Impardonabil

De curând am primit următorul comentariu la o postare din 2017:

In articolul dumneavoastra din octombrie 2019 , doua greseli impardonabile pentru un doritor sa invete pe altii :
– tabelele cu impartiri care au inundat “piata” nu sunt (o) tabla a impartirii! Nu exista o tabla a impartirii!!! Exista doar o tabla(patratica) a inmultirii , atribuita lui Pitagora,tabla dupa care se fac /se invata si impartirile!!!
– reprezentarea prin segmente a numerelor cunoscute si necunoscute si arelatiilor dintre ele se numeste corect :metoda figurativa! Metoda grafica – ati pomenit de ea- se invata incepand cu clasa a 7-a! Pentru lamuriri consultati singurul ghid aprobat de M.E. Matematica Ghidul invatatorului, editura Lucian.

Nu voi intra într-o polemică cu autorul acestor rânduri, deşi tare „mă mâncă buricele degetelor” să o fac (de pildă, să caut prin grămăjoara de cărţi de acasă în câte feluri au fost denumite, de-a lungul anilor, diferitele metode de rezolvare aritmetică a problemelor; sunt oricum mult mai variate decât sunt probabil în unicul şi irepetabil ghid mai sus menţionat). Doresc doar să-i mulţumesc colegei/colegului (oricine o fi acesta) pentru confirmarea teoriei mele despre precauţia autorilor de programă care au mutat problemele de aritmetică în clasa a 5-a, neexplicând mutarea pentru a nu jigni pe cineva (care – după cum se vede – ar putea sări în sus ca o bombă americană). Şi, oricum, e foarte bine că metoda grafică nu mai este în programă – ştiţi, aia din clasa a 7-a, ba nu, că din a 8-a – la alunecarea înapoi în a 7-a a sistemelor de ecuaţii.

Nu este prima dată când m-am confruntat la colegi cu această atitudine plină de o pedanterie excesivă a limbajului, o atitudine super îngâmfată cu pretenţia de atotştiutor. De pildă, când mă pregăteam de apariţia culegerii de geometrie, în primăvara lui 2006, o persoană foarte dragă mie, care a citit textul pentru a căuta eventuale greşeli (adică, după corectură), m-a anunţat „verde-n faţă” că culegerea este plină de greşeli! Cât de plină putea să fie, de vreme ce o corectaserăm noi în două rânduri (atât eu, cât şi soţia)? Ne-am aşezat la masă şi să vezi greşeli: era considerată o greşeală impardonabilă „determinaţi înălţimea triunghiului”, exprimarea „corectă” fiind „determinaţi lungimea înălţimii triunghiului” (şi multe altele de acelaşi fel).

Asta se întâmpla în 2006, iar singurul aspect cu adevărat impardonabil este faptul că mai există în ziua de azi indivizi cu o astfel de atitudine, acum, după 30 de ani de la schimbarea din 1989 şi mult dorita despărţire de comunism. Din păcate, vedem că tarele acelor ani trăiesc bine-mersi şi chiar proliferează.

Este păcat că după atâţia ani încă există oameni care au pretenţia că, criticându-l şi deci încercând să-l înjosească, să-l umilească pe cel de alături, el se dovedeşte automat superior acestuia. Atitudinea îmi aduce aminte de bancul cu dracii care beau o berică la barul din colţul iadului, după orele de program. Unul dintre draci era întotdeauna mai abătut şi mai obosit decât ceilalţi. Un altul dintre colegi îl întreabă ce probleme are, iar acesta îi răspunde că el este la cazanul cu evrei şi că, ăştia se ajută şi imediat ce unul vrea să iasă alţii îl împing în sus, iar el, dracul respectiv, până îl împinge inapoi, în altă parte a cazanului iese altul şi tot aşa. Un alt drac, unul mai grăsuţ şi mai îmbujorat, îi răspunde râzând, spunând că el are postul la cazanul cu români şi că, imediat ce un român vrea să se ridice, alţi români sar şi îl trag înapoi. Cu stima cuvenită, Titus G.

Supa lui Fibonacci

Supa de alaltăieri adăugată la supa de ieri face supa de azi. (cred că traducerea se potriveşte mai bine cu ciorbă).

P.S. Problema cu bancurile de matematicieni este că le gustă doar matematicienii; ceilalţi nu le înţeleg. Trebuie să le explici dacă vrei să le priceapă. Iar, dacă le explici, le vor pricepe, dar nu vor râde.

Impresii din Germania (3) – Poză împreună cu numărul tetraedral 56

Parafrazând o melodie veche – Love is All Around (Wet Wet Wet) – putem spune că Math is all around! De pildă, în vacanţa din această vară am vizitat cetatea din oraşul german Burghausen (la graniţa dintre Bavaria şi Austria), situat pe malul râului Salzach (care trece şi prin Salzburg) şi renumit pentru cea mai lungă cetate din Europa. Iar în curtea principală a cetăţii, ce găsim noi? Nici mai mult, nici mai puţin decât numărul tetraedral 56 construit din ghiulele vechi de piatră:

Deoarece – pornind din vârf – sunt şase straturi, înseamnă că grămada respectivă de bile reprezintă suma primelor şase numere triunghiulare, adică 1 + 3 + 6 + 10 + 15 + 21 (cele 21 de bile din stratul de bază au fost parţial îngropate ca să nu se rostogolească toată grămada). Vă las pe dvs. să studiaţi singuri detaliile generării numerelor tetraedrale, cât şi cum pot fi acestea integrate în predare ca o prelungire a studiului despre Suma lui Gauss (adică despre numerele triunghiulare). Ca să vă asigur pornirea vă prezint şi o poză cu primul număr tetraderal demn de băgat în seamă, anume cu 2-tetraedral care este 4. Titus Tetraedrus

Problemele de aritmetică în clasa a 5-a la doi ani de la reintroducerea în programa gimnazială şi caii din alaiul regelui

Credeam că încet am scăpat de acest subiect şi ca temele arzătoare de gimnaziu să se epuizeze, astfel încât să putem urca încet şi la teme de liceu. Da, de unde! În clasele gimnaziale situaţia este mai arzătoare ca oricând, iar realitatea înconjurătoare mă obligă să revin din nou la clasa a 5-a.

