sa de imaginaţie în spaţiu; desigur că în lipsa acestei schele elevul se descurcă mult mai greu. Acest aspect a fost recunoscut pe la sfârşitul anilor 2000, când s-a decis introducerea rapidă a corpurilor la începutul clasei a 8-a, într-o formă descriptiv intuitivă, astfel încât să se poată parcurge din start în mod echilibrat şi probleme “în corpuri”, nu doar pe structuri artificiale. Din păcate “onor ministerul” nu a explicat niciodată aceste aspecte, lăsând totul la bunil simţ al profesorilor.

Ordinea naturală ar fi dimpotrivă următoarea: De la început probleme cu drepte şi plane doar pe corpurile deja studiate, iar doar de la un anumit moment probleme pe structuri artificiale. Eu, de pildă, studiez mai întâi toate prismele şi piramidele; apoi studiez lecţiile uşoare despre drepte şi plane doar pe corpuri (unghiul dintre două drepte necoplanare, drepte necoplanare perpendiculare, dreaptă perpendiculară pe plan, plane perpendiculare, drepte paralele, dreaptă paralelă cu un plan, cât şi planele paralele). La acestea elevii primesc o structură artificială teoretică urmată imediat de aplicaţii pe corpuri, transferul fiind ajutat de către folosirea cretelor colorate (întotdeauna aceleaşi culori şi pe structura teoretică şi în mod corespunzător pe corpul geometric din problemă). Structurile artificiale le introduc abia la teorema celor trei perpendiculare. Din acest moment apar apoi şi aplicaţii ale celorlalte în structuri artificiale.

Pentru cei care au uitat problema de azi vară şi nu înţeleg la ce mă refer când vorbesc de probleme pe structuri artificiale, o reiau pe scurt: În Figura 3 este reprezentat un dreptunghi ABCD cu AB = 24 cm şi BC = 10 cm. Punctul O este intersecţia dreptelor AC şi BD, iar dreapta EO este perpendiculară pe planul (ABC). Punctele M, N şi P sunt mijloacele segmentelor AB, AD, respectiv AE etc.

Mama vorbea de elevii de a 10-a, la o a doua parcurgere; la cei de a 8-a, la primul contact cu situaţia respectivă, fenomenul este desigur şi mai dur. Atât de dur încât mulţi dintre elevii care poate ar învăţa geometria în spaţiu, după un astfel de prim contact se sperie atât de tare, încât cu greu mai pot fi recuperaţi. Iar după reforma din 1997, când s-a scos geometria sintetică din liceu, elevii nu mai au oricum o a doua şansă de a înţelege acest studiu.

Apare aici o situaţie de ordin filozofic: dacă studiul dreptelor şi planelor este atât de important din punct de vedere al matematicii, atunci de ce nu este reluat în liceu? Dimpotrivă, dacă acest studiu nu este totuşi atât de important, atunci de ce se insistă cu introducerea acestuia înainte de elementele de stereometrie, care sunt evident mult mai accesibile marii majorităţi a elevilor? Păi, sunt sau nu importante?

Revenind la amintirile mele, trebuie să precizez accentuat că efectiv nu am amintiri din clasa a 8-a înaintea teoremei celor trei perpendiculare. Din clasa a 10-a, când am reluat această materie, nu am astfel de “lipsusuri”, dar trebuie înţeles că eu am avut dintotdeauna o foarte bună vedere geometrică. Dimpotrivă, mulţi elevi nu au nativ o vedere geometrică bună. La aceştia profesorul trebuie să aibă mult tact pedagogic pentru a-i ajuta să-şi formeze minime capacităţi în acest sens (voi reveni cu o altă ocazie asupra acestui subiect).

Rezumând cele două amintiri, ale mele din clasa a 8-a, cât şi ale mamei mele de profesoară în liceu, putem spune că elevul obişnuit trăia o stare bulversantă în care reacţia naturală era cea de “ghiocel”: să stai cuminte, cu capul aplecat şi să speri că “azi nu o să te pună pe tine”. La aceste lecţii elevul de rând trăieşte o frică profundă, refugiindu-se în copierea lecţiei cuminte, iar apoi acasă, în copierea temei de la cineva care o ştie sau de la un coleg care o are (de la altcineva care o ştie) aceasta este o situaţie specifică sistemelor autoritare. Creştinismul Evului mediu a inventat-o prin vânătoarea de vrăjitoare, dar şi comunismul a practicat-o intens: să te simţi vinovat că nu îndeplineşti cerinţele cerute (renumitul plan de producţie), ca să stai “ghiocel” şi să nu emiţi pretenţii. Din păcate, această stare se păstrează în continuare şi azi (decembrie 2020), când la radio se aud evocări cu ocazia împlinirii a 31 de ani de la Revoluţia din decembrie 1989. Şi acum elevii trăiesc impulsul de a se refugia în această “stare de ghiocel” ca să nu atragă atenţia asupra lor iar profesorul să-i întrebe ceva din lecţie (la multe lecţii se întâmplă aste, chiar la multe materii, dar acesta este un alt subiect).

