Săptămânile trecute am început să atrag atenţia asupra situaţiei geometriei sintetice după examenul din finalul clasei a 8-a, mai exact asupra dramei procesului de formare a gândirii prin necontinuarea studiului geometriei tradiţionale. Sunt conştient că tema este oarecum fără de sfârşit şi în nici un caz nu-mi propun o tratare exhaustivă a acestui subiect. Doresc totuşi să abordez pe scurt şi o urmare practică a necontinuării studiului geometriei sintetice în licee.
Mai exact, vreau să vă prezint două întâmplări care vorbesc despre utilitatea geometriei, respectiv despre urmările neglijării geometriei în liceu.. Prima mi-a fost evocată chiar azi (21.06, când am început să scriu prezentele rânduri) de către noua administratoare a şcolii noastre. Anul trecut, la fostul loc de muncă, la o firmă care se ocupa de instalaţii de apă, doi colegi aveau o discuţie pe care dânsa a auzit-o: un inginer tânăr, ce lucra de câţiva ani în firmă, îi explica altui inginer şi mai tânăr, pare-se proaspăt absolvent, că ţevile alea două sunt paralele. Cel mai tânăr a întrebat că “ce-i aia?”, la care doamna (actuala mea colegă) s-a întors şi a izbucnit, luându-l la rost cum de nu ştie ce-s alea drepte paralele.
În acest sens am atanţionat în primele părţi asupra faptului că geometria se uită puternic dacă nu este parcursă o a două oară. Bănuiesc că orice materie este supusă unui astfel de fenomen, dar mai ales cunoştinţele învăţate pe de rost, pentru a fi ştiute până la test, acestea se uită lejer în următorii ani. Între altele, se pare că foarte mulţi, atât elevi, cât şi profesorii sau părinţii, sunt tentaţi să folosească simpla învăţare pe de rost la învăţarea geometriei în gimnaziu. Aceasta este o urmare directă a cantităţii mari şi a nivelului ridicat al materiei, dar şi a bombardării copiilor în privat cu mult mai mulţi stimuli extraşcolari (filme, jocuri pe calculator, site-uri şi platforme de socializare, accesibilizate masiv de către posesia smartphone-urilor). Învăţarea pe de rost este aparent mult mai eficientă la însuşirea unui material, cel puţin pe scurtă durată, până la test, dar nu conferă o durabilitate a cunoştinţelor.
Dimpotrivă, învăţarea intuitivă, bazată pe scurte explicaţii, care apoi sunt direct aplicate în construcţii practice, urmată de folosirea practică repetată în diferite situaţii la un nivel accesibil (sigur nu de performanţă, cel puţin nu la început, când trebuie evitate derapajele spre nivelul de excelenţă), acestea oferă o soliditate mult mai bună a cunoştinţelor.
Învăţarea intuitiv-practică, cu multă repetare, este însă puternic limitată în ceea ce priveşte cantitatea cunoştinţelor şi viteza de însuşire a acestora. Repetarea în diferite situaţii mai are un avantaj: pentru cei care nu au înţeles din prima, aceştia o vor face de obicei la viitoarele repetări şi folosiri, ajungând până la urmă să-şi fixeze ideea. Probabil că viitorii adulţi nu vor putea reda peste ani definiţia dreptelor paralele, dar vor putea explică ce sunt acestea (aşa, arătând cu mâinile, sau “ca şinele de cale ferată”).
Rezumând aceste gânduri, este clar că cunoştinţele geometrice predate în sistemul actual în România sunt deosebit de vulnerabile la fenomenul uitării totale. La o a doua trecere prin geometrie însă, elevii vor învăţa geometria într-o formă mult mai profund pătrunsă (adică mai puţin pe de rost, ci mai gândită), astfel încât noţiunile de bază – cum este şi cea de paralelism – se vor stabiliza definitiv, fixându-se astfel în zona de limbaj uzual, ce nu se vor mai uita (spre deosebire de învăţarea pe de rost, care este una superficială).
Un al doilea exemplu vine din primul an de facultate al fiului meu (Design industrial la TCM în Universitatea Tehnică din Cluj; cu 10 ani în urmă). Prin toamnă ne-a spus că la un anumit curs nu se oboseşte să meargă şi chiar eram tare nemulţumiţi de acest fapt, dar el insista că nu este important (era încă în perioada de rebeliune a pubertăţii târzii). Înainte de vacanţa de iarnă a apărut acasă cu nişte xero-copii după notiţele unui coleg care frecventase cursul respectiv şi atunci am înţeles de ce nu-l considera demn de atenţie. Era un curs în care studenţii erau iniţiaţi în arta construcţiilor geometrice cu rigla şi compasul. Pe bune: acolo erau elemente pe care eu le-am învăţat în gimnaziu; actualmente le parcurg cu elevii în clasele 5-7. Fiul meu le cunoştea pentru că le făcuse şi el în gimnaziu petrecut la Liceul de arte plastice “Romulus Ladea” din Cluj.