Pe de altă parte trebuie să recunosc că şi eu evoluez în timp real (adică în nici un caz nu am pretenţia că sunt din start posesorul “Sfântului Graal” al cunoaşterii predării matematicii), iar ceea ce scriu reprezintă dovada evoluţiei gândurilor mele: cu cât apar noi aspecte legate de un subiect, cu atât reuşesc să le corelez mai bine în minte şi să le înţeleg mai clar. Chiar redactarea acestor eseuri în sine mă ajută să-mi ordonez gândurile şi teoriile.

Realitatea este că mutările din noua programă de gimnaziu nu au fost deloc explicate profesorilor de matematică (darămite părinţilor). Unele pluteau în aer şi acţionau reparatoriu la alte decizii mai vechi (de pildă revenirea sistemelor de ecuaţii sau abandonarea metodei grafice în rezolvarea acestora). Altele au venit în mod total neaşteptat şi nici acum, după doi ani, încă nu sunt înţelese şi lămurite.

S-ar putea ca dintre acestea unele să îşi arate o eficienţă chiar şi fără înţelegerea lor de către profesori. Mă gândesc aici la teorema lui Pitagora din finalul clasei a 6-a şi la ce fel de  siaj va lăsa aceasta în urma sa în semestrul I din clasa a 7-a. Vom vedea în curând.

Altele sunt încă învăluite într-o ceaţă ciudată a neînţelegerii din toate părţile. Este cazul renumitelor probleme de aritmetică ce au fost introduse din nou în clasa a 5-a după un sfert de secol. Lipsesc însă explicaţiile şi justificările acestei mutări, situaţia rămânând învăluită într-o neînţelegere generalizată: profesorii nu ştiu de ce şi cum; părinţii – mai ales cei care s-ar pricepe să-şi ajute acasă la teme odraslele nedumerite – nu înţeleg de ce nu se poate prin ecuaţii; olimpiştii privesc lipsa ecuaţiilor ca pe o îngrădire. Chiar îmi este greu să evidenţiez o categorie de persoane implicate care să fi înţeles situaţia şi care să se simtă câştigată din această mutare. Haideţi să luăm pe rând principalele aspecte implicate în acest subiect şi să încercăm o lămurire.

1) Metodele aritmetice de rezolvare a unor probleme se află undeva între judecarea proprie a paşilor de făcut (gândirea off-road) şi folosirea relativ automată a unor reţete prefabricate. Formarea judecăţii şi gândirii logice se află aici alăturată şi totuşi în cea mai clară opoziţie cu învăţarea automată a reţetelor pe diferite metode. Metodele de rezolvare pe bază de diferite reţete de raţionament optimizat sunt bine puse la punct (poate chiar exagerat de bine sistematizate şi bine puse la punct). Rezolvarea primelor probleme la fiecare categorie – adică cele mai simple – introduse prin problematizare, ar avea menirea de a dizloca neuronii gândirii pure (acolo unde aceştia pot fi dizlocaţi), astfel încât elevii care au posibilitatea de a gândi să o şi facă. Şi de la cine pot ei “fura” cel mai bine arta gândirii, dacă nu de la profesorul de matematică, cunoscut ca omul care gândeşte cel mai logic? (cel puţin aşa este de aşteptat; că sunt şi contra-exemple la această supoziţie, profesori care le cer şi în liceu, la clase de mate-info, elevilor să înveţe rezolvări pe de rost, aceasta este un alt subiect)

2) Este evident că marea majoritate a învăţătoarelor nu sunt mari maeştrii ai gândirii raţional-logice tipic matematicii (cu excepţiile de rigoare, desigur). Situaţia învăţătoarelor este una care înclină balanţa mai degrabă spre predarea reţetelor, adică a metodelor de rezolvare. De la învăţătoare elevii pot învăţa metode, dar nu pot “fura” arta de a gândi. Avem în acest sens multe exemple. Unul dintre ultimele exemple ale culturii spre nongândire, despre care am aflat eu, îl reprezintă tabla împărţirii. Cine se gândeşte să înveţe pe de rost încă o tablă, pe lângă tabla înmulţirii, acela sigur nu este o persoană cu o gândire deosebit de sprinţară.

3) În aceste condiţii mutarea problemelor aritmetice în clasa a 5-a pare cel mai raţional gest. Există un singur impediment la acest pas: profesorii sunt departe de gestul de blândeţe maternă de a sta lângă cel mic cu răbdare şi a încerca să-i formeze gândirea (nu pretind că toate învăţătoarele ar poseda răbdarea şi gândul pentru aşa ceva). Profesorul este fugărit de multă materie şi vrea eficienţă. Iar eficienţa în acest caz se găseşte în ecuaţii. Mai exact, în punerea unei probleme în ecuaţie. Aşa că autorii programei au luat cea mai logică decizie: au eliminat ecuaţiile din clasa a 5-a.