Haideţi să schimbăm punctul de vedere din cel particular într-unul cât mai general. Haideţi să aruncăm o privire în trecut, asupra respectivei părţi a geometriei în spaţiu, să vedem cum stăteau lucrurile la nivel naţional într-un trecut cât mai îndepărtat, cât mai “istoric” posibil. Ar fi minunat să putem afla de unde vine această ordonare a materiei. Sursele mele de informare sunt în acest punct deosebit de limitate, dar câte ceva tot am găsit (oare nu se apucă nimeni de o cercetare mai profundă a acestui subiect?).

În perioada interbelică şcoala (cât de cât) obligatorie era de 4 ani. Doar cei aleşi de soartă mergeau mai departe la liceu. Pentru aceste elite exista o materie mult mai intelectuală decât ar fi fost normal în cazul unei şcoli de masă. Odată cu extinderea învăţământului de masă de către autorităţile comuniste, mai întâi la 7 clase, apoi la 8, a fost nevoie de adaptarea materiei obişnuite din primele clase de liceu (actualele clase 5-8) la o formă cât de cât accesibilă întregii populaţii şcolare. Aici autorii de manuale s-au confruntat cu o mare dilemă, anume cum să adapteze o materie setată de ani buni doar pentru elite într-o formă folosibilă pentru “tot poporul”, cerută de către noile autorităţi, care puneau populaţia muncitoare deasupra elitelor intelectuale.

Mergând în urmă pe această “linie de studiu”, am avut norocul să-mi parvină un manual semnat A. Hollinger din 1957: GEOMETRIA Manual pentru clasa a VII-a, Ed. de Stat didactică şi pedagogică. Cartea este împărţită în două părţi: GEOMETRIE PLANĂ şi GEOMETRIE ÎN SPAŢIU. Prima parte are şase capitole: I. Figuri asemenea; II. Relaţii metrice într-un triunghi dreptunghic; III. Elemente de trigonometrie; IV. Poligoane regulate; V. Ariile poligoanelor; VI. Lungimea şi aria cercului. A doua parte are două capitole: VII. Introducere; VIII. Arii şi volume. Iată în detaliu cuprinsul părţii a doua:

Bănuiesc că acest manual este din anii când şcoala obligatorie din România fusese extinsă de la 4 ani la 7 ani, deci era manualul de geometrie pentru ultimul an de şcoală generală. Vedem cum şi atunci autorii de manuale considerau ca obligatoriu – din punct de vedere ştiinţific – un studiu preliminar despre drepte şi plane în spaţiu, studiu care să pregătească înţelegerea corpurilor. Pare o obsesie a matematicienilor, care oarecum nu ţine cont de existenţa intuiţiei naturale a elevului (intuiţie cu care însă lumea matematicienilor constatase că s-a păcălit rău de tot în cazul situaţiei sistemului geometric axiomatic, pe la începutul secolului al XIX-lea, aşa încât de-atunci a început “să sufle şi-n iaurt”, adică să ţină cont destul de obsesiv de aceasta chiar din şcoala elementară). Pe de altă parte putem vedea lucrurile şi astfel: în general, în perioada postbelică, corpurile geometrice erau mult mai puţin prezente în viaţa elevului de rând, decât sunt acum. De pildă, în prezent orice copil de şcoală primară a văzut cuburi Rubik sau poze şi filme cu piramidele din Egipt, pe când în anii postbelici “cultura generală” a elevilor despre corpuri geometrice trebuie că era mult mai redusă. Dar să revenim la manualul din 1957.