Din păcate însă, majoritatea absovenţilor de liceu habar nu aveau despre acestea, aşa încât profesorii de la facultatea respectivă erau nevoiţi să pună în primul semestru un astfel de curs, pentru că multe din elementele de proiectare din alte cursuri se bazau pe noţiuni de construcţii geometrice. Deci pe scurt, În primul semestru din anul I la Politehnică se prezentau noţiuni de gimnaziu, pentru că la ora actuală în România, elevii învăţau doar teoretic toată geometria, şi o parcurgeau oricum doar în gimnaziu. Chiar aşa, cum ar fi aia să înveţi geometria practic, fără multă teorie şi fără interminabila listă de probleme de demonstrat? Dar, hai să lăsăm gluma de-o parte şi să analizăm câteva vorbe ale D-lui Prof. Radu Gologan, exprimate prin februarie, într-o emisiune la radio Europa fm.
Este vorba de emisiunea din seria Deşteptarea României cu Cătălin Striblea din 26 feb. 2021 (eu am reascultate-o la adresa https://www.europafm.ro/reasculta-emisiuni/ ; am mai citat din acea emisiune când am vorbit despre birocraţie), în care invitat a fost Dl. Gologan. În aer plutea întrebarea “ce aţi schimba de urgenţă în şcoala românească?”. Iată un pasaj interesant al discuţiei de atunci:
O ascultătoare: La matematică există o programă încărcată; profesorul îşi face “norma” pentru că trebuie să o facă: astăzi predă vectori, mâine n-avem timp de aplicaţii pentru că trebuie să predăm altceva … . Copilul vine acasă, şi tot aşa: azi un capitol, mâine un capitol, n-avem timp să facem aplicaţii pe exerciţii, pe ce s-a predat. Şi atunci noi (părinţii) suntem obligaţi să punem meditatori. Azi aşa, mâine aşa, … . Lucrurile trebuiesc schimbate; noi vorbim de mulţi ani. Cine-i “sistemul” ăsta, care nu ne lasă? De cel puţin şase ani de când vorbim de această programă.
Radu Gologan: Lucrurile ăstea le spun: există o mentalitate în sistemul de învăţământ, că aceste mari programe, curriculum se numesc ele la fiecare materie, trebuie să păstreze o anumită formă, datorită unei tradiţii şi datorită acestei idei prost înţelese, că un copil trebuie neapărat pentru viitorul lui să înveţe ASTA, ASTA şi ASTA; “Cum o să iasă din şcoală fără să ştie vectori?”, de exemplu. Eu vă spun, ca matematician: NU SE ÎNTÂMPLĂ NIMIC, cu un viitor intelectual, dacă în clasa a 9-a nu învaţă vectori, ci învaţă o geometrie sintetică, simplificată, care să-i placă, să înveţe să deseneze figurile bine pe calculator, să înveţe să sistematizeze, să înveţe să gândească singur cam ce teoreme ar fi nevoie. Acesta ar fi învăţământul matematic de care este nevoie în şcoală.
Sunt cu totul de acord cu acest punct de vedere şi, încurajat de aceste gânduri mi-am luat curajul să redactez prezentul eseu. O singură întrebare am aici: cum vor reuşi elevii de clasa a 9-a să deseneze figurile pe calculator, când ei nu au formată arta desenării figurilor pe hârtie, ei nu au în mintea lor principiile construcţiilor geometrice? (exactitate, trasarea liniilor drepte, măsurarea lungimii sau a unghiurilor, mişcarea compasului etc.) Întreb asta pentru că eu ştiu cât de puţin lucrează profesorii din gimnaziu în direcţia construcţiilor exacte a figurilor geometrice. Mă refer aici la practicarea acestui “meşteşug” zilnic la clasă, inclusiv profesorii cu instrumentele pe tablă, ca model în faţa elevilor, pentru a se creea anumite mişcări ale gândurilor în momentul efectuării construcţiei. Fără să mai discutăm că elevii nu au deloc experienţă în marile probleme ale construcţiilor geometrice (de pildă, găsirea centrului unui cerc anterior trasat, de exemplu cu un pahar).