Minunat raţionament! Cu o singură scăpare: nimeni nu a explicat aceste aspecte profesorilor. Tot ce am încercat să lămuresc în aceste trei puncte sunt doar gândurile mele personale; nu le-am găsit niciunde pentru că niciunde nu există nici cea mai mică justificare a acestei mutări. Dacă explicaţia mea nu este corectă, atunci trebuie că există altă explicaţie; care este această? Se poate totuşi găsi şi o explicaţie a ne-existenţei unor explicaţii oficiale: dorinţa de a evita înjosirea învăţătoarelor. Multe doamne învăţătoare s-ar simţi jignite de un astfel de punct de vedere oficial.

4) Totul bine şi logic până aici, numai că olimpiştii nu au fost deloc de acord la început cu cerinţa de a abandona mult-iubitele ecuaţii. Mişcarea i-a scos puternic din “zona de confort”. Până la urmă însă lumea s-a obişnuit cu ideea respectivă şi în general nu se mai învaţă în clasa a 5-a punerea în ecuaţie.

5) Mai rămân câţiva actori ai acestui tablou, a căror situaţie trebuie analizată: părinţii, mai ales cei buni la matematică, care nu înţeleg de ce să nu se pună o problemă în ecuaţie. Dacă au lipsit explicaţiile la adresa dascălilor, ce să ne mai aşteptăm în legătură cu lămurirea părinţilor? Singurii care ar fi putut face eficient această lămurire – profesorii – nu ştiu nici ei ce se întâmplă.

Cred că o înţelegere a acestor aspecte îl poate lămurii pe profesorul de matematică despre rolul său şi al acestor probleme în formarea gândiri elevilor, dându-i o doză de energie în a se implica mai intens în această lecţie. Cu mine aşa s-a întâmplat. NU se pune problema să abandonăm punerea în ecuaţie, nici reţetele,adică metodele respective (figurativă, a falsei ipoteze, a mersului invers etc.). Problema este însă doar de a fi conştienţii că trebuie să folosim ocazia şi să încercăm să le activăm elevilor şi gândirea creatoare, nu doar capacităţile de a-şi însuşi o metodă pre-gătită şi optimizată de alţii înantea sa. Copiii trebuie învăţaţi să gândească! (mintea copilului trebuie lăsată şi încurajată să-şi “gătească” simgură raţionamente)  T.G.

P.S. În strădaniile mele am strâns probleme şi încerc să le ordonez şi să le adaptez folosirii actoale la clasă (când voi fi cât de cât mulţumit, poate le voi şi publica). Până atunci vă propun o problemă adaptată, refăcută din amintiri după o problemă citită într-o carte nemţească veche, în urmă cu peste 20 de ani în urmă (cartea era atunci deja foarte veche). Consider această problemă drept un bun exemplu la care mai bine stai departe de punerea în ecuaţie şi încerci o combinaţie între metoda mersului invers şi metoda grafică. Aşadar:

Află câţi cai sunt pregătiţi pentru alaiul regelui, ştiind că: la caleaşca regelui sunt înhămaţi jumătate din numărul cailor şi încă jumătate de cal; la caleaşca reginei sunt înhămaţi jumătate din restul cailor şi încă jumătate de cal; la caleaşca servitorilor jumătate din numărul cailor rămaşi după primele două caleşti şi încă o jumătate de cal. În plus, mai ştim că pe lângă toţi caii înhămaţi la cele trei caleşti, mai rămâne un cal pentru însoţitorul de alai.

După citirea acestei probleme ţin întotdeauna să-i liniştesc pe elevi: nu vă speriaţi, nimeni nu taie sărmanii căluţi în două. Această problemă se rezolvă cu creionul, nu cu toporul.

Impresii din Germania (2) – Perlele elevilor după Der Spiegel

Un prieten foarte bun din Germania, fost coleg din facultate, m-a aşteptat cu o carte minunată, cu un titlu cvasi-intraductibil, dar cu subtitlul: Noi răspunsuri comice ale elevilor (Neue witzige Schüler-Antworten, editată de revista Spiegel). Cartea reprezintă o colecţie ale unor răspunsuri trimise de diferiţi profesori, răspunsuri ordonate şi comentate pe materii: traduceri din engleză; realizări sclipitoare la istorie etc. Există şi un capitol cu cele mai bune scuze sau unul cu perle de la Bac. Unul din capitole tratează ştiinţele reale, chimia, fizica şi matematica. M-am gândit să vă prezint câteva răspunsuri traductibile din această carte.

Întrebare: ai zece bomboane; cineva îţi cere două bomboane. Câte mai ai?
Răspuns: zece! (clasa a 2-a)

Sarcină: Realizează mai întâi o schiţă a problemei.
Răspuns: Bărbaţii adevăraţi nu au nevoie de schiţă. (clasa a 9-a)

Întrebare: Inversul (valoarea întoarsă, pe germană Kehrwert) lui 5/6 este 6/5. Care este valoarea întoarsă a lui 9?
Răspuns: 6.

Într-o lucrare de control: Prin anomalia apei înţelegem că apa la patru grade este mai rece decât la zero grade.

Întrebare: dacă turnăm împreună două pahare de apă, primul de 20 de grade, iar al doilea de 30 de grade, câte grade va avea apa pusă împreună?
Răspuns: 50 de grade, desigur! Comentariul profesorului: Super, înseamnă că s-a găsit soluţia la criza energetică! (clasa a 7-a)

Închei cu două perle de la ora de engleză şi una de la Bac:

Sarcină: Tradu în engleză cuvântul primar (în germană: Bürgermeister).
Răspuns: Burgerking. (clasa a 5-a)

Sarcină: Cum îl întrebi pe un elev englez dacă este vegetarian?
Răspuns: Are you a vegetable?

Sarcină: Prezintă sfârşitul regimurilor comuniste pe exemplul României.
Răspuns: Ciao Cescu!