Capitolul VII. de introducere în geometria în spaţiu nici măcar nu are un titlu, dar nu are trecute la cuprins nici titlurile lecţiilor, deşi dacă răsfoim prin carte găsim nişte titluri (un fel de titluri de aliniat): 139. Planul; 140. Determinarea planului; 141. Poziţia unei drepte faţă de un plan; 142. Construcţia unei drepte paralele cu un plan; 143. Poziţia relativă a două drepte; 144. Drepte paralele; 145. Unghiul a două drepte; 146. Poziţia relativă a două plane; 147. Plane paralele; 148. Dreaptă perpendiculară pe un plan; 149. Condiţia ca o dreaptă să fie perpendiculară pe un plan; 150. Distanţa dintre două plane paralele; 151. Proiecţii; 152. Perpendiculare şi oblice; 153. Distanţa de la un punct la un plan; 154. Unghiul unei drepte cu un plan; 155. Unghi diedru; 156. Unghi plan corespunzător unui unghi diedru; 157. Reprezentarea corpurilor prin desen cotat (tipărită cu caractere mai mici); 158. Reprezentarea corpurilor în perspectivă; 159. Exemple (pătrat, triunghi echilateral, hexagon regulat reprezentate “culcat”).

Titlul 157. are o clară utilitate tehnică (eram în anii de foc ai comunismului, iar absolvenţii care aveau să intre după şcoală în câmpul muncii trebuiau să primească primele indicaţii pentru citirea unui desen tehnic în vederea confecţionării unei anumite piese). Tilurile 157 şi 158 sunt de fapt împreună şi prezintă instrucţiuni detaliate de reprezentare a figurilor şi corpurilor în spaţiu (din păcate, după titlul 158. mai aparte un exemplu de la titlul precedent). Lecţia cuprinsă în aceste două titluri este foarte bine explicată şi actuală oricând.

Este de bănuit ca acest capitol VII. introductiv în ale geometriei în spaţiu să fi fost oricum parcurs “pe repede înainte”, deoarece toată partea de geometrie în spaţiu ocupa cel mult jumătate din anul şcolar, mai probabil însă sub jumătate (poate că cele două capitole aveau alocat doar trimestrul III.). Pentru a înţelege diferenţa uriaşă existentă între acestă prezentare introductivă şi actuala formă a materiei din semestrul I al clasei a 8-a, am anexat în final în scanare acest capitol. Se vede clar cum prezentarea este setată totalmente pe o cunoaştere intuitivă, puţinele cazuri de “teoreme” primind această denumire doar ca “titlu ştiinţific-nobiliar”.

Putem privi importanţa dată celor două părţi ale geometriei în spaţiu şi analizând pur şi simplu numărul de pagini alocat fiecăriua: Cap VII. Introducere are 19 pagini, pe când Cap. VIII. Arii şi volume are 34 de pagini. Cei drept că apar ocazional şi corpuri neregulate (din punct de vedere a bazelor). Nu l-am studiat în detaliu, dar nu am văzut figuri cu corpuri înclinate. Ca o observaţie evidentă, actualmente raportul între cele două părţi este cu totul altul (cam invers).

Sare “în ochi” destul de repede faptul că nu apare teorema celor trei perpendiculare. Din păcate nu am în paralel spre analiză şi manualul pentru primul an de liceu (sau pentru al doilea), unde este de aşteptat să apară totuşî această vestită teoremă, dar faptul în sine ne arată că aceasta era privită ca un element de geometrie teoretică “înaltă”, doar pentru “cei aleşi” (cei capabili de aşşa ceva şi care intrau la liceu).

Desigur că mai trebuie să ţinem cont în analiza noastră şi de faptul că la vremea respectivă se mergea la şcoală cam de la 6 ani împliniţi, clasa I corespunzând actualei clase pregătitoare, astfel încât acest manual de clasa a 7-a corespunde ca vârstă adresată actualei clase a 6-a.

Revenind la capitolul analizat, putem compara situaţia de atunci cu situaţia actuală şi din punct de vedere al problemelor. Dacă veţi avea răbdare să le lecturaţi, veţi constata că sunt probleme pe bază de situaţii din lumea înconjurătoare, “probleme” ce scot în evidenţă situaţii din lumea reală bazate pe teoria studiată. Nici vorbă de problemele cu care suntem obişnuiţi la ora actuală, deşi se pot găsi anumite probleme ce ar merita făcute la clasă.

Legat de capitolul despre corpuri, merită făcută o singură observaţie: vedeţi cum cilindrul este făcut imediat după prisme, fiind de fapt asimilat grupului prismelor; cilindrul este de fapt o prismă cu baza cerc, simplu, nu-i aşa? Dar, oare, ce-i acela un prismatoid? Nu vă bateţi capul, e o ciudăţenie, lecţia conţinând şi anumite elemente profund discutabile.

