Când am decis în toamnă devreme să ţin o lecţie deschisă despre numărul π, apoi când o elevă mi-a scris într-o lucrare fulger că valoarea lui π este 14,3 pe la începutul lui octombrie 2019, nici nu-mi trecea prin cap câte se vor mai întâmpla anul acesta şcolar în legătură cu π. Din punctul meu de vedere, pe lângă faptul că va rămâne în amintirea tuturor drept “anul şcolar cu pandemia”, acesta este clar şi “anul lui π” (chiar dacă nimeni nu l-a declarat oficial ca atare), legendarul număr ajungând să fie implicat chiar şi în alegerile prezidenţiale din noiembrie (nu cred să se mai fi întâmplat pe undeva aşa “minune de grozăvie”).
Faptul că în acest an şcolar avem ocazia să lecturăm inclusiv o carte nouă despre π confirmă doar că – pentru România – stelele s-au aliniat clar anul acesta “în zodia lui π”. Lucrarea cu pricina a apărut la Humanitas în 2019 şi se găseşte actualmente în librării, inclusiv în magezinele InMedio (fiind evident în lucru cu mult înaintea alegerilor prezidenţiale: printre pozele de pe net am găsit inclusiv un afiş despre o dezbatere de ştiinţă pornind de la această carte, ce a avut loc în 18 februarie 2020). Transmit pe această cale mulţumiri pentru plăcuta surpriză d-lui Vlad Zografi, coordonatorul seriei cărţilor de ştiinţă de la editura Humanitas, care se străduieşte de ani buni să ne aducă regulat astfel de cărţi în rafturile librăriilor.
După legendara carte omonimă a lui Florica T. Câmpan, o nouă lucrare pe această temă aduce bucurie profesorului de matematică. Dar surpriză: Pietro Greco nu este un matematician, ci are studii de chimie, dar s-a specializat în cărţi de popularizare a ştiinţei, din această postură scriind şi cartea despre π. Ideea cărţii a pornit de la numele său, care în italiană se prescurtează Pi Greco, având o pronunţie identică cu “P grec” (aşa cum spunem noi “I grec” literei Y).
Autorul fiind deci un nematematician, cartea este scrisă lejer, lipsită de limbajul pretenţios şi scorţos al specialistului, acel limbaj care contribuie din plin la inaccesibilizarea matematicii, mai ales în clasele gimnaziale (acolo unde se duce de fapt bătălia pentru mintea copilului, acolo unde “se despart apele” definitiv între iubitorii şi speriaţii de matematică). În acest context, întregul text este un bun exemplu de lejeritate a limbajului cu care ar trebui să intrăm la clase, iar lucrarea nu are voie să lipsească din biblioteca nici unui profesor de matematică (universitară sau preuniversitară).
Pentru cei familiarizaţi cu matematica, cartea reprezintă o lectură lejeră ce plimbă cititorul prin istoria matematicii, autorul alegând un traseu prin acele elemente care au măcar o minimă legătură cu evoluţia cunoaşterii numărului π. Aici găsim şi singurul “păcat” al cărţii, care are de multe ori aerul unui curs plictisitor de istoria matematicii, cu pasaje de enumerare parcă nesfârşită de nume şi date. Dacă reuşiţi să treceţi însă de aceste pasaje cu bucuria cititului neştirbită, veţi găsi din plin motive pentru care cartea merită citită. În prezentarea de faţă nu mi-am propus să dau prea multe citate matematice, ci doar câteva, pentru a vă stârni curiozitatea. Îmi permit să încep cu un pasaj foarte drag mie, prin faptul că “pune degetul” pe un aspect despre care nimeni nu mi-a atras atenţia până acum, iar pe mine nu m-a dus mintea să-l observ.