O scurtă analiză la 4 ani de pentagonia.ro

În urmă cu patru ani porneam site-ul pentagonia.ro sub formă de blog (mai mult sau mai puţin personal) cu câteva gânduri în minte. Trebuia să fac ceva pentru schimbarea matematicii din şcolile româneşti, mai ales de la nivelul gimnazial, unde foarte mulţi copii erau chinuiţi de o matematică mult prea grea, în numele unor principii care pentru mine păreau de mult apuse. Astfel, strădania acestor ani s-a îndreptat în proporţie de 99% spre gimnaziu, 0,99% spre învăţământul primar şi doar 0,01% spre liceu.

Nu-mi permit a pretinde un merit în schimbările din ultimii ani, dar îmi permit măcar să mă bucur de anumite aspecte la care, poate, agitaţia mea pentagoneză a contribuit câte puţin (le enumăr în mod aleator), iar cei care aţi citit postările de pe acest blog le veţi înţelege: Moise Guran vorbea în acest început de an şcolar despre “reforma din 1979”; în numele matematicienilor, Dl. Profesor Radu Gologan recunoştea ca nefastă didactic orientarea prea axiomatist teoreticistă a predării în cadrul reformei respective (Formalizarea bourbakistă a matematicii este utilă cercetării matematice şi învăţământului superior de specializare, dar considerăm acum, nefastă didactic.), deci automat şi importanţa resetării predării spre o abordare mai potrivită vârstelor şcolare; lungimea de undă a actualei programe de matematică gimnazială este una mult mai logică şi mai umană pentru mintea în formare a elevilor, iar exemplele pot continua mult şi bine.

Bucuria ce o trăiesc în aceste momente este una deosebită: aproape că am impresia că sunt într-un film din anii ’80, când Ceauşescu îi obliga pe români să îndeplinească planul cincinal în 4 ani, iar toată lumea se grăbea să raporteze asta. Stimaţi cititori, vă muţumesc din suflet că îmi vizitaţi umilul blog (în zilele slabe cel puţin 50 de accesări, în zilele mai bune mult peste 100 de vizite). Titus G.

Coperţile cărţilor de matematică

Profesorul de matematică este deseori un personaj având aparent tente autiste faţă de preocupările şi percepţiile celor din jur. El este ocupat întotdeauna de lucruri mult mai serioase decât cei din jurul său. Profesorul de matematică nu se interesează atât de mult de lucrurile exteriore, considerându-le superficiale: el face parte din cei care sunt preocupaţi de subiecte de profunzime intelectuală inaccesibile majorităţii.

Autorul unei căriţi de matematică are toate gândurile sale îndreptate asupra conţinuturilor.

Coperta cărţii, design-ul acesteia şi imaginea ce se doreşte cât mai eficientă din punct de vedere comercial, transmiţând un mesaj care să ducă la vânzări cât mai bune de către editură, toate aceste aspecte nu intră în preocuparea autorului. De acestea se ocupă editura, care de obicei are un designer specializat, responsabil de realizarea coperţilor. Ce ştie acesta despre matematică? De obicei nimic! Dacă cineva de specialitate matematică interferează în acest proces, poate se obţine ceva mai coerent, dacă nu … Ce coperţi primesc cărţile dacă nu se uită şi un matematician responsabil? Dumnezeu cu mila!

Pentru prima dată am remarcat acest aspect în urmă cu câţiva ani când o editură vindea nişte cărţi pentru vacanţă, aşa-numitele “caiete de vacanţă”, pentru clasa a VI-a, având pe copertă desenaţi câţiva copilaşi în costume de baie (desenaţi ca proporţii cam de clase primare), care desenau aidoma lui Arhimede geometrie pe nisipul plajei. Iar desenele erau despre cercul trigonometric, adică de liceu. Făcând o medie aritmetică între vârsta plauzibilă a acelor copilaşi şi vârsta materiei desenate, se cam obţinea clasa a 6-a (aceasta a fost o glumă).

Anul ăsta parcă este inflaţie în acest sens: o carte de pregătire a Evaluării Naţionale la clasa a 6-a pe a cărei copertă vedem ecuaţii complexe şi relaţii trigonometrice cu funcţii exprimate în radiani; un manual de clasa a 7-a având pe copertă plin de elemente scrise haotic din matematica de liceu. Pentru a nu intra într-un conflict oficial cu editurile respective prefer să nu postez imaginea acestor coperţi sau să amintesc numele editurilor, dar onoraţii colegi vor putea fi atenţi şi vor găsi astfel de exemple, confirmând spusele mele.

Există şi exemple pozitive în acest sens: o culegere cu teste de pregătire a examenului de EN de la sfârşitul clasei a 8-a, pe a cărei copertă este imaginea cu rezolvarea unui exerciţiu chiar de clasa a 8-a (unii îl fac în clasa a 7-a). Perfect, sau cum ar zice cineva: “exact pe felie” (editura care are acest exemplu se regăseşte şi la categoria contra-exemple).

Închei cu un exemplu din domeniul caietelor: de curând am găsit într-un magazin un caiet al unei firme străine producătoare renumite (caietul este al filialei din România) pe a cărui copertă este imprimată o imagine cu elemente de matematică parcă scrise pe o tablă haotic, pentru a da impresia de geniu în focul creaţiei (algebră şi geometrie, dar şi de chimie), având însă precizat chiar pe copertă cuvântul geometrie. Clar, nu? Îl deschid ca să văd dacă este cu pătrăţele sau cu foaie velină, şi ce-mi văd ochii? Foi cu linii pentru text! Vă daţi seama că am cumpărat caietul respectiv cu 2 lei: oricui îl arăt râde ca la cel mai bun banc (primul a fost un domn în faţa noastră la casă, care se uita puţin nedumerit de ce râdem: i-am arătat caietul, mai întâi coperta 2-3 secunde, apoi interiorul). Nu poţi să te abţi; te pufneşte râsul instant. Made in Romania