Haideţi să facem un salt în timp, tot cu A.Hollinger, dar alături de Carina Pârvulescu, la manualul de clasa a 8-a din 1971 (deja se introdusese de mult clasa a 8-a în şcoala generală, iar geometria în spaţiu avea la dispoziţie un an întreg din şcoala generală, cu materie cuprinsă în examenul de admitere la licee). Între timp capitolul ce ne interesează a primit şi un nume Drepte şi plane (e comic, dar acesta nu are şi un număr). Studiul despre corpuri, cu arii şi volume a fost despărţit în două, existând capitolul 2. Poliedre şi separat capitolul 3. Corpuri rotunde. În plus mai există şi un capitol ciudăţel cuprinzând Elemente de cosmografie (oamenii trebuiau să înţeleagă ce se petrecea în marea luptă de cucerire a spaţiului cosmic, între “minunea sovietică” şi capitaliştii ăia de americani).

Deşi se păstrează linia de prezentare intuitivă în capitolul despre drepte şi plane, între timp a apărut şi teorema celor trei perpendiculare, dar şi unele probleme de structuri artificiale constuite ad-hoc (de pildă: în figura 64 punctul M este exterior planului triunghiului ABC etc.). La acest capitol sunt cu totul 6 pagini de exerciţii scrise mai mărunt, incluzând însă şi 16 figuri generoase, cu multe întrebări din anii ’50 pentru aprofundarea fenomenelor studiate (apare din nou scăunelul cu trei picioare), dar şi probleme noi, atât dintre cele pe structuri artificiale, dar şi întrebări pe corpuri studiate (între timp capitolul foloseşte şi corpuri elementare, cuburi, prisme sau piramide).

Cum spuneam, astfel de analize ale formelor de predare din trecut ar trebui făcute în mod foarte serios, pentru că de acolo pot fi deduse idei deosebit de bune în rezolvarea problemelor cu care ne confruntăm în prezent. În general, orice programă şi orice manual vor corespunde cu adevărat nevoilor actuale doar dacă se bazează pe un studiu profund al trecutului, din punct de vedere al experienţelor de predare, apoi pe un studiu profund al prezentului, mai ales din punct de vedere al psihologiei elevului din zilele noastre, şi nu în ultimul rând un studiu profund al viitorului, din punct de vedere nevoilor generale ale viitorilor adulţi pe toate palierele profesionale posibile, adică pe tot evantaiul profesional, dem la cei de orientare reală la cei de orientare umanistă, de la cei de elită până la muncitorul de rând (care, şi acesta, ar trebui să înveţe să gândească la nivelul său de capacitate şi de nevoi).

Din păcate, fiecare pas făcut în reformarea predării matematicii, pas care nu ţine cont de aceste aspecte, trimite tot mai departe în viitor o posibilă vindecare a predării geometriei pentru generaţiile următoare. De pildă, analizând o culegere pregătitoare cu teste pentru noua formă de Evaluare Naţională în finalul clasei a 8-a (una renumită, “nu spui care”), observ că elementele de stereometrie sunt aproape eliminate, preluând de la sine înţeles (drept “cvasi-obligatorie”) ideea din anul trecut şcolar când aria şi volumul corpurilor au fost excluse din programa de examen. Oameni buni, ce facem aici? Distrugem generaţii după generaţii! Constantin Titus Grigorovici

P.S. Pe când erau gate părţile 7 şi 8 ale acestui mega-eseu, discutând pe aceste subiecte cu soţia mea, a reieşit un aspect special. Ea şi-a adus aminte cum în clasa a 8-a savura situaţii de tipul unor piramide neregulate, adică la care fie baza este un poligon neregulat (cel mai uzual exemplu este un romb) dar înălţimea cade în centrul acestuia, fie că înălţimea cade într-un punct necentral al bazei (eventual chiar într-un colţ al bazei), fie amândouă cumulate. La aceste corpuri trebuia să calculezi înălţimile feţelor laterale în mod special, acest calcul implicând de obicei şi aplicarea teoremei celor trei perpendiculare, această mare teoremă căpătând astfel un sens practic, pe mintea elevului de clasa a 8-a (care tot în scopul calculării găseşte o justificare mai pe mintea lui, decât în scopul demonstrării pure a unor situaţii – vorbesc aici de amintiri rămase de 40 de ani, însă în mintea unui profesor).

Bine, veţi spune, dar corpurile neregulate nu sunt actualmente în materie. Da, pentru că au fost scoase din materia clasei a 8-a cândva la începutul anilor ’90, exact ca să uşureze materia. Dar nu au uşurat-o, pentru că toate aceste aplicaţii ale teoremei celor trei perpendiculare au fost păstrate în probleme pe structuri artificiale: Pe planul rombului ABCD se ridică perpendiculara OM, O fiind punctul de intersecţie al diagonalelor rombului etc. Problema a rămas, dar a fost de fapt crescut nivelul de dificultate, deoarece elevul nu mai are corpul care să-i ofere acea “schelă” de susţinere a imaginaţiei şi a gândirii în spaţiu.