Pentru cei care ar avea impulsul să mă contrazică despre afirmaţia că profesorii nu prea se obosesc să folosească instrumentele geometrice la tablă, astfel încât elevii să aibă un model despre cum se fac construcţiile, pentru aceşti cititori am un exemplu proaspăt. Întrebând recent un elev în final de clasa a 6-a de la un liceu de centru din Cluj despre cum a decurs predarea online la geometrie în acest an şcolar (cu aproape şase luni de online pentru ei), acesta mi-a spus că profesoara scria pe o tabletă. Nici vorbă de folosirea instrumentelor pentru figuri exacte. Bine, l-am întrebat, dar în cele cinci săptămâni din toamnă sau acum la revenirea fizică în clasă, de la jumătatea lunii Mai, a folosit instrumente geometrice la tablă? Răspunsul a fost fără echivoc: niciodată nu a văzut-o făcând o figură geometrică altfel decât cu mâna liberă. Eu intuiam răspunsul, pentru că întrebându-l despre cum ar desena un triunghi isoscel cu baza de 4 cm şi laturile congruente de 6 cm, acesta mi-a răspuns “cu liniarul”. Habar nu avea de folosirea compasului la acest desen.
M-am gândit în acel moment despre cât m-am agitat eu ca să le pot prezenta elevilor transmisiunea directă cu tabla (inclusiv cu mine fără mască), astfel încât elevii să vadă fiecare pas al construcţiilor cu instrumentele geometrice. Eu oricum nu eram mulţumit nici aşa, pentru că nu-i puteam verifica în timp real ce şi cum fac ei, fiecare pe caietul personal, şi nici nu-i puteam ajuta individual, pe caietul personal, dacă vedeam că nu înţeleg. Dar, oricum, eu le-am arătat mult-mult mai mult decât acest mare NIMIC despre care mi-a povestit respectivul elev.
Doresc să revin totuşi foarte scurt la vectori. Dacă nu vor fi făcuţi de către profesorii de matematică, atunci vectorii vor rămâne pe seama profesorilor de fizică, iar acest fapt va fi unul deosebit de benefic. Vectorii reprezintă un fenomen cu origini clare în fizică (în primul rând forţele), iar introducerea lor axiomatic abstractă, pe baza unei definiţii date de către profesorul de matematică este una dintre cele mai mari gafe ale matematicii şcolare. Aşa cum m-am exprimat în câteva rânduri că Teorema lui Pitagora este în primul rând un fenomen matematic, iar profesorilor de fizică ar trebui să li se interzică ferm folosirea acesteia înainte ca cei de matematică să o introducă, tot aşa profesorii de matematică nu ar trebui puşi în situaţia de a introduce definiţionist abstract vectorii (ca segmente orientate).
Mult mai cu sens ar fi ca profesorii să ia într-o clasă mai mare (a 10-a sau a 11-a) vectorii într-o abordare matematică. Atunci se va putea chiar porni de la o definiţie de segment orientat (deşi merge şi fără aceasta), spunând în paralel cu definiţia ceva de genul: ştim că vectorii sunt nişte reprezentări ale unor forţe, iar tot ce vom învăţa acum este de fapt de inspiraţie din fizică, dar haideţi să încercăm o abordare matematică şi să vedeţi voi câte lucruri interesante putem noi rezolva prin aceşti vectori. Dar haideţi să lăsăm vectorii în pace, pentru că altul este subiectul eseului de faţă.
Mă cândesc să mă opresc aici cu aceste rânduri, nu de alta dar, cum am mai spus, este un subiect pe care se poate continua la nesfârşit şi nu asta mi-am propus. Închei doar reluând încă o dată o idee dintre cele de mai sus exprimate de Dl. Profesor Gologan: să înveţe să gândească singur în clasa a 9-a. DAAA, iar asta s-ar putea face mult mai bine pe baza geometriei sintetice. C. Titus Grigorovici
P.S. Trebuie totuşi să evoc o întâmplare ce leagă ultimele rânduri scrise de un pasaj din partea a doua a acestui eseu, anume despre întâmplarea cu eleva care era tentată să înveţe reţetele de rezolvare pe de rost şi pe care eu mă străduiam să o fac să şi gândească. Este elevul tipic ce scotea înainte de teste un caiet impecabil cu toate formulele şi teoremele bine sistematizate şi le mai repeta încă o dată. Pe de altă parte, la simulările date în clasă se stresa intens; la fel a făcut şi la simularea oficială din martie, doar mult mai tare. Iată ce mi-a povestit la ieşirea de la examenul de EN, extraordinar de entuziasmată, de suna curtea de vocea ei: Domnule Diriginte, am uitat formula de volum a cubului! M-am stresat şi nu mi-o mai aduceam aminte! Şi ştiţi ce-am făcut? Am început să o iau pe numere – cum ne-aţi învăţat – şi să văd câte cubuleţe sunt de fiecare dată, şi mi-am refăcut formula gândind.
Am simţit că, în mintea ei, eu câştigasem “meciul”. Fata asta a înţeles că gândind va putea face mult mai mult decât doar învăţând pe de rost formule şi tocind rezolvări. Cum va fi însă de la toamnă? Pe ce linie va fi condusă această elevă? Profesorii din licee nu se vor putea schimba de azi pe mâine. Dar, poate, programa cea nouă va fi astfel concepută încât să-i împingă pe profesori spre o matematică mai “gândibilă”.