P.S. În urmă cu 14 ani tratam cu editura Humanitas-Educaţional pentru publicarea unei culegeri de probleme de geometrie plană. Visam să punem pe copertă imaginea unei picturi abstracte ale pictorului Wassily Kandinsky. Există câteva foarte potrivite pentru aşa ceva, cu triunghiuri, cercuri şi diferite drepte. De ce să te chinui, când poţi lua de la cel mai bun? Dar de la editură mi-au explicat că ar fi foarte scump şi că ei au un designer angajat, care – să stau liniştit – ne va “designa” o copertă foarte bună. Şi într-adevăr, aşa a fost: nu am ce să-i reproşez. Aşa pretenţios cum sunt, trebuie să recunosc că a fost o copertă ok. De, vorbim totuşi de personal angajat al unei edituri cu atenţie şi asupra aspectelor de sentiment, de simţire. A trebuit însă să mai aştept jumătate de an ca să răsuflu uşurat: cartea a apărut în mai 2006, de ziua mea, şi de-abia atunci am văzut coperta. Titus G.

Impresii din Germania (1) – Salutări de la Gauss

Aşa a vrut viaţa ca anul acesta să ajung şi în vacanţă în Germania, şi aşa a vrut să ajungem prin apropiere de Göttingen, aşa că ne-am dus cu familia “să-l salutăm pe Gauss” (alături de Weber). Şi l-am găsit bine-mersi. Aţi remarcat? Nu la buchetul de flori mă refeream. Să ne uităm mai cu atenţie:



Cu încălzirea globală, căldură mare şi prin Germania! S-o fi gândit cineva şi la săracu’ Gauss. Aşa că, fie Sommerfest, Septemberfest sau Oktoberfest, luaţi o bere şi spor la matematică în noul an şcolar! Prost, Ihr Lieben! (Noroc, dragilor!)

Programa PENTAGONIA (8) – Conţinuturi clasa a VIII-a

În semestrul I din clasa a VIII-a materia este foarte vastă (cca. 2/3 din materia anului) pentru a permite elevilor o perioadă cât mai lungă de lucru pe teste complete pentru EN în primăvară. Cel mai nou aspect în ordinea lecţiilor îl reprezintă studiul complet al piramidelor şi al prismelor (figuri, arii şi volume pe studiate baze intuitiv-raţionale) în prima jumătate a semestrului, urmate abia apoi de studiul poziţiilor relative al dreptelor şi planelor cu aplicaţii direct pe corpurile studiate. Se obţine astfel o accesibilizare a materiei deosebit de eficientă pentru elevii de rând.

În semestrul al II-lea mai rămân funcţiile, trunchiurile de piramidă şi corpurile rotunde, urmate de câteva lecţii de cultură generală, obişnuite mai mult din zona opţională “matematica altfel”. Iată conţinuturile:

  1. ECUAŢII ŞI SISTEME DE ECUAŢII (recapitulare şi completări)
  • Ecuaţii cu o necunoscută de tipurile studiate
  • Sisteme de două ecuaţii cu două necunoscute; Sisteme de trei ecuaţii cu trei nec.
  • Probleme rezolvabile prin ecuaţii sau prin sisteme de ecuaţii
  1. INTERVALE DE NUMERE REALE ŞI INECUAŢII ÎN
  • Mulţimi definite printr-o proprietate a elementelor ei
  • Noţiunea de interval de numere reale; clasificarea intervalelor cu scriere şi reprezentarea grafică pe axa numerelor; operaţii cu intervale
  • Inecuaţii în ℝ, cu scrierea mulţimii soluţiilor
  • Sisteme de două inecuaţii, cu scrierea mulţimii soluţiilor
  • Inecuaţii cu modul, de tipul | ax + b | < c respectiv | ax + b | ≤ c
  1. CALCUL ALGEBRIC (recapitulare şi completări)
  • Sume algebrice: operaţii cu acestea, desfacerea parantezelor, aducerea la forma cea mai simplă
  • Formule de calcul prescurtat: pătratul sumelor sau al diferenţelor; produsul sumei cu diferenţa; pătratul trinomului; cubul sumei şi al diferenţei (cu dem. algebrice şi geometrice); suma şi diferenţa de cuburi; aplicaţii
  • Descompunerea în factori a sumelor algebrice: factorul comun; restrângerea pătratelor şi diferenţa de pătrate; grupări + factor comun; metode combinate; metode artizanale de descompunere a trinomului de gradul II
  • Ecuaţii de gradul II: cazuri particulare pe baza formulelor de calcul prescurtat sau similare cu metodele artizanale de descompunere a trinomului de gradul II
  • Fracţii algebrice: simplificarea acestora ca aplicaţie la descompunerea în factori a sumelor algebrice; domeniul de definiţie al unei fracţii algebrice cu o nedeterm.
  • Operaţii cu fracţii algebrice; aducerea expresiilor la forma cea mai simplă
  1. FUNCŢII ŞI COMPLETĂRI (vezi indicaţiile metodice*)
  • Elemente de organizare a datelor: tabele, diagrame
  • Noţiunea de funcţie: elemente, exemple, prezentări prin tabele sau diagrame Venn-Euler, reprezentări grafice prin diagrame sau pe bază de blocuri verticale
  • Sistemul cartezian de axe ortogonale: deducerea din reprezentarea grafică pe bază de blocuri verticale; coordonatele unui punct şi reprezentarea grafică; terminologia specifică
  • Reprezentarea grafică a unei funcţii: diferite funcţii pe domenii finite pentru vizualizarea a diferite forme de grafice (de pildă: x2, |x + 2|, (x – 1)3,, pe domenii cu valori întregi sau zecimale)
  • Graficul funcţiei de gradul I: exemple pe domenii (de pildă f(x) = 2x -3 pe rând pe următoarele domenii: {-1, 0, 1, 2, 3}, apoi ℤ, apoi ℝ şi pe [-1; 3] în final), cu observarea formei graficului şi adaptarea reprezentării în funcţie de compoziţia acestuia, cu deducerea metodei de reprezentare grafică prin două puncte + unul de control
  • Ecuaţia ataşată unei funcţii de gradul I: dreapta soluţiilor unei ecuaţii; folosirea ecuaţiei ataşate în rezolvarea diferitelor probleme (puncte de coordonate egale de pe un grafic; intersecţia graficelor a două funcţii; determinarea funcţiei de gradul I ce trece prin două puncte date), inclusiv determinarea punctelor de intersecţie a graficului cu axele de coordonate
  • Metoda grafică în rezolvarea unui sistem de ecuaţii (două ecuaţii cu două necunoscute)
  • Elemente de calcul geometric în planul cartezian: calcule de arii şi lungimi şi găsirea mijlocului unui segment etc. (aplicaţii elementare)
  • Ecuaţia de gradul II: rezolvarea cu formulele generale
  1. CORPURI GEOMETRICE – PARTEA I
  • Pătratul şi triunghiul echilateral: aria şi liniile importante (recapitulare)
  • Cubul: diferite reprezentări grafice, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii, volum şi lungimea diagonalei
  • Secţiuni în cub: reprezentarea grafică a secţiunilor paralele cu feţele; secţiunea diagonală; secţiunea Δ echilateral (stabilirea intuitivă a formei; calcul perimetrului şi a ariei acestora)
  • Paralelipipedul dreptunghic (cuboidul): reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii, volum şi lungimea diagonalei (teorema lui Pitagora în spaţiu, pe baza observării intuitive a unghiului drept: o muchie verticală este perpendiculară pe baza orizontală, deci şi pe o diagonală a acestei baze)
  • Prisma patrulateră regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii, volum şi lungimea diagonalei
  • Prisma triunghiulară regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum
  • Prisma hexagonală regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum; situaţia diagonalelor
  • Piramida patrulateră regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum; apotema bazei, apotema piramidei şi conexiunile de calcul cu muchia bazei şi cu înălţimea piramidei
  • Secţiuni în piramidă: secţiuni transversale, secţiuni diagonale şi secţiuni paralele cu baza în piramida patrulateră regulată (desenarea şi stabilirea intuitivă a formei)
  • Piramida triunghiulară regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum
  • Tetraedrul regulat: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii, înălţime şi volum
  • Piramida hexagonală regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum
  1. PUNCTE, DREPTE ŞI PLANE ÎN SPAŢIU
  • Reprezentarea grafică şi notarea punctelor, dreptelor şi planelor; diferitele situaţii de poziţii relative ale acestora: puncte coplanare, determinarea planului, drepte necoplanare, paralelism sau intersecţii între drepte, plane
  • Studiul poziţiilor relative între două drepte, o dreaptă şi un plan, respectiv două plane: demonstrarea situaţiilor de paralelism, respectiv de perpendicularitate, şi determinarea înclinaţiei, respectiv a măsurii unghiului determinat de acestea, în cazul poziţionării oblice (demonstrarea paralelismului a două drepte, calculul măsurii unghiului relativ a două drepte necoplanare, demonstrarea perpendicularităţii a două drepte necoplanare; în mod similar în cazul unei drepte şi a unui plan, respectiv în cazul a două plane); deducerea intuitivă în cazul fiecărei demonstraţii;
  • Teorema celor trei perpendiculare; calculul distanţei de la punct la dreaptă
  • Diverse corpuri neregulate: exemple cu reprezentarea grafică, descriere, calculul ariei şi a volumului; calculul distanţei de la un punct la un plan
  1. CORPURI GEOMETRICE – PARTEA a II-a
  • Trunchiul de piramidă patrulateră regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum
  • Trunchiul de piramidă triunghiulară regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum
  • Raportul de asemănare, raportul ariilor figurilor asemenea şi raportul volumelor corpurilor asemenea: aplicaţii în piramidele secţionate paralel cu baza pentru obţinerea trunchiurilor de piramidă
  • Trunchiul de piramidă hexagonală regulată: reprezentarea grafică, desfăşurarea, elemente (colţuri, muchii, feţe cu descriere), deducerea formulelor pentru arii şi volum
  • Cilindrul (circular drept): reprezentarea grafică, descrierea; desfăşurarea, deducerea formulelor pentru arii şi volum
  • Conul (circular drept): reprezentarea grafică, descrierea; desfăşurarea, deducerea formulelor pentru arii şi volum
  • Trunchiul de con (circular drept): reprezentarea grafică, descrierea; desfăşurarea, deducerea formulelor pentru arii şi volum
  • Sfera: reprezentarea grafică, descrierea; desfăşurarea, deducerea formulelor pentru arie şi volum
  • Elemente de geometria cercului şi a sferei pe globul pământesc: rotaţia Terrei în jurul soarelui, axa de rotaţie, înclinarea acesteia faţă de planul ecliptic (ecliptică) şi deducerea latitudinii tropicelor şi ale cercurilor polare
  • Corpurile platonice (perfecte) cu prezentarea celor cinci: tetraedrul, cubul, octaedrul, dodecaedrul şi icosaedrul; activităţi de cunoaştere a ultimelor trei (desenare, construcţie din hârtie sau beţişoare, determinarea formulelor de arie şi volum dacă sunt accesibile); exemple de corpuri arhimedice (trunchieri ale corpurilor platonice): activităţi de cunoaştere pe exemple, mingea de fotbal