Ah, da, şi am omis un aspect: vorbesc aici de amintirile unui fost elev care în clasa a 8-a a ratat “la mustaţă” locul 1 la olimpiada judeţeană pe Cluj (pe-atunci acesta era apogeul, ne-existând şi fază naţională). Soţia mea povesteşte cum savura munca de a depista unde cade respectiva “apotemă”; teorema celor trei perpendiculare căpăta astfel “sens” în mintea sa. Şi eu am astfel de amintiri, puţine însă din clasa a 8-a (eu n-am umblat la olimpiade în a 8-a), dar multe din liceu (care evident predomină).

Reversul acestei situaţii, anume calculul ariei laterale a unor piramide regulate, ne atrage din nou atenţia asupra unui aspect special, anume asupra faptului că la apotema piramidei regulate nu este nevoie de T3P. Nu este nevoie, după mintea elevului de a 8-a, dar nu este nevoie nici din punct de vedere teoretic, feţele laterale ale piramidei fiind triunghiuri isoscele, în care înălţimea cade evident în mijlocul muchiei de bază, toate calculele putând fi efectuate cu cunoştiinţele de a 7-a. Cu alte cuvinte, reiese iarăşi aspectul de care am scris, anume că pentru aria laterală a unei piramide regulate (a piramidelor din programă) nu este nevoie de T3P, în general de  toată partea de teoreme în spaţiu.

Am alunecat din nou în această stare pe care unii ar putea-o interpreta drept agresiune la adresa rigurozităţii matematice. Nimic mai greşit! Problema este în cu totul altă direcţie: rigurozitatea matematică este foarte importantă, dar locul ei în forma pură este altundeva, anume în facultate, deci după o a doua selecţie a doritorilor de matematică (prima fiind la sfârşitul clasei a 8-a). După prima selecţie se poate trece la rigurozitate ridicată, dar nu absolută, aspectele de psihologia pedagogică trebuind să rămână activă în selecţia materiei (chiar dacă nu pe primul loc, ci doar pe al doilea, după rigurozitatea teoretică). Înainte de prima selecţie a populaţiei şcolare rigurozitatea matematică trebuie să fie însă pe al doilea loc, după criteriile psiho-pedagogice. Până la EN din clasa a 8-a, fiind o şcoală generală, matematica trebuie să aibă ca obiectiv principal formarea şi şcolirea capacităţii de a raţiona la cât mai mulţi elevi, nu doar la elite. Şcolirea gândirii trebuie adaptată la nivelul marii populaţii şcolare. O gândire prea ridicată în cadrul orelor de matematică îi lasă pe cei mai mulţi fără o gândire raţională (adică îi lasă proşti!).

Bine, dar cum facem cu rigurozitatea teoretică a geometriei, care este astfel condamnată “să rămână de căruţă”, pentru că geometria sintetică se mai face doar în clasele gimnaziale? Aici iese în evidenţă marea gafă petrecută la reforma din 1997 când a fost scoasă geometria sintetică din licee, după ce la reforma din 1980 se cam înghesuise oricum toată la un nivel foarte înalt în gimnaziu. Practic, după 1980 se făcea geometria sintetică de două ori, cam la fel (în cazul generaţiilor care au terminat clasa a 8-a înainte de 1981 geometria gimnazială era la un nivel mai scăzut decât cea din liceu). Astfel, în 1997 s-a considerat că de fapt nu-şi mai are loc o a doua reluare a geometriei sintetice în liceu, pentru că aceasta oricum se face în mod complet în gimnaziu. Aici este MAREA GREŞEALĂ, despre care nu ştiu cât este de clar sesizată la nivelul conducerii matematicii româneşti.

Acum ne pregătim pentru o nouă programă de liceu (generaţia ce a pornit prima clasa pregătitoare este în clasa a 8-a iar pentru ei trebuie făcut totul nou), dar pandemia ne ocupă tot timpul şi parcă văd că ratăm şi acest moment ce ar putea fi reparatoriu la adresa geometriei. Pentru mine este evident că acesta ar trebui să fie cât mai urgent subiectul unui viitor eseu (dacă nu m-am trezit prea târziu).

SCANARI Cap VII-Introducere

Leave a Reply

Your email address will not be published. Required fields are marked *

Solve : *
15 − 6 =