“Uciderea lui Arhimede de către un soldat roman va fi fost accidentală, dar a fost cu adevărat premonitorie. Pe parcursul îndelungatei sale istorii, Roma antică a dat puţine contribuţii la ştiinţă şi filozofie, încă şi mai puţine la matematică.” Pentru a ne convinge că Roma a ignorat matematica – ba chiar ştiinţa –, cum spune Carl Boyer, e de-ajuns să spunem că Elementele lui Euclid nu au fost traduse în latină decât şase secole şi jumătate după căderea Imperiului Roman de Apus, în 1120, direct din arabă şi prin munca unui englez, Abelard din Bath. Odată cu luarea Siracuzei (212 î.C.) şi, mai ales, după distrugerea Corintului şi a Cartaginei (146 î.C.), adică începând cu secolul II î.C., Roma cucereşte lumea greacă. Dar e cucerită de cultura grecilor. Toţi oamenii cultivaţi din emergenta putere latină învaţă limba greacă şi sunt influenţaţi de arta şi de filozofia greceşti. Cu toate acestea, în o mie de ani de istorie romană nu apare nici măcar un om de ştiinţă latin. (…) Abia la o mie cinci sute de ani după Arhimede se va naşte şi va lucra în Europa un matematician creativ, pisanul Leonardo Fibonacci. (pag. 69-70)
Pietro Greco are lejeritatea plăcută lecturii, dovedind uneori chiar doze bune de umor. De pildă, la pag. 72 abordează prezenţa numărului π în Biblie: (…) în Cartea regilor din Vechiul Testament, compusă pe la 550 î.C., i se atribuie în grabă valoarea 3. Cu siguranţă, evreii nu sunt o populaţie izolată, iar civilizaţia lor nu e imună la contaminări profunde, inclusiv la cea greacă. În alţi termeni, în secolele care au urmat scrierii Cărţii regilor ei se vor familiariza cu cultura elenistică şi cu valoarea lui π calculată de Arhimede (3,14) şi de Apoloniu (3,14167). Avem dovada. În secolul II, în timp ce la Alexandria lucrează Claudiu Ptolemeu, în Palestina, rabinul şi matematicianul Neemia se întreabă, din punct de vedere teologic, care valoare trebuie acceptată: 3, cum scrie în Cartea regilor, sau 3,1412, cum calculează Arhimede. Şi îşi cam prinde urechile, încercând să demonstreze că valoarea “adevărată” e cea a lui Arhimede, dar că, în acelaşi timp, Biblia nu greşeşte.
Multe pasaje de text ar merita citate, dar mă rezum la doar câteva, cu relevanţă pentru profesorul de matematică de la clasă. … O mare influenţă culturală are Michael Stifel, prieten şi susţinător al lui Martin Luther, care scrie şi publică la Nürnberg, în 1544, (…) Arithmetica integra, operă în care nu găsim noutăţi importante faţă de ceea ce se ştia în Italia, dar în care, pentru prima oară, sunt folosite sistematic semnele + şi – pentru numerele relative. (…; pag. 102) Ce sunt acelea numere relative? Denumirea aceasta surprinde cel mai bine momentul când în evoluţia gândirii matematicii (deci inclusiv la copii în gimnaziu) apar numerele de valoare opusă: în loc de vechiul 3 apar acum valorile relative +3 şi –3 (sper să ajung în curând să abordez într-un articol separat şi respectiva temă în legătură cu arta predării matematicii).
O figură centrală în această reflecţie e avocatul francez François Viète (1540-1603), un amator. Dar unul atât de bun încât ajunge să fie considerat cel mai mare matematician din secolul XVI. (…) Interesat de teoria numerelor, Viète pune practic capăt folosirii sistemului sexazecimal al anticilor şi îl impune definitiv pe cel zecimal. (…) Viète e primul care trece dincolo de Arhimede. Interesul pentru π apare încă din tinereţe: în 1559 (deci la 19 ani!), folosind metoda clasică a lui Arhimede, stabileşte corect primele nouă zecimale, calculând aria unui poligon cu 393 216 laturi, obţinut dublând de 16 ori numărul de laturi ale hexagonului iniţial. (…, pag. 110-111)
Vrând-nevrând, Pietro Greco ajunge încet şi la “vânătorii de zecimale”, despre care scrie: Doar fascinaţia numărului îndeamnă la asemenea eforturi colosale cu iz sportiv. (pag.115) În ciuda noutăţii seriei introduse de Viète, metoda lui Arhimede a rămas cea mai performantă până în secolul XVIII şi până la descoperirea calculului diferenţial şi a dezvoltării în serie, care i-a permis lui Leonhard Euler să calculeze în 1748, în mai puţin de o oră, valoarea lui π până la a douăzecea zecimală. Metoda lui Euler nu era doar precisă, ci şi foarte rapidă (…, pag 116, reluată apoi la pag.132). Închei aici prezentarea şi vă doresc lectură plăcută! CTG