CTG

8-Clasa-a-VIII-a-ProgramaPentagonia.pdf

Programa PENTAGONIA (7) – Conţinuturi clasa a VII-a

În semestrul I din clasa a VII-a materia se concentrează aparent mai mult asupra geometriei, aritmetico-algebra regăsindu-se mai mult în slujba calculelor din geometrie (arii şi teorema lui Pitagora). Geometria însă se împarte în două linii preocupaţionale: pentru toţi elevii (materia de nota 5-7) se studiază calculul de arii şi perimetre, folosind teorema lui Pitagora; pentru elevii mai matematicieni se porneşte în paralel studiul ordonat al diferitelor categorii de demonstraţii pe baza cunoştinţelor deja dobândite în clasa a VI-a sau pe baza celor noi: demonstraţii cu unghiuri, cu segmente şi cu metoda triunghiurilor congruente. O surpriză interesantă o reprezintă studiul poligoanelor regulate din punct de vedere a unghiurilor, studiu ce se combină cu cel al ariilor, ducând la determinarea ariei cercului.

Surpriza cea mai mare (care scoate agresiv profesorul din zona actuală de obişnuinţă) o reprezintă însă faptul că trebuie lucrat pe exemple de calcul cu teorema lui Pitagora în cazul rezultatelor neexacte cu calcule raţionale aproximative. De abia după stabilizarea calculelor întregi sau aproximative (cu aplicaţie clară în viaţa aplicativă extramatematică) se va trece la exprimarea rezultatelor iraţionale (cel mai bine în semestrul al II-lea). Acelaşi traseu al studiului este valabil şi în cazul lungimii şi ariei cercului, introducându-se iniţial doar probleme de calcul aproximativ (de tipul: lungimea bordurii unui sens giratoriu de diametru dat, cu rezultatul aproximativ cu două zecimale exacte, adică o exactitate de milimetru). Primul semestru are aparent mai multă geometrie,dar oferă o stabilizare a calculului aritmetic şi o apropiere neagresivă de calculul pur algebric al numerelor iraţionale (scoaterea parţială a factorilor de sub radical şi calculul cu astfel de numere, care în vest se studiază eventual doar la nivelul liceului).

În semestrul al II-lea algebra îşi ia revanşa, materia concentrându-se mai mult pe această latură. Ca aspect important, pe lângă revenirea sistemelor de ecuaţii în finalul clasei a VII-a, se păstrează şi studiul formulelor de calcul prescurtat pătratice. Iată conţinuturile:

  1. NUMERE RAŢIONALE (recapitulare şi completări – I)
  • Operaţii cu numere naturale, întregi sau raţionale
  • Operaţii cu mulţimi; mulţimile ℕ, ℤ, ℚ
  • Puterea cu exponent întreg
  • Procente şi proporţionalitate; ecuaţii; punerea în ecuaţie a unei probleme
  1. RĂDĂCINA PĂTRATĂ (recapitulare şi completări – II)
  • Rădăcina numerelor pătrate: pe baza tablei pătratelor, a observaţiilor pe ultima cifră şi prin descompunere
  • Produsul şi câtul rădăcinilor pătrate; aplicaţii de tipul sau
  • Algoritmul de extragere a rădăcinii pătrate din numere raţionale (în cazuri exacte, respectiv aproximative)
  • Ideea de număr iraţional
  1. NUMERE IRAŢIONALE
  • Noţiunea de număr iraţional; incluziunea ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ cu diferite exemple
  • Forma aproximativă şi forma exactă a numerelor iraţionale: studiu comparativ; numărul π; reprezentarea numerelor iraţionale pe axa numerelor; numerele reale
  • Scoaterea factorilor de sub radical; introducerea factorilor sub radical: transformarea exactă a numerelor iraţionale; pătratul numerelor iraţionale; ridicarea la putere naturală a numerelor iraţionale
  • Produsul şi câtul numerelor iraţionale; raţionalizarea numitorului (I); ridicarea la putere întreagă a numerelor iraţionale
  • Suma numerelor iraţionale; ordinea operaţiilor; numere iraţionale în forma de sume neefectuabile
  • Valoarea absolută a unui număr real
  1. CALCUL ALGEBRIC
  • Operaţii cu numere reprezentate prin litere: numere produsul, câtul şi puterea
  • Însumarea numerelor reprezentate prin litere; noţiunile de monom, binom, trinom şi polinom (sume algebrice); reducerea termenilor opuşi
  • Desfacerea parantezelor: produsul unui monom cu un polinom; produsul a două binoame sau trinoame
  • Formule de calcul prescurtat (doar formulele binomiale de gradul II): pătratul sumei şi pătratul diferenţei; produsul sumei cu diferenţa (cu dem. algebrice, dar şi geometrice, pe bază de arii)
  • Descompuneri elementare prin factor comun şi reciprocele formulelor de calcul prescurtat (restrângerea pătratelor, diferenţa de pătrate); aplicaţii în simplificarea fracţiilor şi calculul din T. Pitagora
  • Aplicaţi: calcule de expresii; raţionalizarea numitorului (II); demonstraţii la teorema lui Pitagora pe bază de arii şi formule binomiale
  1. ECUAŢII ŞI SISTEME DE ECUAŢII
  • Ecuaţii de gr. I; ecuaţii combinate din diferite forme deja studiate, inclusiv cu folosirea formulelor binomiale (ecuaţii în care se reduc termenii de gradul II); mulţimea soluţiilor
  • Ecuaţii de gradul II de forma x2= b,  x2 + a = b şi ax2 = b; mulţimea soluţiilor
  • Ecuaţii cu module de forma | ax + b | = c; mulţimea soluţiilor
  • Ecuaţii cu două necunoscute: scrierea soluţiilor ca perechi ordonate
  • Sisteme iniţiale de ecuaţii (o ecuaţie cu o nec. + o ecuaţie cu două necunoscute); scrierea soluţiilor, inclusiv în cazul cu două soluţii (ec. de gr. II sau cu modul)
  • Sisteme de ecuaţii (două ecuaţii cu două necunoscute de forma y = ax + b  şi  y = cx + d): metoda tranzitivităţii
  • Sisteme de ecuaţii (două ecuaţii cu două necunoscute): metoda substituţiei
  • Sisteme de ecuaţii (două ecuaţii cu două necunoscute): metoda reducerii
  • Rezolvarea problemelor prin punere în ecuaţie sau în sistem de ecuaţii
  1. DEMONSTRAŢIA GEOMETRICĂ (recapitulare şi completări – I)
  • Poligoane: suma unghiurilor; poligoane regulate înscrise în cerc cu 3, 4, 5, 6, 8, 9, 10, 12 laturi şi unghiurile acestora (vezi indic. met.*)
  • Demonstraţii cu unghiuri: folosind proprietăţile figurilor studiate; liniile importante; mediana pe ipotenuză; cateta opusă unghiului de 30o
  • Metoda triunghiurilor congruente: cazurile de congruenţă LLL, LUL, ULU; congruenţa triunghiurilor dreptunghice
  • Linia mijlocie în triunghi (intuitiv, fără dem. inclusiv la teorema reciprocă); linia mijlocie în trapez (intuitiv, dar cu dem. lungimii);
  • Teoreme directe şi teoreme reciproce: exemplificări pe figurile studiate
  1. ARII ŞI PERIMETRE (recapitulare şi completări – II)
  • Aria patrulaterelor şi a triunghiurilor: dreptunghi, pătrat, Δ dreptunghic, paralelogram; Δ oarecare, romb, trapez (cu dem. grafice); alte formule sau situaţii (rombul II, pătratul II, Δ dreptunghic II, deltoidul, Δ isoscel; Δ obtuzunghic)
  • Proprietatea de arie a medianei; centrul de greutate şi poziţia sa pe mediană
  • Figuri echivalente: transformarea triunghiului şi a paralelogramului cu păstarea ariei (forfecarea triunghiurilor şi a paralelogramelor); figura “gnomon”
  • Teorema lui Pitagora: demonstraţie prin arii folosind transformări echivalente de paralelograme
  • Calcule de arii şi perimetre folosind Teorema lui Pitagora: calcule exacte (triplete pitagorice) şi calcule aproximative (extragerea radicalului cu 2-3 zecimale exacte)
  • Aria dodecagonului regulat; aria cercului (a discului): aproximarea ariei; numărul π în formă zecimală aproximativă; lungimea cercului (perimetrul)
  • Aplicaţii: calcule aproximative de lungimi şi arii în situaţii practice
  1. PROPORŢIONALITATE ŞI ASEMĂNARE
  • Prezentarea prin transformarea intuitivă: Regula de trei simplă → Triunghiuri asemenea → Teorema fundamentală a asemănării → Teorema lui Thales
  • Raportul lungimilor a două segmente
  • Teorema lui Thales şi reciproca: segmente proporţionale şi paralelismul;
  • Teorema fundamentală a asemănării: aplicaţii aritmetice şi demonstraţii geometrice
  • Aplicaţii: teorema bisectoarei; poziţia centrului de greutate al triunghiului
  • Cazurile de asemănare a triunghiurilor: prezentare; scurte aplicaţii
  • Cazul de asemănare UU la triunghiurile scalene şi la triunghiurile dreptunghice
  • Studiul propoziţiilor directe şi al reciprocelor, parţiale sau totale, pe exemplul linei mijlocii în triunghi (teorema directă; apoi reciproca parţială 1 = teoremă, dar reciproca parţială 2 = propoziţie falsă; în final reciproca totală = teoremă, fiecare cu demonstraţie sau contraexemplu); aplicaţii pe probleme
  1. RELAŢII METRICE ÎN TRIUNGHIUL DREPTUNGHIC
  • Proiecţia unui punct sau a unui segment pe o dreaptă
  • Teoremele lui Euclid: teorema catetei şi teorema înălţimii, demonstraţii prin asemănare şi aplicaţii
  • Teorema lui Pitagora: demonstraţia cu teorema catetei; aplicaţii cu rezultate sau date iraţionale; reciproca teoremei lui Pitagora
  • Rapoartele trigonometrice: definiţii, exemple, valori pentru 30o, 45o, 60o (cu deducerea acestora); rezolvarea triunghiului dreptunghic
  • Poligoanele regulate de bază (triunghiul echilateral, pătratul şi hexagonul regulat): liniile importante şi aria (înălţimea, diagonala, raza cercului circumscris sau înscris, apotema)
  1. CERCUL (recapitulare şi completări)
  • Elementele cercului şi proprietăţile studiate; unghiul la centru şi măsura arcelor de cerc; “Cercul lui Thales” (triunghiul dreptunghic înscris în semicerc)
  • Tangenta la cerc (fără dem.); proprietatea “ciocului de cioară” (cu dem.)
  • Unghiul înscris în cerc (sau “unghiul periferic”): proprietatea măsurii (cu dem.)
  • Cercul înscris şi cercul circumscris unui triunghi
  • Patrulatere înscrise şi patrulatere circumscrise: exemple, studiu comparativ, aplicaţii
  • Lungimea cercului şi aria discului; aria părţilor de disc (semidisc, sfert, sector, inel circular)

CTG

7-Clasa-a-VII-a-ProgramaPentagonia.pdf